Year 2019, Volume 34, Issue 1, Pages 39 - 46 2019-06-30

Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)

Necla Pehlivan [1] , Neslihan Saruhan Güler [2]

55 176

Global demand to cure ailments is a growing need. Inula genus extensively holds hundreds of species in warmer regions of Europe and Asia. It is being well-known for its phytochemical and pharmacological applications in industry thanks to its anti-inflammatory and antimicrobial interests. However, growth and production of Inula in the cutting-edge industry is commonly influenced by salt stress except for the halophyte species such as the Inula crithmoides. Salt tolerance level by means of changes in osmoregulation and antioxidant systems in an herbaceous perennial Inula plant has been biochemically evaluated here. Both salt stress treatments caused photosynthetic pigments’ degradation, increase in the leaf levels of osmolytes, and induction of oxidative stress indicated by the malondialdehyde (MDA). Higher hydrogen peroxide (H2O2) amount was recorded in high salt concentration than low salt. High salinity caused an increase in ascorbate (ASC) and glutathione (GSH) contents besides target enzymes of Inula leaves. NaCl tolerance of Inula also was found comprehensible through the higher concentrations of proline and to a lesser extent, total soluble sugar. Salt tolerance mechanisms of this rich bioresourse needs to be further studied in detail for herbal medicines in pharma sector.
Inula, NaCl Stress, Proline, Total soluble sugar, Antioxidant system
  • AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., and Abuelsoud, W., 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science 7: 276.
  • Arnon, D. I., 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant physiology 24: 1-15.
  • Ashraf, M., and Foolad, M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2): 206-216.
  • Bates, L., Waldren, R. P., Teare, I. D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207.
  • Demiral, T., and Türkan, I., 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53: 247-257.
  • Dhindsa, R. S., and Matowe, W., 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany 32: 79-91.
  • Foyer, C. H., Rowell, J., Walker, D., 1983. Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239-244
  • Foyer, C. H., and Noctor, G., 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11(4): 861-905.
  • Foyer, C. H., Halliwell, B., 1976. Presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133: 21-25. Griffith, O. W., 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry 106: 207-212.
  • Hayes, J. D., McLellan, L. I., 1999. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research 31: 273-300.
  • Hossain, M. S., and Dietz, K. J., 2016. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in plant science, 7: 548.
  • Katarina, S., Jajoo, A., Guruprasad, K. N., 2014. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J. Photochem. Journal of Photochemistry and Photobiology B: Biology 137: 55-66.
  • Karimi, H., Yusef-Zadeh, H., 2013. The effect of salinity level on the morphological and physiological traits of two grape [Vitis vinifera L.] cultivars. International Journal of Agronomy and Plant Production 4:1108-1117.
  • Kaur, H., Bhatla, S. C., 2016. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59:42-53.
  • Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., Vicente, O., 2017. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.) PLoS ONE 12(9): e0185017. https://doi.org/10.1371/ journal.pone.0185017
  • Marco, F., Bitrián, M., Carrasco, P., Rajam, M. V., Alcázar, R., Antonio, F. T., 2015. Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biology & Biotechnology 2: 579-610.
  • Maruta, T., Noshi, M., Tanouchi, A., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., Shigeoka, S., 2012. H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. The Journal of Biological Chemistry, 6:287(15): 11717-29.
  • Nikalje, G. C., Variyar, P. S., Joshi, M. V., Nikam, T. D., Suprasanna, P., 2018. Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) PLoS ONE 13(4): e0193394.
  • Pardo-Domènech, L. L., Tifrea, A., Grigore, M. N., Boscaiu, M., Vicente, O., 2016. Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosystems 150: 904-915.
  • Potters, G., Horemans, N., Bellone, S., Caubergs, R. J., Trost, P., Guisez, Y., Asard, H., 2004. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiology 134(4): 1479-1487.
  • Ross, A. F., 1959. Dinitrophenol method for reducing sugar, potato processing. Potato Processing, 1:492- 493
  • Sales, C. R. G., Ribeiro, R. V., Silveira, J. A. G., Machado, E. C., Martins, M.O., Lagôa,. A. M., 2013. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiology and Biochemistry 73: 326-336.
  • Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., Vicente, O., 2015. Identification of salt stress biomarkers in Romanian Carpathian populations of Picea abies (L.) Karst. PLoS ONE 10(8): e0135419.
  • Shinozaki, K., and Yamaguchi-Shinozaki, K., 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58(2): 221-227.
  • Singh, M., Kumar, J., Singh, S., Singh, V. P., Prasad, S. M., 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology 14: 407-426.
  • Smeekens, S., 2000. Sugar-induced signal transduction in plants. Annual review of plant physiology and plant molecular biology 51: 49-81.
  • Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., Mulet, J. M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. S. South African Journal of Botany 105: 306-312.
  • Urbanek, H., Kuzniak-Gebarowska, E., Herka, K., 1991. Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturanase. Acta Physiologiae Plantarum 13:43-50.
  • Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Science 151: 59-66.
  • Wu, J., Tang, C., Yao, S., Zhang, L., Ke, C., Feng, L., Lin, G., Ye, Y., 2015. Anti-inflammatory inositol derivatives from the whole plant of Inula cappa. Journal of Natural Products 78:2332-2338.
  • Xiang, C., Werner, B. L., Christensen, E. M., Oliver, D. J., 2001. The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant Physiology 126(2): 564-574.
  • Yang, Y., Wei, X., Shi, R., Fan, Q., An, L., 2010. Salinity-induced physiological modification in the callus from halophytes Nitraria tangutorum Bobr. Journal of Plant Growth Regulation 29: 465-476.
  • Zhou, S. Z., Guo, K., Elbaz, A. A., Yang, Z. M., 2009. Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany 65: 27-34.
Primary Language en
Subjects Science
Journal Section Research Articles
Authors

Author: Necla Pehlivan (Primary Author)

Author: Neslihan Saruhan Güler

Dates

Publication Date: June 30, 2019

Bibtex @research article { alinterizbd541949, journal = {Alinteri Journal of Agriculture Science}, issn = {2564-7814}, eissn = {2587-2249}, address = {Adem Yavuz SÖNMEZ}, year = {2019}, volume = {34}, pages = {39 - 46}, doi = {10.28955/alinterizbd.541949}, title = {Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)}, key = {cite}, author = {Pehlivan, Necla and Saruhan Güler, Neslihan} }
APA Pehlivan, N , Saruhan Güler, N . (2019). Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae). Alinteri Journal of Agriculture Science, 34 (1), 39-46. DOI: 10.28955/alinterizbd.541949
MLA Pehlivan, N , Saruhan Güler, N . "Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)". Alinteri Journal of Agriculture Science 34 (2019): 39-46 <http://dergipark.org.tr/alinterizbd/issue/44004/541949>
Chicago Pehlivan, N , Saruhan Güler, N . "Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)". Alinteri Journal of Agriculture Science 34 (2019): 39-46
RIS TY - JOUR T1 - Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae) AU - Necla Pehlivan , Neslihan Saruhan Güler Y1 - 2019 PY - 2019 N1 - doi: 10.28955/alinterizbd.541949 DO - 10.28955/alinterizbd.541949 T2 - Alinteri Journal of Agriculture Science JF - Journal JO - JOR SP - 39 EP - 46 VL - 34 IS - 1 SN - 2564-7814-2587-2249 M3 - doi: 10.28955/alinterizbd.541949 UR - https://doi.org/10.28955/alinterizbd.541949 Y2 - 2019 ER -
EndNote %0 Alinteri Journal of Agriculture Science Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae) %A Necla Pehlivan , Neslihan Saruhan Güler %T Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae) %D 2019 %J Alinteri Journal of Agriculture Science %P 2564-7814-2587-2249 %V 34 %N 1 %R doi: 10.28955/alinterizbd.541949 %U 10.28955/alinterizbd.541949
ISNAD Pehlivan, Necla , Saruhan Güler, Neslihan . "Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)". Alinteri Journal of Agriculture Science 34 / 1 (June 2019): 39-46. https://doi.org/10.28955/alinterizbd.541949
AMA Pehlivan N , Saruhan Güler N . Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae). Alinteri Journal of Agriculture Science. 2019; 34(1): 39-46.
Vancouver Pehlivan N , Saruhan Güler N . Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae). Alinteri Journal of Agriculture Science. 2019; 34(1): 46-39.