Araştırma Makalesi
BibTex RIS Kaynak Göster

OBEZ ADOLESANLARDA SERUM N-TERMİNAL PRO B-TİPİ NATRİÜRETİK PEPTİT (NT-PROBNP) DÜZEYLERİ, ERKEN KARDİYOVASKÜLER RİSK FAKTÖRLERİ VE EKOKARDİYOGRAFİK PARAMETRELER ARASINDAKİ İLİŞKİLER

Yıl 2019, Cilt: 52 Sayı: 1, 20 - 27, 14.03.2019

Öz

AMAÇ: 

Bu çalışmada; adolesan obezitesinde N-terminal pro B- tipi natriüretik peptit (NT-proBNP) düzeyleri ile metabolik, ekokardiyografik parametreler, karotis intima media ölçümü (IMT) ve epikardiyal yağ dokusu (EATT) düzeyleri arasındaki ilişki incelenmiştir.

 

MATERYAL-METOD:

Çalışma grubuna 138 obez ergen ve kontrol grubuna ise 63 obez olmayan ergen kabul edildi. VKİ’ye göre; 33,90± 9,30 olan hastaların 95’i hafif-orta obez, 39,40± 4,00 olan hastaların 43’ü ise şiddetli obez olacak şekilde alt gruplara ayrıldı. Tüm hastalara sol ventrikül (SV) sistolik fonksiyonu ve kitle indeksi, miyokardiyal duvar kalınlığı ve miyokardiyal performans indeksi (MPI) saptanması için transtorasik ekokardiyografik inceleme yapıldı. Ekokardiyografide epikardiyal yağ dokusu ve karotis IMT ölçüldü. Eş zamanlı serum NT-proBNP değerleri ölçüldü.

 

BULGULAR:

NT-proBNP değerleri; şiddetli obez grupta 76,00± 49,70 pg / ml, hafif-orta derece obez grupta 67,20 ± 64,40 pg / ml (p= 0,007) ve kontrol grubunda ise 44,30 ± 23,30 pg / ml (p= 0,002) olarak bulundu (p= 0,007, p= 0,002).

Ortalama karotis IMT ölçümleri sırasıyla obez gruplarda 0,91± 0,23 ve 0,88  ± 0,18 mm kontrol grubunda ise 0,52 ± 0.08 mm idi (p= 0,0001). Obez alt gruplar arasında istatistiksel anlamlı farklılık yoktu. EATT ölçümleri obez alt grupları ortalaması, 7,42  ± 1,55 mm ve 7,38± 1,76, kontrol grubunda ise 4,28 ± 0,79 mm olarak ölçüldü (p= 0,0001).

NT-proBNP seviyesi, şiddetli obezitede sol ventrikül sistolik ve diyastolik fonksiyonları ile karotis IMT veya EATT oranları fonksiyonel olarak belirgin pozitif korelasyon göstermiştir.



 



SONUÇLAR:



Çalışmamızda,
hafif-orta ve şiddetli obez ergenlerde serum
NT- proBNP düzeylerinin kontrol grubuna göre daha yüksek olduğunu ve
NT- proBNP'nin obez ergenlerde ateroskleroz ve kardiyak
disfonksiyonu öngörmede yararlı bir belirteç olabileceğini gösterdi.

Kaynakça

  • 1. Simone G, Devereux RB, Wallerson DC Echocardiographic assessment of left ventricular hypertrophy in rats using a simplified approach. Am J Hypertens 1994; 7: 555–8.
  • 2. Eckel RH, Barouch WW, Ershow AG. Report of the National Heart, Lung, and Blood Institute—National Institute of Diabetes and Digestive and Kidney Diseases Working Group on the pathophysiology of obesity-associated cardiovascular disease. Circulation 2002; 105: 2923–8.
  • 3. Fernandes VR, Polak JF, Edvardsen T, et al. Subclinical atherosclerosis and incipient regional myocardial dysfunction in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 2006; 47:2420–8.
  • 4. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med 2002; 347: 305–13.
  • 5. Alpert MA, Terry BE, Kelly DL. Effect of weight loss on cardiac chamber size, wall thickness and left ventricular function in morbid obesity. Am J Cardiol 1985; 55: 783–6.
  • 6. Smith HL, Willius FA. Adiposity of the heart. Arch Intern Med 1933; 52: 911–31.
  • 7. Nakajima T, Fujioka S, Tokunaga K, Hirobe K, Matsuzawa Y, Tarui S. Noninvasive study of left ventricular performance in obese patients: influence of duration of obesity. Circulation 1985; 71: 481– 6.
  • 8. Alpert MA, Lambert CR, Panayiotou H, et al. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol 1995; 76: 1194–7.
  • 9. Olsen MH, Wachtell K, Tuxen C, et al. N-terminal pro-brain natriuretic peptide predicts cardiovascular events in patients with hypertension and left ventricular hypertrophy: a LIFE study. J Hypertens 2004; 22: 1597–604.
  • 10. Schirmer H, Omland T. Circulating N-terminal pro-atrial natriuretic peptide is an independent predictor of left ventricular hypertrophy in the general population. The Tromso Study. Eur Heart J 1999; 20: 755–63.
  • 11. Nasser N, Perles Z, Rein AJ, Nir A. NT-proBNP as a marker for persistent cardiac disease in children with history of dilated cardiomyopathy and myocarditis. Pediatr Cardiol 2006; 27: 87–90.
  • 12. Pfister R, Scholz M, WielckeAD K, Erdmann E, Schneider CA. Use of NT-proBNP in routine testing and comparison to BNP. Eur J Heart Fail 2004; 6: 289–93.
  • 13. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320:1240–3.
  • 14. Sen Y, Kandemir N, Alikasifoglu A, Gonc N, Ozon A. Prevalence and risk factors of metabolic syndrome in obese children and adolescents: the role of the severity of obesity. Eur J Pediatr 2008; 167: 1183–9.
  • 15. Hatipoğlu N, Ozturk A, Mazicioglu M, Kurtoglu S. Waist circumference percentiles for 7- to 17-year-old Turkish children and adolescents. Eur J Pediatr 2007; 167: 383–9.
  • 16. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114: 5556.
  • 17. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 2005; 115: 500–3.
  • 18. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978; 58: 1072–83.
  • 19. Iacobellis G, Assael F, Ribaudo MC, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 2003; 11: 304–10.
  • 20. Iacobellis G, Ribaudo MC, Assael F, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003; 88:5163–8.
  • 21. Tounian P, Aggoun Y, Dubern B, et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet 2001; 358: 1400–4.
  • 22. Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004–2006). Cerebrovasc Dis 2007; 23: 75–80.
  • 23. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci 2001; 321: 225–36.
  • 24. Peterson LR, Waggoner AD, de las Fuentes L et al. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J Am Coll Cardiol 2004; 43: 1399–404.
  • 25. Wong C, Marwick TH. Alterations in myocardial characteristics associated with obesity: detection, mechanisms, and implications. Trends Cardiovascular Med 2007; 17: 1–5.
  • 26. Harada K, Ogino T, Takada G. Body mass index can predict left ventricular diastolic filling in asymptomatic obese children. Pediatric Cardiology 2001; 22: 273–80.
  • 27. Mehta SK, Holliday C, Hayduk L, Wiersma L, Richards N, Younoszai A. Comparison of myocardial function in children with body mass indexes >25 versus those < 25 kg/m2. Am J Cardiology 2004; 93: 1567–9.
  • 28. Sharpe JA, Naylor LH, Jones TW, et al. Impact of obesity on diastolic function in subjects <16 years of age. Am J Cardiol 2006; 98: 691–3.
  • 29. Jeong JW, Jeong MH, Yun KH, et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J 2007; 71:536–9.
  • 30. Schejbal V. Epicardial fatty tissue of the right ventricle morphology, morphometry, and functional significance. Pneumologie 1989; 43; 490–9.
  • 31. Charakida M, Tousoulis D, Stefanadis C. Early atherosclerosis in childhood: diagnostic approaches and therapeutic strategies. Int J Cardiol 2006; 109: 152–9.
  • 32. Di Salvo G, Pacileo G, Del Giudice EM et al. Abnormal myocardial deformation properties in obese, nonhypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Euro Heart J 2006; 27:2689–95.
  • 33. Iannuzzi A, Licenziati MR, Acampora C, et al. Increased carotid intima-media thickness and stiffness in obese children. Diabetes Care 2004; 27: 2506–8.
  • 34. Atabek ME, Pirgon O, Kivrak AS. Evidence for the association between insulin resistance and premature carotid atherosclerosis in childhood obesity. Pediatric Res 2007; 61: 345–9.
  • 35. Beauloye V, Zech F, Tran HT, Clapuyt P, Maes M, Brichard SM. Determinants of early atherosclerosis in obese children and adolescents. J Clin Endocrinol Metab 2007; 92: 3025–32.
  • 36. Mair J, Hammerer-Lercher A, Puschendorf B. The impact of cardiac natriuretic peptide determination on the diagnosis and management of heart failure. Clin Chem Lab Med 2001; 39: 571–88.
  • 37. Dong SJ, de las Fuentes L, Brown AL, et al. N-terminal pro-B-type natriuretic peptide levels: correlation with echocardiographically determined left the ventricular diastolic function in an ambulatory cohort. J Am Soc Echocardiogr 2006; 19: 1017–25.
  • 38. Tschope C, Kasner M, Westermann D, Gaub R, Poller WC, Schultheiss HP. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. Euro Heart J 2005; 26: 2277–84.
  • 39. Kim SW, Park SW, Lim SH, et al. Amount of left ventricular hypertrophy determines the plasma N-terminal pro-brain natriuretic peptide level in patients with hypertrophic cardiomyopathy and normal left ventricular ejection fraction. Clin Cardiol 2006; 29: 155–60.
  • 40. Saritas T, Tascilar E, Abaci A, et al. Importance of plasma N-terminal pro B-type natriuretic peptide, epicardial adipose tissue, and carotid intima-media thicknesses in asymptomatic obese children. Pediatric Cardiology 2010; 31: 792–9.
  • 41. Battal F, Ermis B, Aktop Z, Can M, Demirel F. Early cardiac abnormalities and serum N-terminal pro-B-type natriuretic peptide levels in obese children. J Pediatr Endocrinol Metab 2011; 24: 723–6.
  • 42. Miclaus S, Mornos C, Maximov D, Lupu A, Popa D, Puschita M. The myocardial performance index (Tei-Index): correlation with serum NT-proBNP levels in patients with dilated cardiomyopathy. Rev Med Chir Soc Med Nat Iasi 2009; 113: 391–6.
  • 43. Pervanidou P, Akalestos A, Sakka S, Kanaka-Gantenbein C, Papassotiriou I, Chrousos GP. Gender dimorphic associations between N-terminal pro-brain natriuretic peptide, body mass index and blood pressure in children and adolescents. Horm Res Paediatr 2010; 73: 341–8.

INTERRELATIONS BETWEEN SERUM N-TERMINAL PRO B-TYPE NATRIURETIC PEPTIDE (NT-PROBNP) LEVELS AND EARLY CARDIOVASCULAR RISK FACTORS AND ECHOCARDIOGRAPHIC PARAMETERS IN OBESE ADOLESCENTS

Yıl 2019, Cilt: 52 Sayı: 1, 20 - 27, 14.03.2019

Öz

Purpose:
This study aimed to evaluate the associations between the N-terminal pro-B-type
natriuretic peptide (NT-proBNP) levels and the metabolic, echocardiographic
parameters, carotid intima-media thickness (IMT) and epicardial adipose tissue
thickness (EATT) in adolescent obesity.

Material
and Method
: The study participants consisted of 138 obese
adolescents in the study group and 63 non-obese adolescents as control
subjects. All the subjects underwent transthoracic echocardiographic
examination for determination of left ventricular (LV) systolic function and
mass index, myocardial tissue rates, and myocardial performance index (MPI).
Epicardial adipose tissue thickness and carotid IMT were also measured during
echocardiography. Serum NT-proBNP levels were measured at the time of the
evaluation.

Results:
The NT-proBNP values averaged 67.20 ± 64.40 pg/ml in mildly-moderately obese,
76.00 ± 49.70 pg/ml in the severely obese group and 44.30 ± 23.30 pg/ml in the
control group (p = 0.007, p = 0.002, respectively). The average carotid IMT was
0.91 ± 0.23 and 0.88 ± 0.18 mm in the obesity groups and 0.52 ± 0.08 mm in the
control group (p= 0.0001), but differences were not observed between obesity
groups and the EATT which averaged 7.38 ± 1.76 and 7.42 ± 1.55 mm in the
obesity groups and 4.28 ± 0.79 mm in the control group (p = 0.0001). The
NT-proBNP levels showed statistically significant positive correlations with
left ventricular systolic and diastolic functions, carotid IMT, or EATT values,
especially in severe obesity.







Conclusion:
The study showed higher measurements of serum NT-proBNP levels in
mildly-moderately and severely obese adolescents than control and NT-proBNP
might be a useful marker for predicting atherosclerosis and cardiac dysfunction
in the obese adolescent. 

Kaynakça

  • 1. Simone G, Devereux RB, Wallerson DC Echocardiographic assessment of left ventricular hypertrophy in rats using a simplified approach. Am J Hypertens 1994; 7: 555–8.
  • 2. Eckel RH, Barouch WW, Ershow AG. Report of the National Heart, Lung, and Blood Institute—National Institute of Diabetes and Digestive and Kidney Diseases Working Group on the pathophysiology of obesity-associated cardiovascular disease. Circulation 2002; 105: 2923–8.
  • 3. Fernandes VR, Polak JF, Edvardsen T, et al. Subclinical atherosclerosis and incipient regional myocardial dysfunction in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 2006; 47:2420–8.
  • 4. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med 2002; 347: 305–13.
  • 5. Alpert MA, Terry BE, Kelly DL. Effect of weight loss on cardiac chamber size, wall thickness and left ventricular function in morbid obesity. Am J Cardiol 1985; 55: 783–6.
  • 6. Smith HL, Willius FA. Adiposity of the heart. Arch Intern Med 1933; 52: 911–31.
  • 7. Nakajima T, Fujioka S, Tokunaga K, Hirobe K, Matsuzawa Y, Tarui S. Noninvasive study of left ventricular performance in obese patients: influence of duration of obesity. Circulation 1985; 71: 481– 6.
  • 8. Alpert MA, Lambert CR, Panayiotou H, et al. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol 1995; 76: 1194–7.
  • 9. Olsen MH, Wachtell K, Tuxen C, et al. N-terminal pro-brain natriuretic peptide predicts cardiovascular events in patients with hypertension and left ventricular hypertrophy: a LIFE study. J Hypertens 2004; 22: 1597–604.
  • 10. Schirmer H, Omland T. Circulating N-terminal pro-atrial natriuretic peptide is an independent predictor of left ventricular hypertrophy in the general population. The Tromso Study. Eur Heart J 1999; 20: 755–63.
  • 11. Nasser N, Perles Z, Rein AJ, Nir A. NT-proBNP as a marker for persistent cardiac disease in children with history of dilated cardiomyopathy and myocarditis. Pediatr Cardiol 2006; 27: 87–90.
  • 12. Pfister R, Scholz M, WielckeAD K, Erdmann E, Schneider CA. Use of NT-proBNP in routine testing and comparison to BNP. Eur J Heart Fail 2004; 6: 289–93.
  • 13. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320:1240–3.
  • 14. Sen Y, Kandemir N, Alikasifoglu A, Gonc N, Ozon A. Prevalence and risk factors of metabolic syndrome in obese children and adolescents: the role of the severity of obesity. Eur J Pediatr 2008; 167: 1183–9.
  • 15. Hatipoğlu N, Ozturk A, Mazicioglu M, Kurtoglu S. Waist circumference percentiles for 7- to 17-year-old Turkish children and adolescents. Eur J Pediatr 2007; 167: 383–9.
  • 16. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114: 5556.
  • 17. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 2005; 115: 500–3.
  • 18. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978; 58: 1072–83.
  • 19. Iacobellis G, Assael F, Ribaudo MC, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 2003; 11: 304–10.
  • 20. Iacobellis G, Ribaudo MC, Assael F, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003; 88:5163–8.
  • 21. Tounian P, Aggoun Y, Dubern B, et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet 2001; 358: 1400–4.
  • 22. Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004–2006). Cerebrovasc Dis 2007; 23: 75–80.
  • 23. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci 2001; 321: 225–36.
  • 24. Peterson LR, Waggoner AD, de las Fuentes L et al. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J Am Coll Cardiol 2004; 43: 1399–404.
  • 25. Wong C, Marwick TH. Alterations in myocardial characteristics associated with obesity: detection, mechanisms, and implications. Trends Cardiovascular Med 2007; 17: 1–5.
  • 26. Harada K, Ogino T, Takada G. Body mass index can predict left ventricular diastolic filling in asymptomatic obese children. Pediatric Cardiology 2001; 22: 273–80.
  • 27. Mehta SK, Holliday C, Hayduk L, Wiersma L, Richards N, Younoszai A. Comparison of myocardial function in children with body mass indexes >25 versus those < 25 kg/m2. Am J Cardiology 2004; 93: 1567–9.
  • 28. Sharpe JA, Naylor LH, Jones TW, et al. Impact of obesity on diastolic function in subjects <16 years of age. Am J Cardiol 2006; 98: 691–3.
  • 29. Jeong JW, Jeong MH, Yun KH, et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J 2007; 71:536–9.
  • 30. Schejbal V. Epicardial fatty tissue of the right ventricle morphology, morphometry, and functional significance. Pneumologie 1989; 43; 490–9.
  • 31. Charakida M, Tousoulis D, Stefanadis C. Early atherosclerosis in childhood: diagnostic approaches and therapeutic strategies. Int J Cardiol 2006; 109: 152–9.
  • 32. Di Salvo G, Pacileo G, Del Giudice EM et al. Abnormal myocardial deformation properties in obese, nonhypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Euro Heart J 2006; 27:2689–95.
  • 33. Iannuzzi A, Licenziati MR, Acampora C, et al. Increased carotid intima-media thickness and stiffness in obese children. Diabetes Care 2004; 27: 2506–8.
  • 34. Atabek ME, Pirgon O, Kivrak AS. Evidence for the association between insulin resistance and premature carotid atherosclerosis in childhood obesity. Pediatric Res 2007; 61: 345–9.
  • 35. Beauloye V, Zech F, Tran HT, Clapuyt P, Maes M, Brichard SM. Determinants of early atherosclerosis in obese children and adolescents. J Clin Endocrinol Metab 2007; 92: 3025–32.
  • 36. Mair J, Hammerer-Lercher A, Puschendorf B. The impact of cardiac natriuretic peptide determination on the diagnosis and management of heart failure. Clin Chem Lab Med 2001; 39: 571–88.
  • 37. Dong SJ, de las Fuentes L, Brown AL, et al. N-terminal pro-B-type natriuretic peptide levels: correlation with echocardiographically determined left the ventricular diastolic function in an ambulatory cohort. J Am Soc Echocardiogr 2006; 19: 1017–25.
  • 38. Tschope C, Kasner M, Westermann D, Gaub R, Poller WC, Schultheiss HP. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. Euro Heart J 2005; 26: 2277–84.
  • 39. Kim SW, Park SW, Lim SH, et al. Amount of left ventricular hypertrophy determines the plasma N-terminal pro-brain natriuretic peptide level in patients with hypertrophic cardiomyopathy and normal left ventricular ejection fraction. Clin Cardiol 2006; 29: 155–60.
  • 40. Saritas T, Tascilar E, Abaci A, et al. Importance of plasma N-terminal pro B-type natriuretic peptide, epicardial adipose tissue, and carotid intima-media thicknesses in asymptomatic obese children. Pediatric Cardiology 2010; 31: 792–9.
  • 41. Battal F, Ermis B, Aktop Z, Can M, Demirel F. Early cardiac abnormalities and serum N-terminal pro-B-type natriuretic peptide levels in obese children. J Pediatr Endocrinol Metab 2011; 24: 723–6.
  • 42. Miclaus S, Mornos C, Maximov D, Lupu A, Popa D, Puschita M. The myocardial performance index (Tei-Index): correlation with serum NT-proBNP levels in patients with dilated cardiomyopathy. Rev Med Chir Soc Med Nat Iasi 2009; 113: 391–6.
  • 43. Pervanidou P, Akalestos A, Sakka S, Kanaka-Gantenbein C, Papassotiriou I, Chrousos GP. Gender dimorphic associations between N-terminal pro-brain natriuretic peptide, body mass index and blood pressure in children and adolescents. Horm Res Paediatr 2010; 73: 341–8.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Boyraz Bu kişi benim 0000-0002-4289-9128

Atilla Çifci 0000-0003-1624-9479

Yayımlanma Tarihi 14 Mart 2019
Gönderilme Tarihi 20 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 52 Sayı: 1

Kaynak Göster

AMA Boyraz M, Çifci A. INTERRELATIONS BETWEEN SERUM N-TERMINAL PRO B-TYPE NATRIURETIC PEPTIDE (NT-PROBNP) LEVELS AND EARLY CARDIOVASCULAR RISK FACTORS AND ECHOCARDIOGRAPHIC PARAMETERS IN OBESE ADOLESCENTS. Ankara Eğitim ve Araştırma Hastanesi Tıp Dergisi. Mart 2019;52(1):20-27.