Araştırma Makalesi
BibTex RIS Kaynak Göster

Toprak Solucanları ile Kompostlaştırılmış Tütün Atıklarının Vermikompost Olarak Değerinin Belirlenmesi

Yıl 2016, Cilt: 53 Sayı: 1, 89 - 97, 19.04.2016
https://doi.org/10.20289/egeziraat.179880

Öz

Organik atıkların sürdürülebilir bir şekilde tekrar doğal döngüye dahil
edilmesinde en başarılı yöntemlerden birisinin kompostlaştırma olduğu bir
gerçektir. Geleneksel kompostlamaya oranla belirgin üstünlükleri bulunan
vermikompostlama yöntemi son yıllarda büyük bir uygulama alanı bulmuştur. Bu
düşünce göz önüne alınarak tesis edilen bu inkübasyon denemesinin amacı; tarım
topraklarında doğrudan kullanımı mümkün olmayan tütün atığının tek başına ve
belirli oranda at gübresi ile karıştırılması suretiyle Eisenia fetida solucanı
vasıtasıyla vermikompost elde edilme olanaklarının araştırılması ve
vermikompost oluşum sürecinin biyokimyasal özelliklerdeki değişimler açısından
incelenmesidir. 3 ay süre ile vermikompostlama işlemine tabi tutulan atıklarda
kimyasal, mikrobiyal ve biyokimyasal parametreler 30.gün, 60.gün ve 90.gün de
alınan örneklerde analiz edilmiştir. Solucanlar aracılığıyla yapılan kompostlama
işleminde analiz edilen biyokimyasal parametreler açısından bir azalma meydana
gelmiştir. En yüksek enzim aktiviteleri 60.gün örneklerinde saptanırken, en düşük
aktivite 30.gün örneklerinde bulunmuştur. Kompost materyallerin stabilite
parametrelerinden olan humifikasyon indeksi değeri, vermikompost
örneklerinde 5 değerinin üzerinde saptanmıştır. Bu durum beklenildiği şekilde
vermikompostlaşma süreci içerisinde stabilizasyon işleminin meydana
gelmediğini göstermektedir. Besin zincirine ihtiyaç duyulan organik madde ve
besin maddelerinin dönüşüne olanak sağlayan kompostlaştırma işleminde; ham
materyallerin özelliklerine bağlı olarak geleneksel kompostlama ya da
vermikompostlama yöntemlerinin hangisinin kullanılması gerektiğine yapılan ön
denemeler ile karar vermek daha doğru bir yaklaşım olacaktır.

Kaynakça

  • Açıkgöz, N., İlker, E. ve Gökçöl, A., 2004. TARIST- Biyolojik Araştırmaların Bilgisayarda Değerlendirmeleri. ISBN: 973-483-607-8. EÜ Tohum Teknolojisi Uygulama ve Araştırma Merkezi, Yayın No:2. Bornova-İzmir.
  • Adediran, J.A., Mnkeni, P.N.S., Mafu, N.C. ve Muyima, N.Y.O., 2004. Changes in chemical properties and temperature during the composting of tobacco waste with other organic materials and effects of resulting compost on lettuce (Lactuca sativa L.) and spinach (Spinacea oleracea L.). Biological Agriculture and Horticulture. 22: 101 – 119.
  • Arancon, N.Q., Edwards, C.A. and Bierman, P., 2006, Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Bioresource Technology, 97: 831 – 840.
  • Atiyeh, R.M., Dominguez, J., Subler, S. and Edwards, C.A., 2000, Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei Bouche) and the effects on seedling growth. Pedobiologia, 44: 709 – 724.
  • Barrena, R., Vázquez, F. and Sánchez, A., 2008. Dehydrogenase activity as a method for monitoring the composting process. Bioresource Technology. 99 (4): 905 – 908.
  • Black, C.A. 1965. Methods of Soil Analysis. Part I. Amer. Soc. of Aagro., inc., Publisher Madison, Wisconsin, USA.
  • Bremner, J.M., 1965. ‘Total Nitrojen”, in C.A. Black (Ed.) Methods of Soil Analysis, Part 2, American Society of Agronomy Inc., Madison, Wisconsin-USA. pp. 1149 – 1178.
  • Brikši, F., Horgas, N., Vuković, M. and Gomzi, Z., 2003. Aerobic composting of tobacco industry solid waste—simulation of the process. Clean Technologies and Environmental Policy. 5 (3-4): 295 – 301.
  • Cayuela, M.L., Mondini, C., Sánchez-Monedero, M.A. and Roig, A., 2008. Chemical properties and hydrolytic enzyme activities forthe characterisation of two-phase olive mill wastes composting. Bioresource Technology. 99: 4255 – 4262.
  • DIN 11542, 1978. Torf für Gartenbau und Landwirtschaft.
  • Domínguez, J., Aira, M. and Gómez-Brandón, M., , 2010, Vermicomposting: earthworms enhance the work of microbes. pp. 93 – 114. Microbes at Work: From Wastes to Resources, Insam, H., Franke-Whittle, I. and Goberna, M., (Eds.), Springer-Verlag Berlin Heidelberg. 329 p.
  • Dominguez, J. and Gomez-Brandon, M., 2013.The influence of earthworms on nutrient dynamics during the process of vermicomposting. Waste Management & Research. 31(8): 859-868.
  • Eivazi, F. and Tabatabai, M.A,. 1977. Phospahatases in soils. Soil Biology and Biochemistry. 9: 167 – 172.
  • Epstein, E., 1997. The Science of Composting. Thecnomic Publishing Company, Inc. Lancaster, Basel.
  • Gieguzyńska, E., Kocmit, A, Gołezbiewska, D., 1998. Studies on humic acids in eroded soils of Western Pomerania. In: Zaujec, A., Bielek, P., Gonet, S.S. (Eds.), Humic Substances in Ecosystems. Slovak Agricultural University, Nitra, pp. 35–41.
  • Gómez-Brandón, M., Lores, M. and Domínguez, J., 2013, Changes in chemical and microbiological properties of rabbit manure in a continuous-feeding vermicomposting system. Bioresource Technology, 128: 310 – 316.
  • Goyal, S., Dhull, S.K. and Kapoor, K.K., 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology. 96: 1584 – 1591.
  • Isermeyer, H., 1952. Eine Einfache Methode zur Bestimmung der Karbonate im Boden, Z. Pflanzenern. Düng., Bodenkde.
  • Jackson, M.L., 1967. Soil Chemical Analysis, Prentice Hall of India Private Limited, New Delhi.
  • Jäggi, W., 1976. Die Bestimmung der CO2-Biulding als Maâ der bonbodenbiologischen Aktivität. Schwiez Landwirtschaft Forchung. 15: 371 – 380.
  • Jenkinson, D.S. and Ladd, J.N., 1981. Microbial biomass in soil: Measurement and turnover. In Soil Biochemistry, Vol. 5. E.A. Paul and J.N. Ladd (eds.). Marcel Dekker, New York, pp. 415 – 471.
  • Jenkinson, D.S., 1976. The effects of biocidal treatments on metabolism in soil. IV. The decomposition of fumigated organisms in soil. Soil Biology and Biochemistry 8: 203 – 208.
  • Kalembasa , S.J. and Jenkinson, D.S., 1973. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of the Science of Food and Agriculture. 24: 1085 – 1090.
  • Kayikçioglu, H.H. and Okur, N., 2011. Evolution of enzyme activities during composting of tobacco waste. Waste Management & Research, 29(11): 1124–1133.
  • Ketkar, C.M., 1993, Use of biogas slurry in agriculture. Biogas Slurry Utilization. Consortium on Rural Technology, New Delhi, pp. 24–26.
  • Ladd, J.N. and Butler, J.H.A., 1972. Short-term assay of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates. Soil Biology and Biochemistry, 4: 19 – 39.
  • Mondini, C., Fornasier, F. and Sinicco, T., 2004. Enzymatic activity as a parameter for the characterization of the composting process. Soil Biology & Biochemistry 36: 1587 – 1594.
  • Ngo, P-T., Rumpel, C., Dignac, M.-F., Billou, D., Tran Duc, T. and Jouquet, P., 2011, Transformation of buffalo manure by composting or vermicomposting to rehabilitate degraded tropical soils. Ecological Engineering, 37: 269 – 276.
  • Pramanik, P., Ghosh, G.K. and Banik, P., 2009. Effect of microbial inoculation during vermicomposting of different organic substrates on microbial status and quantification and documentation of acid phosphatase. Waste Management. 29(2):574-578.
  • Pramanik, P., Ghosh, G.K., Ghosal, P.K. and Banik, P., 2007, Changes in organic – C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresource Technology, 98: 2485 – 2494.
  • Rauterberg, E. und Kremkus, F., 1951. Bestimmung von Gesamt Humus und Alkalischen Humusstoffen in Boden. Z. für Pflanzenernaehrung, Düngung und Bodenkunde, Verlag Chemie, GmbH, Weinheim.
  • Ros, M., Pascual, J.A., Garcia, C., Hernandez, M.T. and Insam, H., 2006. Hydrolase activity, microbial biomass and community structure in a long-term compost amended field experiment. Soil Biology and Biochemistry. 38: 3443 – 3452.
  • Sampedro, L. and Domínguez, J., 2008, Stable isotope natural abundances (13C and 15N) of the earthworm Eisenia fetida and other soil fauna living in two different vermicomposting environments. Applied Soil Ecology, 38: 91 – 99.
  • Sapek, B., Sapek, A., 1999. Determination of optical properties in weakly humified samples. In: Dziadowiec, H., Gonet, S.S. (Eds.), R. Zbytniewski, B. Buszewski / Bioresource Technology 96 (2005) 471–478 477 The Study of Soil Organic Matter––the Methodical Guide. Warszawa, Poland (in polish).
  • Saviozzi, A., Levi-Minzi, R. and Riffaldi, R., 1988. Maturity evaluation of organic wastes, Biocycle. 29 (3): 54 – 56.
  • Schinner, F., Ohlinger, R., Kandeler, E. and Margesin, R., 1995. Methods in Soil Biology. Berlin: Springer- Verlag, p. 189 – 191.
  • Shi-wei, Z. and Fu-zhen, H., 1991, The nitrogen uptake efficiency from 15N labeled chemical fertilizer in the presence of earthworm manure (cast). Advances in Management and Conservation of Soil Fauna, Vereresh, G.K., Rajagopal, D. and Viraktamath, C.A., (Eds.). Oxford and IBH Publishing, New Delhi, India, pp. 539 – 542.
  • Speir, T.W. and Ross, D.J., 1978. Soil phosphatase and sulphatase. In: Burns, R.G. (Ed.), Soil Enzymes. Academic Pres, New York. pp. 197 – 250.
  • Stevenson, F.J. and Cole, M.A., 1999. Cycles of Soil. John Wiley & Sons, Inc. ISBN: 0-471-32071-4. pp. 318.
  • Tabatabai, M.A. and Bremner, J.M., 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry, 1: 301–307.
  • Thalmann, A., 1968. Zur Methodik der Bestimmung der Dehydrogenaseaktivitat im Boden mittels Trinhenyltetrazoliumchlorid (TTC). Landwirtschufthche Forschung Z & 249 – 258.
  • Thompson, W., Leege, P., Millner, P. and Watson, M.E., 2003. Test methods for the examination of composts and composting. The US Composting Council, US Government Printing Office. http://tmecc.org/tmecc/index.html.
  • Tiquia, S.M., 2002. Evolution of enzyme activities during manure composting. Journal of Applied Microbiology. 92: 764 – 775.
  • Tiquia, S.M., 2005. Microbiological parameters as indicators of compost maturity. Journal of Applied Microbiology. 99: 816 – 828.
  • Tripathi, G. and Bhardwaj, P., 2004. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technology, 92:275-283.
  • TS ISO, 1997. Tütün ve Tütün Mamülleri-Alkoloit Tayini-Spektrometrik Metot. TS No: 2881.
  • U.S. Salinity Laboratory Staff., 1954. Diagnosis and Improvement of Saline and Alkali Soils. Agri. Handbook No: 60, USDA.
  • Vance, E.D., Brookes, P.C. and Jenkinson, D.S. 1987. An extraction method for. measuring soil microbial biomass C. Soil Biology and Biochemistry. 19: 703 – 707.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Hüsnü Kayıkçıoğlu

Nur Okur

Onur Bayız Bu kişi benim

Yayımlanma Tarihi 19 Nisan 2016
Gönderilme Tarihi 1 Şubat 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 53 Sayı: 1

Kaynak Göster

APA Kayıkçıoğlu, H., Okur, N., & Bayız, O. (2016). Toprak Solucanları ile Kompostlaştırılmış Tütün Atıklarının Vermikompost Olarak Değerinin Belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 53(1), 89-97. https://doi.org/10.20289/egeziraat.179880

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.