Araştırma Makalesi
BibTex RIS Kaynak Göster

OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma longa L.

Yıl 2018, Cilt: 19 Sayı: 2, 121 - 128, 15.10.2018
https://doi.org/10.23902/trkjnat.344985

Öz

In this study, ultrasonication was
used to extract antioxidant compounds such as polyphenols, flavonoids, and
curcuminoids from turmeric (Curcuma longa
L.) The influences of time, ethanol concentration and temperature as three independent
factors on the extraction of the total phenolic content were evaluated by the
Folin-Ciocalteu method and the antioxidant capacities by the ABTS and chromium
reducing antioxidant capacity (CHROMAC) methods. The central composite design
(CCD) with a multi-response surface methodology (MRSM) was used for the
statistical modeling of the response data followed by the regression
and analysis of variance
(ANOVA) to determine the significance of the model and the factors. The
response predictions obtained at optimum extraction conditions of an extraction
time of 64min, an ethanol concentration of 82% (v/v) and an extraction
temperature of 32°C were 47.32mg GAE/g (for Folin-Ciocalteu), 29.15 (for ABTS)
and 5.17mg TE/g (for CHROMAC). The predicted values obtained from the
multi-response surface methodology agreed with the experimental values data 95%
confidence level. These data indicate that the multi-response surface
methodology is applicable for optimizing the ultrasonic-assisted extraction of
antioxidant compounds from C. longa.




Kaynakça

  • 1. Aybastıer, Ö. & Demir, C. 2010. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene-divinylbenzene copolymer using response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 63: 170-178.
  • 2. Baş, D. & Boyaci, I.H. 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78: 836-845.
  • 3. Dailey, A. & Vuong, Q.V. 2015. Optimization of aqueous extraction conditions for recovery of phenolic content and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Antioxidants, 4: 699-718.
  • 4. Dorta, E., Lobo, M.G. & González, M. 2012. Using drying treatments to stabilise mango peeland seed: effect on antioxidant activity. LWT-Food Science and Technology, 45: 261-268.
  • 5. Işık, E., Şahin, S. & Demir, C. 2013. Development of a new chromium reducing antioxidant capacity (CHROMAC) assay for plants and fruits. Talanta, 111: 119-124.
  • 6. Kant, V., Gopal, A., Pathak, N.N., Kumar, P., Tandan, S.K. & Kumar, D. 2014. Antioxidant and anti-inflammatory potential of curcum in accelerated the cutaneous woundhealing in streptozotocin-induced diabeticrats. International Immunopharmacology, 20: 322-330.
  • 7. Kiamahalleh, M.V., Najafpour-Darzi, G., Rahimnejad, M., Moghadamnia, A.A. & Kiamahalleh, M.V. 2016. High performance curcum in subcritical water extraction from turmeric (Curcuma longa L.). Journal of Chromatography B, 1022: 191-198.
  • 8. Kwang, H.C., Lee, H.J., Koo, S.Y., Song, D.G., Lee D.U. & Pan C.H. 2010. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. Journal of Agricultural and Food Chemistry, 58: 793-797.
  • 9. Lai, J., Wang, H., Wang, D., Fang, F., Wang F. & Wu T. 2014. Ultrasonic extraction of antioxidants from Chinese sumac (Rhus typhina L.) fruit using RSM and their characterization. Molecules, 19: 9019-9032.
  • 10. Liang, H., Wang, W., Xu, J., Zhang, Q., Shen, Z., Zeng, Z. & Li, Q. 2017. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. Food and Bioproducts Processing, 104: 57-65.
  • 11. Lima, C.F., Pereira-Wilson, C. & Rattan, S.I. 2011. Curcumin induces hemeoxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention. Molecular Nutrition & Food Research, 55: 430-442.
  • 12. Mandal, V., Mohan, Y. & S. Hemalatha. 2008. Microwave assisted extraction of curcumin by sample-solvent dual heating mechanis musing Taguchi L9 orthogonal design. Journal of Pharmaceutical and Biomedical Analysis, 46: 322-327.
  • 13. Mandal, V., Dewanjee, S., Sahu, R. & Mandal, S.C. 2009. Design and optimization of ultrasound assistedex traction of curcumin as an effective alternative for conventional solid liquid extraction of natural products. Natural Product Communications, 4: 95-100.
  • 14. Martínez-Morúa, A., Soto-Urquieta, M.G., Franco-Robles, E., Zúñiga-Trujillo, I., Campos-Cervantes, A., Pérez-Vázquez, V. & Ramírez-Emiliano, J. 2013. Curcumin decreases oxidative stress in mitochondria isolated from liver and kidneys of high-fatdiet-induced obesemice. Journal of Asian Natural Products Research, 15: 905-915.
  • 15. Matshediso, P.G., Cukrowska, E. & Chimuka, L. 2015. Development of pressurized hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts. Food Chemistry, 172: 423:427.
  • 16. Mourtas, S., Lazar, A.N., Markoutsa, E., Duyckaerts, C. & Antimisiaris, S.G. 2014. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. European Journal of Medicinal Chemistry, 80: 175-183.
  • 17. Nasır, N., Şahin, S., Çakmak, Z. E. & Çakmak, T. 2017. Optimization of ultrasonic-assisted extraction via multiresponse surface for high antioxidant recovery from Chlorella sp. (Chlorophyta). Phycologia, 56(5): 561-569.
  • 18. Péret-Almeida, L., Cherubino, A.P.F., Alves, R.J., Dufosse, L. & Glória, M.B.A. 2005. Separation and determination of the physico-chemical characteristics of curcumin, emethoxy curcumin and bisdemethoxy curcumin. Food Research International, 38: 1039-1044.
  • 19. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radicalcation decolorization assay. Free Radical Biology and Medicine, 26: 1231-1237.
  • 20. Riela, S., Massaro, M., Colletti, C.G., Bommarito, A., Giordano, C., Milioto, S., Noto, R., Poma, P. & Lazzara, G. 2014. Development and characterization of co-loaded curcumin/triazole-halloy site systems and evaluation of their potential anticancer activity. International Immunopharmacology, 475: 613-623.
  • 21. Singleton, V.L., Orthofer, R. & Lamuela-Raventos, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152-178.
  • 22. Şahin, S., Aybastıer, Ö. & Işık, E., 2013. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chemistry, 141: 1361-1368.
  • 23. Thoo, Y.Y., Ho, S.K., Liang, J.Y., Ho, C.W. & Tan, C.P., 2010. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chemistry, 120: 290-295.
  • 24. Xu, H.Y. & Bao, Y.H. 2014. Response surface optimization of extraction and antioxidant activity of total flavonoids from seed shell of Juglans mandshurica. Food of Science Technology Research, 20: 715-724.
  • 25. Xu, J., Wang, W., Liang, H., Zhang, Q. & Li, Q. 2015. Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Industrial Crops and Products, 76: 487-493.
  • 26. Xu, G., Hao, C., Tian, S., Gao, F., Sun, W. & Sun, R. 2017. A method for the preparation of curcumin by ultrasonic-assisted ammonium sulfate/ethanol aqueous two phase extraction. Journal of Chromatography B, 1041-1042: 167-174.
  • 27. Yap, C.F., Ho, C.W., Wan Aida, W.M. & Chan, S.W. 2009. Optimization of extraction conditions of total phenolic compounds from star fruit (Averrhoa carambola L.) residues. Sains Malaysiana, 38(4): 511-520.

OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma longa L.

Yıl 2018, Cilt: 19 Sayı: 2, 121 - 128, 15.10.2018
https://doi.org/10.23902/trkjnat.344985

Öz

Bu
çalışmada ultrasonikasyon, Curcuma longa L.’da
bulunan polifenol, flavonoid ve kurkuminoid gibi antioksidan bileşiklerin
ekstraksiyonu için kullanılmıştır. Zaman, etanol derişimi ve sıcaklık gibi 3
bağımsız değişkenin toplam fenolik madde (Folin yöntemi) ve antioksidan
kapasite (ABTS ve CHROMAC yöntemi) üzerine etkisi değerlendirilmiştir. Merkezi
kompozit dizayn ile çok yanıtlı yüzey analiz yöntemi, sonuçların istatistiksel
modellenmesi, model ve faktörler arası etkileşimi belirlemek için regresyon ve
ANOVA analizinde kullanılmıştır. Belirlenen optimum koşullarda (64dk ekstraksiyon
zamanı, %82 (v/v) etanol derişimi ve 32°C ekstraksiyon sıcaklığı)
toplam fenolik madde miktarı 47,32mg GAE/g, antioksidan kapasite 29,15 (ABTS)
ve 5,17 (for CHROMAC) mg TE/g bulunmuştur. Bu deneysel değerler ile tahmini
değerler %95 güven aralığında birbiri ile uyumludur. Buna göre çok yanıtlı
yüzey analiz tekniği (MRSM), C. longa’dan
antioksidan bileşiklerin ultrasonik-destekli ekstraksiyon optimizasyonu için
güvenle kullanılabilir.

Kaynakça

  • 1. Aybastıer, Ö. & Demir, C. 2010. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene-divinylbenzene copolymer using response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 63: 170-178.
  • 2. Baş, D. & Boyaci, I.H. 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78: 836-845.
  • 3. Dailey, A. & Vuong, Q.V. 2015. Optimization of aqueous extraction conditions for recovery of phenolic content and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Antioxidants, 4: 699-718.
  • 4. Dorta, E., Lobo, M.G. & González, M. 2012. Using drying treatments to stabilise mango peeland seed: effect on antioxidant activity. LWT-Food Science and Technology, 45: 261-268.
  • 5. Işık, E., Şahin, S. & Demir, C. 2013. Development of a new chromium reducing antioxidant capacity (CHROMAC) assay for plants and fruits. Talanta, 111: 119-124.
  • 6. Kant, V., Gopal, A., Pathak, N.N., Kumar, P., Tandan, S.K. & Kumar, D. 2014. Antioxidant and anti-inflammatory potential of curcum in accelerated the cutaneous woundhealing in streptozotocin-induced diabeticrats. International Immunopharmacology, 20: 322-330.
  • 7. Kiamahalleh, M.V., Najafpour-Darzi, G., Rahimnejad, M., Moghadamnia, A.A. & Kiamahalleh, M.V. 2016. High performance curcum in subcritical water extraction from turmeric (Curcuma longa L.). Journal of Chromatography B, 1022: 191-198.
  • 8. Kwang, H.C., Lee, H.J., Koo, S.Y., Song, D.G., Lee D.U. & Pan C.H. 2010. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. Journal of Agricultural and Food Chemistry, 58: 793-797.
  • 9. Lai, J., Wang, H., Wang, D., Fang, F., Wang F. & Wu T. 2014. Ultrasonic extraction of antioxidants from Chinese sumac (Rhus typhina L.) fruit using RSM and their characterization. Molecules, 19: 9019-9032.
  • 10. Liang, H., Wang, W., Xu, J., Zhang, Q., Shen, Z., Zeng, Z. & Li, Q. 2017. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. Food and Bioproducts Processing, 104: 57-65.
  • 11. Lima, C.F., Pereira-Wilson, C. & Rattan, S.I. 2011. Curcumin induces hemeoxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention. Molecular Nutrition & Food Research, 55: 430-442.
  • 12. Mandal, V., Mohan, Y. & S. Hemalatha. 2008. Microwave assisted extraction of curcumin by sample-solvent dual heating mechanis musing Taguchi L9 orthogonal design. Journal of Pharmaceutical and Biomedical Analysis, 46: 322-327.
  • 13. Mandal, V., Dewanjee, S., Sahu, R. & Mandal, S.C. 2009. Design and optimization of ultrasound assistedex traction of curcumin as an effective alternative for conventional solid liquid extraction of natural products. Natural Product Communications, 4: 95-100.
  • 14. Martínez-Morúa, A., Soto-Urquieta, M.G., Franco-Robles, E., Zúñiga-Trujillo, I., Campos-Cervantes, A., Pérez-Vázquez, V. & Ramírez-Emiliano, J. 2013. Curcumin decreases oxidative stress in mitochondria isolated from liver and kidneys of high-fatdiet-induced obesemice. Journal of Asian Natural Products Research, 15: 905-915.
  • 15. Matshediso, P.G., Cukrowska, E. & Chimuka, L. 2015. Development of pressurized hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts. Food Chemistry, 172: 423:427.
  • 16. Mourtas, S., Lazar, A.N., Markoutsa, E., Duyckaerts, C. & Antimisiaris, S.G. 2014. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. European Journal of Medicinal Chemistry, 80: 175-183.
  • 17. Nasır, N., Şahin, S., Çakmak, Z. E. & Çakmak, T. 2017. Optimization of ultrasonic-assisted extraction via multiresponse surface for high antioxidant recovery from Chlorella sp. (Chlorophyta). Phycologia, 56(5): 561-569.
  • 18. Péret-Almeida, L., Cherubino, A.P.F., Alves, R.J., Dufosse, L. & Glória, M.B.A. 2005. Separation and determination of the physico-chemical characteristics of curcumin, emethoxy curcumin and bisdemethoxy curcumin. Food Research International, 38: 1039-1044.
  • 19. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radicalcation decolorization assay. Free Radical Biology and Medicine, 26: 1231-1237.
  • 20. Riela, S., Massaro, M., Colletti, C.G., Bommarito, A., Giordano, C., Milioto, S., Noto, R., Poma, P. & Lazzara, G. 2014. Development and characterization of co-loaded curcumin/triazole-halloy site systems and evaluation of their potential anticancer activity. International Immunopharmacology, 475: 613-623.
  • 21. Singleton, V.L., Orthofer, R. & Lamuela-Raventos, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152-178.
  • 22. Şahin, S., Aybastıer, Ö. & Işık, E., 2013. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chemistry, 141: 1361-1368.
  • 23. Thoo, Y.Y., Ho, S.K., Liang, J.Y., Ho, C.W. & Tan, C.P., 2010. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chemistry, 120: 290-295.
  • 24. Xu, H.Y. & Bao, Y.H. 2014. Response surface optimization of extraction and antioxidant activity of total flavonoids from seed shell of Juglans mandshurica. Food of Science Technology Research, 20: 715-724.
  • 25. Xu, J., Wang, W., Liang, H., Zhang, Q. & Li, Q. 2015. Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Industrial Crops and Products, 76: 487-493.
  • 26. Xu, G., Hao, C., Tian, S., Gao, F., Sun, W. & Sun, R. 2017. A method for the preparation of curcumin by ultrasonic-assisted ammonium sulfate/ethanol aqueous two phase extraction. Journal of Chromatography B, 1041-1042: 167-174.
  • 27. Yap, C.F., Ho, C.W., Wan Aida, W.M. & Chan, S.W. 2009. Optimization of extraction conditions of total phenolic compounds from star fruit (Averrhoa carambola L.) residues. Sains Malaysiana, 38(4): 511-520.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Saliha Şahin 0000-0003-2887-5688

Yayımlanma Tarihi 15 Ekim 2018
Gönderilme Tarihi 18 Ekim 2017
Kabul Tarihi 6 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 19 Sayı: 2

Kaynak Göster

APA Şahin, S. (2018). OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma longa L. Trakya University Journal of Natural Sciences, 19(2), 121-128. https://doi.org/10.23902/trkjnat.344985
AMA Şahin S. OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma longa L. Trakya Univ J Nat Sci. Ekim 2018;19(2):121-128. doi:10.23902/trkjnat.344985
Chicago Şahin, Saliha. “OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma Longa L”. Trakya University Journal of Natural Sciences 19, sy. 2 (Ekim 2018): 121-28. https://doi.org/10.23902/trkjnat.344985.
EndNote Şahin S (01 Ekim 2018) OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma longa L. Trakya University Journal of Natural Sciences 19 2 121–128.
IEEE S. Şahin, “OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma longa L”., Trakya Univ J Nat Sci, c. 19, sy. 2, ss. 121–128, 2018, doi: 10.23902/trkjnat.344985.
ISNAD Şahin, Saliha. “OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma Longa L”. Trakya University Journal of Natural Sciences 19/2 (Ekim 2018), 121-128. https://doi.org/10.23902/trkjnat.344985.
JAMA Şahin S. OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma longa L. Trakya Univ J Nat Sci. 2018;19:121–128.
MLA Şahin, Saliha. “OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma Longa L”. Trakya University Journal of Natural Sciences, c. 19, sy. 2, 2018, ss. 121-8, doi:10.23902/trkjnat.344985.
Vancouver Şahin S. OPTIMIZATION OF ULTRASONIC-ASSISTED EXTRACTION PARAMETERS FOR ANTIOXIDANTS FROM Curcuma longa L. Trakya Univ J Nat Sci. 2018;19(2):121-8.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.