Araştırma Makalesi
BibTex RIS Kaynak Göster

Konjenital Akciğer Lezyonları: Fetal manyetik Rezonans Görüntüleme, Prenatal Ultrasonografi, Postnatal Düşük Doz Bilgisayarlı Tomografi Angiografi Kullanılarak Yapılan Hacim Ölçümününe Dayalı Lezyon Tipinin Öngörülmesi

Yıl 2018, Cilt: 4 Sayı: 3, 992 - 1009, 15.12.2018
https://doi.org/10.30569/adiyamansaglik.452511

Öz

AMAÇ: Üç ana tip konjenital akciğer lezyonunun hacim ve büyüme oranlarının karşılaştırılması, hacim ölçümünün lezyon karakterizasyonundaki etkinliğinin tanımlanması amaçlanmıştır. GEREÇ VE YÖNTEM: Çalışmamızda patolojik olarak kanıtlanmış konjenital akciğer hastalığı olan 59 infant (0-101 gün) retrospektif olarak değerlendirildi. Görüntüleme yöntemlerinden aynı günde (gestasyonun +/ - 24,4 haftasında) fetal MRG, prenatal US ve postnatal olarak da BTA uygulandı. US hacimleri prenatal ultrason raporlarından alındı. Fetal MRG 1.5 T MRG sistemi ile yapıldı. BTA ise 64-kesitli BT sistemi ile düşük doz protokolü kullanılarak gerçekleştirildi. Daha sonra çalışma istasyonlarında hacim ölçümleri gerçekleştirildi. Lezyonlar 3 ana kategoride sınıflandırıldı: Bronşiyal atrezi (BA), konjenital kistik adenomatoid malformasyon (KKAM) ve bronkopulmoner sekestrayon (BPS). Ancak lezyonların%40‘ından fazlasında birden çok histolojik tipin olduğu görüldü. Tanımlaman lezyonlar ve toplam akciğer hacimleri MRG ve BT görüntülerinden bilgisayar yazılımları kullanılarak hesaplandı. İstatiksel ölçüm; gruplar arası ve sınıfiçi ortalama lezyon hacmindeki anlamlı farklılık degişkenlik analizi, sınıf içi korelasyon ve Fisher Testi kullanılarak yapıldı (p<0.05). BULGULAR: MRG görüntülerinden elde olunan hacim ölçümleri şu şekildedir. BA için 11.6cc (95%CI 7.7-15.1), KKAM için 17.6 cc (95%CI 12.6-22.6) ve BPS için 21.1cc (95% CI 12.8-29.6). Prenatal US hacimleri sırasıyla BA için 9.6cc ( 95%CI6.6-12.7) , KKAM için 18.1cc (95%CI 13.3- 22.9) ve BPS için 16.1cc (95%CI 10.5-25.2). Lezyonların MRG ve US volümleri arasındaki sınıf içi korelasyon katsayısı BA için 0.94 (% 95 CI 0.87-0.98) ve KKAM için 0.95 (% 95 CI 0.87-0.95) olarak tespit edildi. BTA ile; BA için 12.1cc (%95 CI 9.3-15.2), KKAM için 20.8cc (%95 CI 13.0- 28.7), BPS için 20.5cc (%95 CI 12.3-28.6) hacim hesaplandı. SONUÇ: Sonuç olarak çalışmamızdaki bulgular değerlendirildiğinde; MRG ve US ile ölçülen BA ve KKAM hacimleri arasında güçlü bir uyum olduğu görüldü. Literatürde yaklaşık 25. gestasyon haftasında KKAM ‘da pik boyut artışı olduğu bildirilmesine rağmen bizim olgu grubumuzda; prenatal dönemde US ve MRG ile ve postnatal olarak da BTA’da görüldüğü gibi, KKAM’nun salt boyutunda ılımlı artış, BA hacminde göreceli olarak stabil seyir ve BPS hacminde az miktarda düşme olduğu görüldü. Ancak, üç ana tip lezyon hacminde de zaman içerisinde göğüs boşluğu hacminin genişlemesine göreceli olarak azalma olduğu saptandı.

Kaynakça

  • 1. Newman B. Conjenital bronchopulmonary foregut malformations: concepts and contoversies. Pediatric Radiology 2006; 36: 773-791
  • 2. Panicek DM, Heitzman ER, Randall PA, et al. The continuum of pulmonary developmental anomalies. Radiographics 1987; 7:747-772
  • 3. Farrugia MK, Raza SA, Gould S, Lakhoo K. Conjenital lung lesions. Pediatr Surg Int 2008; 24:987-991
  • 4. Adzick NS. Management of fetal lung lesions. Clin Perinatol 2003; 30: 481-492
  • 5. MacSweeney F et al. An assessment of the expanded classification of conjenital cystic adenomatoid malformations and their relationship to malignant transformation. Am J Surg Pathol 2003; 27(8): 1139-1146
  • 6. Fraser RS, Colman N, Müller NL, Pare PD. Synopsis of diseases of the chest. 3rd ed. Philadelphia, Pa: Elsevier Saunders; 2005.
  • 7. Langston C. New concepts in the pathology of conjenital lung malformations. Semin Pediatr Surg 2003; 12: 17-37
  • 8. Imai Y, Mark EJ. Cystic adenomatoid change is common to various forms of cystic lung diseases of children. A clinicopathologic analysis of 10 cases with emphasis on tracing the bronchial tree. Arch Pathol Lab Med 2002; 126: 924-940
  • 9. Berrocal T, Madrid C, Novo S, et al. Conjenital anomalies of the trakeobronchial tree, lung, and mediastinum: embrology, radiology, and pathology. Radiographics 2003; 24: e17
  • 10. Kuhn JP. Caffey’s pediatric diagnostic imaging. 10th ed. Elsevier Mosby; 2004
  • 11. Lee EY, Boiselle PM, Cleveland RH. Multidetector CT evaluation of conjenital lung anomalies. Radiology 2008; 247 (3):632-647
  • 12. Zylak CY, Eyler WR, Spizarny DI, Stone CH. Developmental lung anomalies in the adult: radiologic patholojic correlation. Radiographics 2002(Spec Issue): 25-43
  • 13. Aktogu S, Yuncu G, Halilcolar H, Ermete S,Buduneli T. Bronchojenic cysts: clinicopathological presentation and treatment. Eur Respir J 1996;9: 2017-2021
  • 14. Williams HJ, Johnson KJ. Imagıng of conjenital cystic lesions. Pediatr Respir Rev 2002;3: 120-127
  • 15. Haddadin WJ, Reid R, Jindal RM. A retroperitoneal bronchojenic cyst: A rare cause of a mass in the adrenal region. J Clin Pathol 2001; 54:801-802
  • 16. Itoh H, Shitamura T, Kataoka H, et al. Retroperitoneal bronchojenic cyst: Report of a case and literature review. Pathol Int 1999; 49: 152-155
  • 17. Webb W, Higgins CB. Conjenital bronchopulmonary lesions. In: Webb WR, ed. Thoracic imaging: pulmonary and cardiovasculary radiology. Philadelphia, Pa: Lippincott Williams & Wilkins, 2005; 1-29
  • 18. Pham TT, Benirschke K, Eliezer M, Stocker T, Eunhee SY. Conjenital pulmonary airway malformation (conjenital cystic adenomatoid malformation) with multiple extrapulmonary anomalies: autopsy report of a fetus at 19 weeks of gestation. Pediatric and Developmental Pathology 2004; 7:661-666
  • 19. Tawil MI, Pilling DW. Conjenital cystic adenomatoid malformation: is there a difference between the antenatally and postnatally diagnosed cases? Pediatr Radiol 2005; 35: 79-84
  • 20. Stocker JT et al. Congenital cystic adenomatoid malformation of the lung. Classification and morphologic spectrum. Hum Pathol 1977; 8:155-171
  • 21. Usui N, Kamata S, Sawai T, et al. Outcome predictors for infants with cystic lung disease. J Pediatr Surg 2004; 39:603-606
  • 22. Sauvat F, Michell JI,Benachi A, Edmond S, Revillon Y. Management of asymptomatic neonatal cystic adenomatoid malformations. J Pediatr Surg 2003; 38:548-552
  • 23. Khosa JK, Leong SL, Borzi PA. Conjenital cystic adenomatoid malformation of the lung: indications and timing of surgery. Pediatr Surg Int 2004; 20:505-508
  • 24. Yıkılmaz A, Lee EY. CT imaging of masslike nonvascular pulmonary lesions in children. Pediatr Radiol 2007; 37(12):1253-1263
  • 25. Kitaoka H, Burri PH, Weibel ER. Development of the human fetal airway tree. Analysis of the numerical density of airway end tips. Anat Rec 1996; 244:207-213
  • 26. Yoshioka N, Minami M, Inoue Y, et al. Pedunculated bronchogenic cyst mimicking pleural lesion. J Comput Assist Tomogr 2000; 24:581-583
  • 27. Dembinski J, Kaminski M, Schild R, et al. Conjenital intrapulmonary bronchogenic cyst in the neonate: Perinatal management. Am J Perinatol 1999; 16:509-514
  • 28. Lee EY, Siegel MJ. MDCT of tracheobronchial narrowing in pediatric patients. J Thorac Imaging. 2007; 22:300-309
  • 29. Lee EY, Siegel MJ. Pediatric iırways disorders: large airways. In: Boiselle PM, Lynch DA, eds. CT of the airways. Totowa, NJ: Humana 2008; 351-380
  • 30. Donnely LF, Emery KH, Brody AS, et al. Minimizing radiation dose for pediatric body applications for single-detector helical CT: strategies at a large children’s hospital. AJR Am J Roentgenol 2001; 176:303-306
  • 31. Haaga JR. Radiation dose management weighing risk versus benefit. AJR Am J Roentgenol 2001; 177:289-291
  • 32. Paterson A, Frush DP, Donnelly L. Helical CT of the body: are settings adjusted for pediatric patients? AJR Am J Roentgenol 2001; 297-301
  • 33. Slovis TL. The ALARA concept in pediatric CT: myth or reality? Radiology 2002; 223:5-6
  • 34. Cody DD. AAPM/RSNA physics tutorial for residents: topics in CT-image processing in CT. Radiographics 2002; 22:1255-1268
  • 35. Lipson SA. Image reconstruction and review. In: Lipson SA. MDCT and 3D workstations. New York, NY: Springer Science and Business Media 2006;30-40
  • 36. Honda O, Johkoh T, Yamamoto S, et al. Comparison of quality of multiplanar reconstructions and direct coronal multidetector CT scans of the lung. AJR Am J Roentgenol 2002; 179: 875-879
  • 37. Siegel MJ. Multiplanar and three-dimensional multi-detector row CT of thoracic vessels and airways in the pediatric population. Radiology 2003; 229:641-650
  • 38. Lee EY, Siegel MJ, Sierra LM, Foglia RP. Evaluation of angioarchitecture of pulmonary sequestration in pediatric patie MDCT angiography. AJR Am J Roentgenol 2004; 183:183-188

Congenital Lung Lesions: Predictability of Lesion Type Based on Volume Analysis Using Fetal MRI, Prenatal Sonography and Postnatal Low-Dose Chest CT Angiography

Yıl 2018, Cilt: 4 Sayı: 3, 992 - 1009, 15.12.2018
https://doi.org/10.30569/adiyamansaglik.452511

Öz

PURPOSE: To compare volumes and growth rates of 3 major types of congenital lung lesions (CLL) and to determine if volume measurement can improve lesion characterization. MATERIALS AND METHODS: Retrospective analysis of 59 infants (0- 101days) with pathologically proven CLL was performed. Studies included fetal MRI and prenatal sonography (US) performed the same day at +/- 24.4 weeks gestation, and postnatal CT angiography(CTA). US volumes were extracted from the US reports. Fetal MRI was performed on a 1.5T scanner. CTA studies were acquired in 64-multidetector scanner utilizing a low-dose protocol. Data was transferred to an independent workstation for analysis. Lesion and lung volumes were calculated as described elsewhere. The lesions were classified in 3 main categories: Bronchialatresia (BA), congenital cystic adenomatoid malformation (CCAM), and bronchopulmonary sequestration (BPS), although it should be noted that at least 40%of the lesions suggested more than one histologic type. Statistical analyses was performed using the analysis of variance to identify significant differences in mean lesion volume between groups, intraclass correlation, or Fisher exact tests (P <0 .05). RESULTS: Mean volumetric MR measurements were as follow: 11.6cc (95%CI 7.7-15.1) for BA, 17.6 cc (95%CI 12.6-22.6) for CCAM, and 21.6cc (95% CI 12.8-229.6) for BPS. The intraclass correlation coefficient between MRI and US measurements for the lesions was 0.94(95% CI 0.87-0.98) for BA and 0.95 (95%CI 0.87-0.95%) for CCAM. On postnatal low-dose CTA the mean volumetric measurements were: 12.1 cc (95%CI 9.3-15.2) for BA, 20.9cc (95%CI 13-28.7) for CCAM and 20.5 cc (95%CI 12.4-28.6) for BPS. CONCLUSION: There is good agreement between BA and CCAM volumes measured by MRI and those measured by US. Despite the literature quotes a peak in CCAM size occurring approximately at 25 weeks' gestation, in our series, and as measured by postnatal CTA, we encountered a very mild increase in absolute size of CCAM, with relative stable size of BA and slight decrease in volume of BPS. However, all 3 lesions demonstrated a trend toward decreasing mass volume relative to thoracic cavity volume over time. Larger studies are necessary to confirm these results.


Kaynakça

  • 1. Newman B. Conjenital bronchopulmonary foregut malformations: concepts and contoversies. Pediatric Radiology 2006; 36: 773-791
  • 2. Panicek DM, Heitzman ER, Randall PA, et al. The continuum of pulmonary developmental anomalies. Radiographics 1987; 7:747-772
  • 3. Farrugia MK, Raza SA, Gould S, Lakhoo K. Conjenital lung lesions. Pediatr Surg Int 2008; 24:987-991
  • 4. Adzick NS. Management of fetal lung lesions. Clin Perinatol 2003; 30: 481-492
  • 5. MacSweeney F et al. An assessment of the expanded classification of conjenital cystic adenomatoid malformations and their relationship to malignant transformation. Am J Surg Pathol 2003; 27(8): 1139-1146
  • 6. Fraser RS, Colman N, Müller NL, Pare PD. Synopsis of diseases of the chest. 3rd ed. Philadelphia, Pa: Elsevier Saunders; 2005.
  • 7. Langston C. New concepts in the pathology of conjenital lung malformations. Semin Pediatr Surg 2003; 12: 17-37
  • 8. Imai Y, Mark EJ. Cystic adenomatoid change is common to various forms of cystic lung diseases of children. A clinicopathologic analysis of 10 cases with emphasis on tracing the bronchial tree. Arch Pathol Lab Med 2002; 126: 924-940
  • 9. Berrocal T, Madrid C, Novo S, et al. Conjenital anomalies of the trakeobronchial tree, lung, and mediastinum: embrology, radiology, and pathology. Radiographics 2003; 24: e17
  • 10. Kuhn JP. Caffey’s pediatric diagnostic imaging. 10th ed. Elsevier Mosby; 2004
  • 11. Lee EY, Boiselle PM, Cleveland RH. Multidetector CT evaluation of conjenital lung anomalies. Radiology 2008; 247 (3):632-647
  • 12. Zylak CY, Eyler WR, Spizarny DI, Stone CH. Developmental lung anomalies in the adult: radiologic patholojic correlation. Radiographics 2002(Spec Issue): 25-43
  • 13. Aktogu S, Yuncu G, Halilcolar H, Ermete S,Buduneli T. Bronchojenic cysts: clinicopathological presentation and treatment. Eur Respir J 1996;9: 2017-2021
  • 14. Williams HJ, Johnson KJ. Imagıng of conjenital cystic lesions. Pediatr Respir Rev 2002;3: 120-127
  • 15. Haddadin WJ, Reid R, Jindal RM. A retroperitoneal bronchojenic cyst: A rare cause of a mass in the adrenal region. J Clin Pathol 2001; 54:801-802
  • 16. Itoh H, Shitamura T, Kataoka H, et al. Retroperitoneal bronchojenic cyst: Report of a case and literature review. Pathol Int 1999; 49: 152-155
  • 17. Webb W, Higgins CB. Conjenital bronchopulmonary lesions. In: Webb WR, ed. Thoracic imaging: pulmonary and cardiovasculary radiology. Philadelphia, Pa: Lippincott Williams & Wilkins, 2005; 1-29
  • 18. Pham TT, Benirschke K, Eliezer M, Stocker T, Eunhee SY. Conjenital pulmonary airway malformation (conjenital cystic adenomatoid malformation) with multiple extrapulmonary anomalies: autopsy report of a fetus at 19 weeks of gestation. Pediatric and Developmental Pathology 2004; 7:661-666
  • 19. Tawil MI, Pilling DW. Conjenital cystic adenomatoid malformation: is there a difference between the antenatally and postnatally diagnosed cases? Pediatr Radiol 2005; 35: 79-84
  • 20. Stocker JT et al. Congenital cystic adenomatoid malformation of the lung. Classification and morphologic spectrum. Hum Pathol 1977; 8:155-171
  • 21. Usui N, Kamata S, Sawai T, et al. Outcome predictors for infants with cystic lung disease. J Pediatr Surg 2004; 39:603-606
  • 22. Sauvat F, Michell JI,Benachi A, Edmond S, Revillon Y. Management of asymptomatic neonatal cystic adenomatoid malformations. J Pediatr Surg 2003; 38:548-552
  • 23. Khosa JK, Leong SL, Borzi PA. Conjenital cystic adenomatoid malformation of the lung: indications and timing of surgery. Pediatr Surg Int 2004; 20:505-508
  • 24. Yıkılmaz A, Lee EY. CT imaging of masslike nonvascular pulmonary lesions in children. Pediatr Radiol 2007; 37(12):1253-1263
  • 25. Kitaoka H, Burri PH, Weibel ER. Development of the human fetal airway tree. Analysis of the numerical density of airway end tips. Anat Rec 1996; 244:207-213
  • 26. Yoshioka N, Minami M, Inoue Y, et al. Pedunculated bronchogenic cyst mimicking pleural lesion. J Comput Assist Tomogr 2000; 24:581-583
  • 27. Dembinski J, Kaminski M, Schild R, et al. Conjenital intrapulmonary bronchogenic cyst in the neonate: Perinatal management. Am J Perinatol 1999; 16:509-514
  • 28. Lee EY, Siegel MJ. MDCT of tracheobronchial narrowing in pediatric patients. J Thorac Imaging. 2007; 22:300-309
  • 29. Lee EY, Siegel MJ. Pediatric iırways disorders: large airways. In: Boiselle PM, Lynch DA, eds. CT of the airways. Totowa, NJ: Humana 2008; 351-380
  • 30. Donnely LF, Emery KH, Brody AS, et al. Minimizing radiation dose for pediatric body applications for single-detector helical CT: strategies at a large children’s hospital. AJR Am J Roentgenol 2001; 176:303-306
  • 31. Haaga JR. Radiation dose management weighing risk versus benefit. AJR Am J Roentgenol 2001; 177:289-291
  • 32. Paterson A, Frush DP, Donnelly L. Helical CT of the body: are settings adjusted for pediatric patients? AJR Am J Roentgenol 2001; 297-301
  • 33. Slovis TL. The ALARA concept in pediatric CT: myth or reality? Radiology 2002; 223:5-6
  • 34. Cody DD. AAPM/RSNA physics tutorial for residents: topics in CT-image processing in CT. Radiographics 2002; 22:1255-1268
  • 35. Lipson SA. Image reconstruction and review. In: Lipson SA. MDCT and 3D workstations. New York, NY: Springer Science and Business Media 2006;30-40
  • 36. Honda O, Johkoh T, Yamamoto S, et al. Comparison of quality of multiplanar reconstructions and direct coronal multidetector CT scans of the lung. AJR Am J Roentgenol 2002; 179: 875-879
  • 37. Siegel MJ. Multiplanar and three-dimensional multi-detector row CT of thoracic vessels and airways in the pediatric population. Radiology 2003; 229:641-650
  • 38. Lee EY, Siegel MJ, Sierra LM, Foglia RP. Evaluation of angioarchitecture of pulmonary sequestration in pediatric patie MDCT angiography. AJR Am J Roentgenol 2004; 183:183-188
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Filiz Çelebi 0000-0003-4020-4019

Monica Epelman Bu kişi benim 0000-0001-7139-4447

Sabah Servaes Bu kişi benim 0000-0002-1456-8209

Teresa Victoria Bu kişi benim 0000-0002-5927-4220

Beverly Coleman Bu kişi benim 0000-0003-3108-5847

Jeffrey Hellinger Bu kişi benim 0000-0003-0899-6570

Oznur Leman Boyunaga Bu kişi benim 0000-0002-5200-1588

Yayımlanma Tarihi 15 Aralık 2018
Gönderilme Tarihi 4 Eylül 2018
Kabul Tarihi 2 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 4 Sayı: 3

Kaynak Göster

AMA Çelebi F, Epelman M, Servaes S, Victoria T, Coleman B, Hellinger J, Boyunaga OL. Konjenital Akciğer Lezyonları: Fetal manyetik Rezonans Görüntüleme, Prenatal Ultrasonografi, Postnatal Düşük Doz Bilgisayarlı Tomografi Angiografi Kullanılarak Yapılan Hacim Ölçümününe Dayalı Lezyon Tipinin Öngörülmesi. ADYÜ Sağlık Bilimleri Derg. Aralık 2018;4(3):992-1009. doi:10.30569/adiyamansaglik.452511