Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and Characterization of ZnO Nanoparticles under Different Spray Dryer Processing Parameters and Solution Concentrations

Yıl 2019, Cilt: 7 Sayı: 2, 324 - 331, 25.05.2019
https://doi.org/10.21541/apjes.419388

Öz

In this study, it has been aimed to investigate the effect of different concentrations and spray dryer process parameters on
morphology and particle size of ZnO nanoparticles. In the scope of the study ZnO nanoparticles were synthesized from zinc
acetate solutions and the structural and morphological characterizations were carried out. Successive spray drying and thermal
decomposition processes were performed in order to synthesize of ZnO nanoparticles. The X-ray diffraction analysis revealed
single-phase ZnO hexagonal structure. It has been determined that the densities increased while the specific surface area values
decreased with increasing of concentration. By the changing of spray dryer process parameters, particle size and density have
altered. According to SEM micrographs, it has been observed thatspherical morphologies ofspray dried powders exhibit rod/rodlike morphology with the thermal decomposition process. In the evaluation of results, it has been ascertained that the structural
and morphological properties of ZnO nanoparticles varied by concentration and by changing the spray dryer process parameters.

Kaynakça

  • Referans1 S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent advances in processing of ZnO”, J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. vol. 22, pp. 932-948, 2004.
  • Referans2 A. Arslan, E. Hur, S. Ilican, Y. Caglar, M. Caglar, “Controlled growth of c-axis oriented ZnO nanorod array films by electrodeposition method and characterization”, Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 128, pp. 716-723, 2014.
  • Referans3 Y. Caglar, K. Gorgun, S. Aksoy, “Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis”, Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 138, pp. 617–622, 2015.
  • Referans4 P. Rai, H. M. Song, Y. S. Kim, M. K. Song, P. R. Oh, J. M. Yoon, Y. T. Yu, “Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application”, Mater. Lett., vol. 68, pp. 90-93, 2012.
  • Referans5 M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, K. Sopian, “Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol-gel technique”, Chemosphere, vol. 91, pp. 1604–1611, 2013.
  • Referans6 K. B. Dermenci, B. Genc, B. Ebin, T. Olmez-Hanci, S. Gürmen, “Photocatalytic studies of Ag/ZnO nanocomposite particles produced via ultrasonic spray pyrolysis method”, J. Alloys. Compd., vol. 586, pp. 267–273, 2014.
  • Referans7 Z. Wang, B. Huang, X. Qin, X. Zhang, P. Wang, J. Wei, J. Zhan, X. Jing, H. Liu, Z. Xu, H. Cheng, X. Wang, Z. Zheng, “Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method”, Mater. Lett., vol. 63, pp. 130-132, 2009.
  • Referans8 S. Music, A. Saric, S. Popovic, “Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate”, Ceram. Inter., vol. 36, pp 1117–1123, 2010.
  • Referans9 S. Liang, L. Zhu, G. Gai, Y. Yao, J. Huang, X. Ji, X. Zhou, D. Zhang, P. Zhang, “Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property”, Ultrason. Sonochem., vol. 21, pp. 1335-1342, 2014.
  • Referans10 Duman Şeyma, “Püskürtmeli kurutma ve termal bozunma prosesleri ile ZnO esaslı partiküllerin ve kompozit yapıların sentezlenmesi ve karakterizasyonu” Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2016.
  • Referans11 J. H. Lim, H. Bang, K. S. Lee, K. Amine, Y. K. Sun, “Electrochemical characterization of Li2MnO3–Li[Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries”, J. Power Sources, vol. 189, pp. 571–575, 2009.
  • Referans12 D. J. Kim ve J. Y. Jung, “Granule performance of zirconia/alumina composite powders spray-dried using polyvinyl pyrrolidone binder”, J. Eur. Ceram. Soc., vol. 27, pp. 3177–3182, 2007.
  • Referans13 D. Walton ve C. Mumford, “The morphology of spray-dried particles – the effect of process variables upon the morphology of spray-dried particles”, Trans. Inst. Chem. Eng. Part A, vol. 77, pp. 442–460, 1999.
  • Referans14 Ş. Duman ve B. Özkal, “Effect of dopant and binder on the formation of ZnO powders during thermal decomposition of spray dried zinc acetate based granules”, J. Optoelectron. Adv. Mater., vol. 18, no. 7-8, pp. 705 – 711, 2016.
  • Referans15 K. Masters, Spray Drying Handbook, 5th ed., Longman Scientific & Technical, England, 1991.
  • Referans16 A. S. Mujumdar Principles, Classification, and Selection of Dryers, in Handbook of Industrial Drying, Ed. Mujumdar A. S., Taylor & Francis, Hemisphere, 2006.
  • Referans17 J. C. Lin ve J. W. Gentry, “Spray drying drop morphology: experimental study”, Aerosol Sci. Technol., vol. 37, pp. 15–32, 2003.
  • Referans18 Özdemir Ercan, “Püskürtmeli kurutucuda disodyum oktaborat tetrahidrat üretimi ve modelleme çalışmaları” Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2009.
  • Referans19 L. Gallo, J. M. Llabot, D. Allemandi, V. Bucala, J. Pina, “Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties”, Powder Technology, vol. 208, pp. 205–214, 2011.
  • Referans20 C. C. Lin ve Y. Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate”, Mater. Chem. Phys., vol. 113, no 1, pp. 334–337, 2009.
  • Referans21 J. Chen, R. Zhao, H. Jiang, Y. Li, G.Bao, “Thermal decomposition of zinc carbonate hydroxide hydrate powders of different particle size and sample mass”, TransactionsNonferrous Metals Society of China, vol. 8, pp. 149-153, 1998.
  • Referans22 J. Wojnarowicz, R. Mukhovskyi, E. Pietrzykowska, S. Kusnieruk, J. Mizeracki, W. Lojkowski, “Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles”, Beilstein J. Nanotechnol., vol. 7, pp. 721–732, 2016.
  • Referans23 X. R. Qu ve D. C. Jia, “Synthesis of octahedral ZnO mesoscale superstructures via thermal decomposing octahedral zinc hydroxide precursors”, J. Cryst. Growth., vol. 311, pp. 1223–1228, 2009.
  • Referans24 V. Manthina ve A. G. Agrios, “Single-pot ZnO nanostructure synthesis by chemical bath deposition and their applications”, Nano-Structures & Nano-Objects, vol. 7, pp. 1-11, 2016.

Farklı Püskürtmeli Kurutucu Proses Parametreleri ve Çözelti Konsantrasyonunda ZnO Nanopartiküllerin Sentezlenmesi ve Karakterizasyonu

Yıl 2019, Cilt: 7 Sayı: 2, 324 - 331, 25.05.2019
https://doi.org/10.21541/apjes.419388

Öz

Bu çalışmada ZnO nanopartiküllerinin morfoloji ve partikül boyutu üzerine farklı püskürtmeli kurutucu proses parametrelerinin
ve konsantrasyonun etkisinin araştırılması amaçlanmıştır. Çalışma kapsamında çinko asetat çözeltilerinden hareketle ZnO
nanopartiküller sentezlenmiş, yapısal ve morfolojik özellikleri incelenmiştir. ZnO nanopartiküllerin sentezlenmesinde
püskürtmeli kurutma ve termal bozunma prosesleri ardışık olarak uygulanmıştır. X-ışını kırınım analizi, tek fazlı ZnO altıgen
yapısını göstermiştir. Konsantrasyonun artırılması sayesinde sentezlenen tozların yüzey alanı değerleri azalırken gerçek
yoğunluk değerlerinin arttığı belirlenmiştir. Ayrıca püskürtmeli kurutucu proses parametrelerinin değiştirilmesi ile partikül boyut
ve yoğunluk değerleri değişmiştir. SEM görüntülerine göre; püskürtülerek kurutulmuş tozların küresel morfolojilerinin termal
bozunma prosesi ile çubuk/çubuksu morfoloji sergilediği gözlenmiştir. ZnO nanopartiküllerin yapısal ve morfolojik
özelliklerinin, püskürtmeli kurutucu proses parametrelerinin ve konsantrasyonun değiştirilmesiyle farklılıklar gösterdiği tespit
edilmiştir.

Kaynakça

  • Referans1 S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent advances in processing of ZnO”, J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. vol. 22, pp. 932-948, 2004.
  • Referans2 A. Arslan, E. Hur, S. Ilican, Y. Caglar, M. Caglar, “Controlled growth of c-axis oriented ZnO nanorod array films by electrodeposition method and characterization”, Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 128, pp. 716-723, 2014.
  • Referans3 Y. Caglar, K. Gorgun, S. Aksoy, “Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis”, Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 138, pp. 617–622, 2015.
  • Referans4 P. Rai, H. M. Song, Y. S. Kim, M. K. Song, P. R. Oh, J. M. Yoon, Y. T. Yu, “Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application”, Mater. Lett., vol. 68, pp. 90-93, 2012.
  • Referans5 M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, K. Sopian, “Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol-gel technique”, Chemosphere, vol. 91, pp. 1604–1611, 2013.
  • Referans6 K. B. Dermenci, B. Genc, B. Ebin, T. Olmez-Hanci, S. Gürmen, “Photocatalytic studies of Ag/ZnO nanocomposite particles produced via ultrasonic spray pyrolysis method”, J. Alloys. Compd., vol. 586, pp. 267–273, 2014.
  • Referans7 Z. Wang, B. Huang, X. Qin, X. Zhang, P. Wang, J. Wei, J. Zhan, X. Jing, H. Liu, Z. Xu, H. Cheng, X. Wang, Z. Zheng, “Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method”, Mater. Lett., vol. 63, pp. 130-132, 2009.
  • Referans8 S. Music, A. Saric, S. Popovic, “Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate”, Ceram. Inter., vol. 36, pp 1117–1123, 2010.
  • Referans9 S. Liang, L. Zhu, G. Gai, Y. Yao, J. Huang, X. Ji, X. Zhou, D. Zhang, P. Zhang, “Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property”, Ultrason. Sonochem., vol. 21, pp. 1335-1342, 2014.
  • Referans10 Duman Şeyma, “Püskürtmeli kurutma ve termal bozunma prosesleri ile ZnO esaslı partiküllerin ve kompozit yapıların sentezlenmesi ve karakterizasyonu” Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2016.
  • Referans11 J. H. Lim, H. Bang, K. S. Lee, K. Amine, Y. K. Sun, “Electrochemical characterization of Li2MnO3–Li[Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries”, J. Power Sources, vol. 189, pp. 571–575, 2009.
  • Referans12 D. J. Kim ve J. Y. Jung, “Granule performance of zirconia/alumina composite powders spray-dried using polyvinyl pyrrolidone binder”, J. Eur. Ceram. Soc., vol. 27, pp. 3177–3182, 2007.
  • Referans13 D. Walton ve C. Mumford, “The morphology of spray-dried particles – the effect of process variables upon the morphology of spray-dried particles”, Trans. Inst. Chem. Eng. Part A, vol. 77, pp. 442–460, 1999.
  • Referans14 Ş. Duman ve B. Özkal, “Effect of dopant and binder on the formation of ZnO powders during thermal decomposition of spray dried zinc acetate based granules”, J. Optoelectron. Adv. Mater., vol. 18, no. 7-8, pp. 705 – 711, 2016.
  • Referans15 K. Masters, Spray Drying Handbook, 5th ed., Longman Scientific & Technical, England, 1991.
  • Referans16 A. S. Mujumdar Principles, Classification, and Selection of Dryers, in Handbook of Industrial Drying, Ed. Mujumdar A. S., Taylor & Francis, Hemisphere, 2006.
  • Referans17 J. C. Lin ve J. W. Gentry, “Spray drying drop morphology: experimental study”, Aerosol Sci. Technol., vol. 37, pp. 15–32, 2003.
  • Referans18 Özdemir Ercan, “Püskürtmeli kurutucuda disodyum oktaborat tetrahidrat üretimi ve modelleme çalışmaları” Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2009.
  • Referans19 L. Gallo, J. M. Llabot, D. Allemandi, V. Bucala, J. Pina, “Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties”, Powder Technology, vol. 208, pp. 205–214, 2011.
  • Referans20 C. C. Lin ve Y. Y. Li, “Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate”, Mater. Chem. Phys., vol. 113, no 1, pp. 334–337, 2009.
  • Referans21 J. Chen, R. Zhao, H. Jiang, Y. Li, G.Bao, “Thermal decomposition of zinc carbonate hydroxide hydrate powders of different particle size and sample mass”, TransactionsNonferrous Metals Society of China, vol. 8, pp. 149-153, 1998.
  • Referans22 J. Wojnarowicz, R. Mukhovskyi, E. Pietrzykowska, S. Kusnieruk, J. Mizeracki, W. Lojkowski, “Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles”, Beilstein J. Nanotechnol., vol. 7, pp. 721–732, 2016.
  • Referans23 X. R. Qu ve D. C. Jia, “Synthesis of octahedral ZnO mesoscale superstructures via thermal decomposing octahedral zinc hydroxide precursors”, J. Cryst. Growth., vol. 311, pp. 1223–1228, 2009.
  • Referans24 V. Manthina ve A. G. Agrios, “Single-pot ZnO nanostructure synthesis by chemical bath deposition and their applications”, Nano-Structures & Nano-Objects, vol. 7, pp. 1-11, 2016.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şeyma Duman

Burak Özkal

Yayımlanma Tarihi 25 Mayıs 2019
Gönderilme Tarihi 28 Nisan 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

IEEE Ş. Duman ve B. Özkal, “Farklı Püskürtmeli Kurutucu Proses Parametreleri ve Çözelti Konsantrasyonunda ZnO Nanopartiküllerin Sentezlenmesi ve Karakterizasyonu”, APJES, c. 7, sy. 2, ss. 324–331, 2019, doi: 10.21541/apjes.419388.