Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 6 Sayı: 3, 133 - 140, 31.12.2023
https://doi.org/10.56150/tjhsl.1386213

Öz

Proje Numarası

This research received a Ph.D. thesis grant (project code: TDK-2022-2932) from the Dokuz Eylül University, Department of Scientific Research Projects. .

Kaynakça

  • Kunwar A., Shrestha P., Saraswati S., Thapa S., Shrestha S., Man A. N. Detection of biofilm formation among Pseudomonas aeruginosa isolated from burn patients. Volume 5, Issue 3, (2021), 125-129.
  • Behzadi P., Baráth, Z., Gajdács M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics, (2021),10, 42.
  • Igbinosa I. H., Igbinosa E. O. & Okoh A. I. Molecular detection of metallo-β-lactamase and putative virulence genes in environmental isolates of Pseudomonas species. Polish Journal of Environmental Studies 23 (6), (2014), 2327–2331.
  • Igbinosa I. H., Beshiru A. & Igbinosa E. O. Antibiotic resistance profile of Pseudomonas aeruginosa isolated from aquaculture and abattoir environments in urban communities. Asian Pacific Journal of Tropical Disease 7 (1), (2017), 47–52.
  • Imanah E. O., Beshir A. & Igbinosa, E. O. Antibiogram profile of Pseudomonas aeruginosa isolated from some selected hospital environmental drains. Asian Pacific Journal of Tropical Disease, 7 (10), (2017), 604–609.
  • Divyashree M., Mani M. K., Shama P. K., Vijaya K. D., Veena S. A., Shetty A. K. & Karunasagar I. Hospital wastewater treatment reduces NDM-positive bacteria being discharged into water bodies. Water Environment Research 92 (4), (2020),562–568.
  • Ghafoor A., Hay I. D. & Rehm B. H. A. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Applied Environmental Microbiology, 77 (15), (2011), 5238–5246.
  • Duman M., Mulet M., Altun S., Saticioglu I.B., Ozdemir B., Ajmi N., Lalucat J., García-Valdés E. The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture, 535, (2021), e736369.
  • Moradali M.F., Ghods S., Rehm B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol., 7, (2017), e39.
  • Bao, Z., Stodghill P.V., Myers C.R., Lam H., Wei H.L., Charavarthy S., Kvitko B.H., Collmer A., Cartinhour S.W., Schweitzer P. et al. Genomic Plasticity Enables Phenotypic Variation of Pseudomonas syringae pv. tomato DC3000. PLoS ONE, 9,(2014), e8662.
  • Kazmierczak B.I., Schnierderberend M., Jain R. Cross-regulation of Pseudomonas motility systems: The intimate relationship between flagella, pili and virulence. Curr. Opin. Microbiol., 28,(2015), 78–82.
  • Kleerebezem M., Quadri L. E., Kuipers O. P. & de Vos W. M. Quorum sensing by peptide pheromones and two-component signal transduction systems in Gram-positive bacteria. Molecular Microbiology, 24 (5), (1997),895–904.
  • Maurice N.M., Bedi B., Sadikot R.T. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am. J. Respir. Cell Mol. Biol., 58,(2018), 428–439.
  • Chen H., Wubbolts R.W., Haagsman H.P., Weldhuizen E.J.A. Inhibition and Eradication of Pseudomonas aeruginosa Biofilms by Host Defence Peptides. Sci. Rep., 8,(2018), e10446.
  • Coffey B.M. and Anderson G.G. Biofilm Formation in the 96-Well Microtiter Plate. Chapter 48 Filloux A., Ramos J. Pseudomonas Methods and Protocols. ISBN 978-1-4939-0473-0 (eBook) DOI 10.1007/978-1-4939-0473-0.
  • Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M. A., Hussain T., Ali M., Rafiq M. & Kamil M. A. Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81 (1), (2018), 7–11.
  • Baker P., Hill P.J., Snarr B.D., Alnabelseya N., Pestrak M.J., Lee M.J., et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv. 2(5)(2016), e1501632.
  • Nolan L.M., Turnbull L., Katrib M., Osvath S.R., Losa D., Lazenby J.J., Withcurch C.B. Pseudomonas aeruginosa is capable of natural transformation in biofilms. Microbiology, 166, (2020), 995–1003.
  • Cendra M.M., Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol. Adv., 49,(2021), e107734.
  • Ranieri M.R.M., Whitchuch C.B.L.L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr. Opin. Microbiol., 45, (2018), 164–169.
  • Yin W., Wang Y., Liu L., He J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci., 20,(2019), 3423.
  • Bijari A., Azimi L., Fallah F., Ardebili A., Rastegar Lari E., Rastegar Lari A. Involvement of the multidrug efflux pumps in betalactams resistant Pseudomonas aerugionsa clinical isolates collected from burn patients in Iran. Infect Disord Drug Targets,16(3), (2016), 172–7.
  • Billings N., Millan M., Caldara M., Rusconi R., Tarasova Y., Stocker R. & Ribbeck K. The extracellular matrix component Pslprovides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathogens, (2013) 9, e1003526.
  • Mulcahy L. R., Isabella V. M. & Lewis K. Pseudomonas aeruginosa biofilms in disease. Microbial Ecology, 68 (1), (2014),1–12.
  • Lima J. L. C., Alves L. R., de Araújo Jácome P. R. L., Neto J. P. B., Maciel M. A. & Morais M. M. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. The Brazilian Journal of Infectious Diseases 22 (2), (2018), 129–136.
  • Bentzmann, S., Plésiat, P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ. Microbiol., 13, (2011), 1655–1665.
  • Aliaga L., Mediavilla J.D., Cobo F. A clinical index predicting mortality with Pseudomonas aeruginosa bacteraemia. J. Med. Microbiol., 51,(2002), 615–619.
  • Behzadi P., Baráth Z., Gajdács M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics, (2021), 10, 42.
  • Dogonchi A.A., Ghaemi E.A., Ardebili A., Yazdansetad S., Pournajaf A. Metallo-β-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: a potential threat to clinical therapeutics. Tzu Chi Med J., 30 (2), (2018),:90–6.
  • Mishra M., Byrd M. S., Sergeant S., Azad A. K., Parsek M. R., McPhail L., Schlesinger L. S. & Wozniak D. J. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cellular Microbiology, 14 (1), (2012),95–106.
  • Kamali E., Jamali A., Ardebili A., Ezadi F. and Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm‑related genes among clinical isolates of Pseudomonas aeruginosa, Kamali et al. BMC Res Notes (2020,) 13:27 https://doi.org/10.1186/s13104-020-4890-z
  • Behzadi P., Gajdács M., Pallós P., Ónodi B., Stájer A.,Matusovits D., Kárpáti K., Burián K., Battah B., Ferrari M., et al. Relationship between Biofilm-Formation, Phenotypic Virulence Factors and AntibioticResistance in Environmental Pseudomonas aeruginosa. Pathogens, (2022), 11, 1015. https://doi.org/10.3390/pathogens11091015
  • Stepanović S., Vuković D., Hola V., Bonaventura G.D., Djukić S., Ćirković I. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115(8), (2007),891–9. therapeutics. Tzu Chi Med J., 30(2), (2018), 90–6.
  • Imquestbiosciences. Biofilm Protocol Optimization For Pseudomonas aeruginosa Culture Media, Incubation Time, and Biofilm Measurement, www. imquestbio 301.696.0274
  • O'Toole G.A. Microtiter Dish Biofilm Formation Assay. JoVE. 47. (2011). Vis Exp (47):e2437.URL: http://www.jove.com/details.php?id=2437 DOI: 10.3791/2437.
  • Davarzani F., Saidi N., Besharati S., Saderi H., Rasooli I., Owlia P. Evaluation of antibiotic resistance pattern, alginate and biofilm production in clinical isolates of Pseudomonas aeruginosa. Iran J Public Health, (2021), 50:341.
  • O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fl fluorescent WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol., 28, (1998), 449–461
  • O’Toole G.A., Kolter R. Flagellar, and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.Mol Microbiol., 30, (1998), 295–304.
  • Martinez-Martinez L., Pascual A., Perea E.J. Kinetics of adherence of mucoid and non-mucoid Pseudomonas aeruginosa to plastic catheters. J Med Microbiol., 34, (1991), 7–12.
  • Colvin K.M., Gordon V.D., Murakami K., Borlee B.R., Wozniak D.J., Wong G..C, Parsek M.R. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PloS Pathog., 7,(2011), e1001264
  • Mirza H.K., Hadadi-Fishani M., Morshedi K., Khaledi A. Meta-analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microb. Drug Resist., 26,(2020), 815–824.

Effect of Different Culture Media on Pseudomonas aeruginosa Biofilm Formation

Yıl 2023, Cilt: 6 Sayı: 3, 133 - 140, 31.12.2023
https://doi.org/10.56150/tjhsl.1386213

Öz

The opportunistic pathogen Pseudomonas aeruginosa (PA) causes nosocomial infections, and it is the most common pathogen that can form biofilm. PA biofilm formation is important as an environmental bacterium in hospital wastewater, in vivo, in the environment, and in infection control. Besides many antibiotic resistance mechanisms, biofilms may play an important role as in PA forming biofilms that have a minimum inhibitory concentration (MIC) for antibiotics up to 1,000-fold higher than that of planktonic bacteria. Multiple biofilm-specific mechanisms contribute to the high levels of antibiotic resistance. Therefore, PA biofilm-associated infections lead to important clinical outcomes. The aim was to investigate the efficacy of four different culture media used in two biofilm formation protocols on the assessment of biofilm production by 11 PA isolated from hospital wastewater. The crystal violet microtiter plate-based method was used to evaluate the quantification of the biofilm formation capacity of PA. Results of culture media used in the formation of biofilm capacity were; TSB with %1 glucose 0.0 %, 63.6%, and 36.4%; BHI 18.2%, 36.4%, and 45.5%; LBB 9.1%, 27.3%, and 63.6% of isolates were strong, moderate, and weak biofilm producers, respectively. However, in MHB, 27.3%, 63.6%, and 9.1% of isolates were moderate, weak, and non-biofilm producers, respectively. The biofilm levels in protocol one were higher than the other protocol used (OD570). PA biofilm formation and quantification in these media used may help to search for antibiofilm agents in laboratories to prevent the spread of antimicrobial resistance, develop effective precautions, and prevent PA infections in hospitals.

Etik Beyan

Ethical Statement: This study was approved by the Dokuz Eylül University, Ethical Committee of Non-invasive Clinical Research (Decision No 2022/03-15, Date 19.01.2022).

Destekleyen Kurum

: This research received a Ph.D. thesis grant from the Dokuz Eylül University, Department of Scientific Research Projects. .

Proje Numarası

This research received a Ph.D. thesis grant (project code: TDK-2022-2932) from the Dokuz Eylül University, Department of Scientific Research Projects. .

Teşekkür

: We would like to thank Dokuz Eylül University, Department of Scientific Research Projects for their Ph.D. thesis support of this study.

Kaynakça

  • Kunwar A., Shrestha P., Saraswati S., Thapa S., Shrestha S., Man A. N. Detection of biofilm formation among Pseudomonas aeruginosa isolated from burn patients. Volume 5, Issue 3, (2021), 125-129.
  • Behzadi P., Baráth, Z., Gajdács M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics, (2021),10, 42.
  • Igbinosa I. H., Igbinosa E. O. & Okoh A. I. Molecular detection of metallo-β-lactamase and putative virulence genes in environmental isolates of Pseudomonas species. Polish Journal of Environmental Studies 23 (6), (2014), 2327–2331.
  • Igbinosa I. H., Beshiru A. & Igbinosa E. O. Antibiotic resistance profile of Pseudomonas aeruginosa isolated from aquaculture and abattoir environments in urban communities. Asian Pacific Journal of Tropical Disease 7 (1), (2017), 47–52.
  • Imanah E. O., Beshir A. & Igbinosa, E. O. Antibiogram profile of Pseudomonas aeruginosa isolated from some selected hospital environmental drains. Asian Pacific Journal of Tropical Disease, 7 (10), (2017), 604–609.
  • Divyashree M., Mani M. K., Shama P. K., Vijaya K. D., Veena S. A., Shetty A. K. & Karunasagar I. Hospital wastewater treatment reduces NDM-positive bacteria being discharged into water bodies. Water Environment Research 92 (4), (2020),562–568.
  • Ghafoor A., Hay I. D. & Rehm B. H. A. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Applied Environmental Microbiology, 77 (15), (2011), 5238–5246.
  • Duman M., Mulet M., Altun S., Saticioglu I.B., Ozdemir B., Ajmi N., Lalucat J., García-Valdés E. The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture, 535, (2021), e736369.
  • Moradali M.F., Ghods S., Rehm B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol., 7, (2017), e39.
  • Bao, Z., Stodghill P.V., Myers C.R., Lam H., Wei H.L., Charavarthy S., Kvitko B.H., Collmer A., Cartinhour S.W., Schweitzer P. et al. Genomic Plasticity Enables Phenotypic Variation of Pseudomonas syringae pv. tomato DC3000. PLoS ONE, 9,(2014), e8662.
  • Kazmierczak B.I., Schnierderberend M., Jain R. Cross-regulation of Pseudomonas motility systems: The intimate relationship between flagella, pili and virulence. Curr. Opin. Microbiol., 28,(2015), 78–82.
  • Kleerebezem M., Quadri L. E., Kuipers O. P. & de Vos W. M. Quorum sensing by peptide pheromones and two-component signal transduction systems in Gram-positive bacteria. Molecular Microbiology, 24 (5), (1997),895–904.
  • Maurice N.M., Bedi B., Sadikot R.T. Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am. J. Respir. Cell Mol. Biol., 58,(2018), 428–439.
  • Chen H., Wubbolts R.W., Haagsman H.P., Weldhuizen E.J.A. Inhibition and Eradication of Pseudomonas aeruginosa Biofilms by Host Defence Peptides. Sci. Rep., 8,(2018), e10446.
  • Coffey B.M. and Anderson G.G. Biofilm Formation in the 96-Well Microtiter Plate. Chapter 48 Filloux A., Ramos J. Pseudomonas Methods and Protocols. ISBN 978-1-4939-0473-0 (eBook) DOI 10.1007/978-1-4939-0473-0.
  • Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M. A., Hussain T., Ali M., Rafiq M. & Kamil M. A. Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81 (1), (2018), 7–11.
  • Baker P., Hill P.J., Snarr B.D., Alnabelseya N., Pestrak M.J., Lee M.J., et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv. 2(5)(2016), e1501632.
  • Nolan L.M., Turnbull L., Katrib M., Osvath S.R., Losa D., Lazenby J.J., Withcurch C.B. Pseudomonas aeruginosa is capable of natural transformation in biofilms. Microbiology, 166, (2020), 995–1003.
  • Cendra M.M., Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol. Adv., 49,(2021), e107734.
  • Ranieri M.R.M., Whitchuch C.B.L.L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr. Opin. Microbiol., 45, (2018), 164–169.
  • Yin W., Wang Y., Liu L., He J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci., 20,(2019), 3423.
  • Bijari A., Azimi L., Fallah F., Ardebili A., Rastegar Lari E., Rastegar Lari A. Involvement of the multidrug efflux pumps in betalactams resistant Pseudomonas aerugionsa clinical isolates collected from burn patients in Iran. Infect Disord Drug Targets,16(3), (2016), 172–7.
  • Billings N., Millan M., Caldara M., Rusconi R., Tarasova Y., Stocker R. & Ribbeck K. The extracellular matrix component Pslprovides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathogens, (2013) 9, e1003526.
  • Mulcahy L. R., Isabella V. M. & Lewis K. Pseudomonas aeruginosa biofilms in disease. Microbial Ecology, 68 (1), (2014),1–12.
  • Lima J. L. C., Alves L. R., de Araújo Jácome P. R. L., Neto J. P. B., Maciel M. A. & Morais M. M. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. The Brazilian Journal of Infectious Diseases 22 (2), (2018), 129–136.
  • Bentzmann, S., Plésiat, P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ. Microbiol., 13, (2011), 1655–1665.
  • Aliaga L., Mediavilla J.D., Cobo F. A clinical index predicting mortality with Pseudomonas aeruginosa bacteraemia. J. Med. Microbiol., 51,(2002), 615–619.
  • Behzadi P., Baráth Z., Gajdács M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics, (2021), 10, 42.
  • Dogonchi A.A., Ghaemi E.A., Ardebili A., Yazdansetad S., Pournajaf A. Metallo-β-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: a potential threat to clinical therapeutics. Tzu Chi Med J., 30 (2), (2018),:90–6.
  • Mishra M., Byrd M. S., Sergeant S., Azad A. K., Parsek M. R., McPhail L., Schlesinger L. S. & Wozniak D. J. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cellular Microbiology, 14 (1), (2012),95–106.
  • Kamali E., Jamali A., Ardebili A., Ezadi F. and Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm‑related genes among clinical isolates of Pseudomonas aeruginosa, Kamali et al. BMC Res Notes (2020,) 13:27 https://doi.org/10.1186/s13104-020-4890-z
  • Behzadi P., Gajdács M., Pallós P., Ónodi B., Stájer A.,Matusovits D., Kárpáti K., Burián K., Battah B., Ferrari M., et al. Relationship between Biofilm-Formation, Phenotypic Virulence Factors and AntibioticResistance in Environmental Pseudomonas aeruginosa. Pathogens, (2022), 11, 1015. https://doi.org/10.3390/pathogens11091015
  • Stepanović S., Vuković D., Hola V., Bonaventura G.D., Djukić S., Ćirković I. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115(8), (2007),891–9. therapeutics. Tzu Chi Med J., 30(2), (2018), 90–6.
  • Imquestbiosciences. Biofilm Protocol Optimization For Pseudomonas aeruginosa Culture Media, Incubation Time, and Biofilm Measurement, www. imquestbio 301.696.0274
  • O'Toole G.A. Microtiter Dish Biofilm Formation Assay. JoVE. 47. (2011). Vis Exp (47):e2437.URL: http://www.jove.com/details.php?id=2437 DOI: 10.3791/2437.
  • Davarzani F., Saidi N., Besharati S., Saderi H., Rasooli I., Owlia P. Evaluation of antibiotic resistance pattern, alginate and biofilm production in clinical isolates of Pseudomonas aeruginosa. Iran J Public Health, (2021), 50:341.
  • O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fl fluorescent WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol., 28, (1998), 449–461
  • O’Toole G.A., Kolter R. Flagellar, and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.Mol Microbiol., 30, (1998), 295–304.
  • Martinez-Martinez L., Pascual A., Perea E.J. Kinetics of adherence of mucoid and non-mucoid Pseudomonas aeruginosa to plastic catheters. J Med Microbiol., 34, (1991), 7–12.
  • Colvin K.M., Gordon V.D., Murakami K., Borlee B.R., Wozniak D.J., Wong G..C, Parsek M.R. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PloS Pathog., 7,(2011), e1001264
  • Mirza H.K., Hadadi-Fishani M., Morshedi K., Khaledi A. Meta-analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microb. Drug Resist., 26,(2020), 815–824.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer), Tıbbi Biyoteknoloji (Diğer), Veteriner Mikrobiyolojisi
Bölüm Makaleler
Yazarlar

Füsun Özyaman 0000-0001-7854-0013

Özlem Yılmaz 0000-0002-4461-4886

Proje Numarası This research received a Ph.D. thesis grant (project code: TDK-2022-2932) from the Dokuz Eylül University, Department of Scientific Research Projects. .
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 4 Kasım 2023
Kabul Tarihi 22 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 3

Kaynak Göster

APA Özyaman, F., & Yılmaz, Ö. (2023). Effect of Different Culture Media on Pseudomonas aeruginosa Biofilm Formation. Turkish Journal of Health Science and Life, 6(3), 133-140. https://doi.org/10.56150/tjhsl.1386213