Derleme
BibTex RIS Kaynak Göster

BİYODEDEKTİF; HAM PETROL SIZINTISI VE PETROL İLE İLGİLİ ÇEVRE KİRLİLİĞİ ARAŞTIRMALARINDA BİYOMARKER VERİLERİNİN KULLANIMI

Yıl 2017, Cilt: 5 Sayı: 2, 172 - 190, 31.10.2017
https://doi.org/10.20290/aubtdb.299509

Öz

Kazalar veya
ihmaller sonucunda ham petrol ve rafinasyon ürünlerinden itibaren oluşan deniz
veya kara ekosistemindeki kirliliklerin biyomarkerler verileri ile
araştırılması, kaynağa ait izlerin takibi ve buna neden eden kaynağın (petrol
tankeri, gemi, tekne vb) ortaya çıkartılması son yıllarda sıkça uygulanan bir
yöntemdir. Günümüzde detaylı ve gelişmiş aletsel yöntemlerle gittikçe gelişen bir
araştırma türü olmuştur. Biyomarkerler
petrol bileşenleri içindeki en önemli gruplardan biridir. Çok düşük
miktarlarının bile gaz kromatografi-kütle spektrometre (GC-MS) cihazı kullanılarak
belirlenebilmesi ve petrol için önemli tanımlayıcı bilgileri sağlaması
nedeniyle yıllardır petrol jeolojisi çalışmalarında sıkça kullanılmasına neden
olmuştur. Petroldeki alkanlar ve birçok aromatik bileşene göre biyomarkerler
çevresel şartlarda bozunmaya karşı daha dayanıklıdır. Ayrıca, farklı
jeolojik yaşlar ve koşullara dair belirteç olması nedeniyle farklı biyomarker
parmak izlerini de oluştururlar. Böylece biyomarker incelemeleri ile sızıntının
kaynağı, ayrımlanması, petrollerin tanımlanması ve korelasyonu ile çevresel
etkenler nedeniyle gelişen bozunma sürecinin takibi sağlanabilmektedir. Bu
makalede biyomarkerlerin kimyasal özellikleri kısaca anlatılarak, biyomarker
tanımlama ve değerlendirilmesi, dağılımları, bileşimindeki bozunma etkileri,
tanımlayıcı oranlar, petrol ve türevlerine ait sızıntı çalışmalarında
biyomarker parmak izlerinin kullanımı ve bu kapsamda dünyada yapılan bazı örnek
çalışmalar hakkında genel bir değerlendirme yapılmıştır. 

Kaynakça

  • Yalçın Erik, N., Petrol Tankeri Kazaları ve neden olduğu çevre kirliliği. Mavi Gezegen (20), 2015, 1-11.
  • Stout, S.A., Wang, Z., Chemical Fingerprinting of Spilled or Discharged Petroleum-Methods and Factors Affecting Petroleum Fingerprints in the Environment, Environmental Forensic, 7, 2006, 231-246.
  • Wang, Z., S.A. Stout, and M. Fingas, Biomarker fingerprinting for spill oil characterization and source identification (Review). Environ. Forensics; 7(2), 2006, 105–146.
  • Eglinton, G. and M. Calvin. Chemical fossils. Sci. Am.; 261, 1967, 32–43.
  • Tissot, B.P. and D.H. Welte, Petroleum Formation and Occurrence, 2nd ed. 1984, Springer-Verlag, New York.
  • Hunt, J.M., Petroleum Geochemistry and Geology, 1996, 2nd ed. Freeman Press, USA.
  • Peters, K.E., Walters, C.C., and Moldowan, J.W., The Biomarker Guide (2nd ed). 2005, Cambridge, UK: Cambridge University Press.
  • Wang, Z.D., Fingas, M., and Li, K., Fractionation of ASMB Oil, identification and quantitation of aliphatic, aromatic and biomarker compoundsby GC/FID and GC/MSD. J. Chromatogrophy Science Series 32; 1994a, 361–366 (Part I) and 367–382 (Part II).
  • Bence, A.E., Kvenvolden, K.A., and Kennicutt II, M.C., Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill—A review. Organic Geochemistry 24: 1996, 7–42.
  • Volkman, J.K., A.T. Revill, and A.P. Murray, Applications of biomarkers for identifying sources of natural and pollutant hydrocarbons in aquatic environments. In: R.P. Eganhouse (ed.), Molecular Markers in Environmental Geochemistry; Am. Chem. Soc., Washington, D.C.; 1997, 110–132.
  • Zakaria, M. P., Horinouchi, A., Tsutsumi, S., Takada, H., Tanabe, S., and Ismail, A., Oil pollution in the Straits of Malacca, Malaysia: Application of molecular markers for source identification. Environmental Science and Technology 34: 2000, 1189–1196.
  • Stout, S.A., A.D. Uhler, and K.J. McCarthy, Middle distillate fuel fingerprinting using drimane-based bicyclic sesquiterpanes. Environmental Forensics, 6, 2005, 241–252.
  • Olah, G.A. and Molnar, A., Hydrocarbon Chemistry. 1995, New York: Wiley-Interscience.
  • Speight, J.G. Handbook of petroleum product analysis. 2002, Hoboken, NJ: Wiley-Interscience.
  • Stout, S.A. and G.S. Douglas, Diamondoid hydrocarbons - application in the chemical fingerprinting of natural gas condensate and gasoline, Environmental Forensics, 5, 2004, 225–235.
  • Bieger, T., Helou, J., and Abrajano Jr, T.A., Petroleum biomarkers as tracers of lubricating oil contamination. Marine Pollution Bulletin 32: 1996, 270–274.
  • Wang, Z.D., Yang, C., Fingas, M., Hollebone, B., Peng, X., Hansen, A., and Christensen, J. 2005. Characterization, weathering, and application of sesquiterpanes to source identification of spilled petroleum products. Environmental Science and Technology 39: 8700– 8707.
  • Song, C., Introduction to Chemistry of Diesel Fuels; 2000, Taylor and Francis, New York, USA
  • Peters, K.E., Moldowan, J.W. The Biomarker Guide: InterpretingMolecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, 1993., New Jersey: Prentice Hall.
  • Pieri, N., F. Jacquot, G. Mille, J.P. Planche, and J. Kister., GC-MS identification of biomarkers in road asphalts and in their parent crude oils. Relationships between crude oil maturity and asphalt reactivity towards weathering. Org. Geochem.; 25, 1996, 51–68.
  • Petrov, A.A. Petroleum hydrocarbons. 1987, New York, Berlin, Germany: Springer-Verlag.
  • Wingert, W.S. GC-MS analysis of diamondoid hydrocarbons in Smackover petroleums. Fuel 71: 1992, 37–43.
  • Dahl, J. E., Moldowan, J. M., Peters, K. E., Claypool, G. E., Rooney, M. A., Michael, G. E., Mello, M. R., and Kohnen, M. L. Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 399: 1999, 54–57.
  • Grice, K., R. Alexander, and R.I. Kagi, Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils, Organic Geochemistry, 31, 2000, 67–73, 2000.
  • ASTM Method 3328-90, In: Annual Book of ASTM Standards, Water (II), Vol. 11.02, American Society for Testing and Materials, Philadelphia, PA, 1997a.
  • ASTM Method 5739-95, In: Annual Book of ASTM Standards, Water (II), Vol. 11.02, American Society for Testing and Materials, Philadelphia, PA, 1997b.
  • Faksness, L.G., Weiss, H., and Daling, P.S., Revision of the NORDTEST Methodology for Oil Spill Identification – Technical Report. SINTEF Report STF66 A01028. 2002a, Trondheim, Norway.
  • Wang, Z.D., Fingas, M., and Page, D., Oil spill identification, Journal of Chromatography 843: 1999a, 369–411.
  • Barakat, A.O., Mostafa, A.R., Rullkotter, J., and Hegazi, A.R., Application of a multimolecular marker approach to fingerprint petroleumpollution in the marine environment. Marine Pollution Bulletin 38: 1999, 535–544.
  • Kvenvolden, K. A., Hostettler, F. D., Carlson, P. R., Rapp, J. B., Threlkeld, C. N., and Warden, A., Ubiquitous tar balls with a Carlifonia-source signature on the shorelines of Prince William Sound, Alaska. Environmental Science and Technology 29: 1995, 2684–2694.
  • Kvenvolden, K.A., Rapp, J.B., and Bourell, J.H. In: Alaska North Slope Oil/Rock Correlation Study, eds. L. B. Magoon, G. E. Claypool, 593–617. American Association of Petroleum Geologists Studies in Geology, 1985, Tulsa, OK, No. 20.
  • Stout, S.A., A.D. Uhler, and K.J. McCarthy, A strategy and methodology for defensibly correlating spilled oil to source candidates, Environmental Forensics, 2, 2001, 87–98.
  • Alpar B., Ünlü S., "Petroleum Residue Following Volgoneft-248 Oil Spill At The Coasts Of The Suburb Of Florya, Marmara Sea (Turkey): A Critique.", Journal Of Coastal Research, vol.23, 2007, pp.515-520.
  • Mckirdy, D. M., Cox, R. E., Volkman, J. K., and Howell, V. J. Botryococcane in a new class of Australian non-marine crude oils. Nature 320: 1986, 57–59.
  • Seifert, W.K. and J.M. Moldowan. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim. Cosmochim. Acta; 42, 1978, 77–95.
  • Summons, R.E., J. Thomas, J.R. Maxwell, and C.J. Boreham, Secular and environmental constraints on the occurrence of dinosterane in sediments, Geochim. Cosmochim. Acta, 56, 1992, 2437–2444.
  • Grantham P.J., Posthuma J. and Baak A., Triterpanes in a number of Far Eastern crude oils. Ind. Adv. in Org. Geochemistry, 1983, 675-683, Wiley Chiechester.
  • Van Aarssen, B.G.K., Cox, H. C., Hoogendoorn, P., and de Leeuw, J. W. 1990. A cadinene biopolymer present in fossil and extract Dammar resins as source for cadinanes and dicadinanes in crude oils from Southeast Asia. Geochimica et Cosmochimica Acta 54: 3021–3031.
  • Riva, A., Caccialanza, P., and Quagliaroli, F., Recognition of 18α(H)- oleanane in several crudes and Tertiary-Upper Cretaceous sediments. Organic Geochemistry 13: 1988, 671–675.
  • Fu, J., C. Pei, G. Sheng, and D. Liu, A., Geochemical investigation of crude oils from eastern Pearl River mouth basin, South China, J. Southeast Asian Earth Science, 7, 1992, 271–272.
  • Zhang, S., Liang, D., Gong, Z., Wu, K., Li, M., Song, F., Song, Z., Zhang, D., and Wang, P. Geochemistry of petroleum system in the eastern Pearl River Mouth Basin: Evidence for mixed oils. Organic Geochemistry 34: 2003, 971–991.
  • Murrisepp, A. M., Urof, K., Liiv, M., Sumberg, A. A comparative study of non-aromatic hydrocarbons from kukersite and dictyonema shale semicoking oils. Oil Shale 11: 1994, 211–216.
  • Dahlmann, G., Characteristic features of different oil types in oil spill identification, 2003, Berichte des BSH 31, ISSN 0946–6010, Germany.
  • Jordan, R.E., Payne, J.R. Fate andWeathering of Petroleum Spills in the Marine Environment: A Literature Review and Synopsis. Ann Arbor, MI: Ann Arbor Science Publishers, 1980.
  • NRC (National Research Council). Oil in the Sea III: Inputs, Fates, and Effects. Washington, DC: The National Academies Press. 2002.
  • Leahy, J.G., and Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbial Rev. 54: 305–315.
  • Atlas, R.M., and Bartha, R. Hydrocarbon biodegradation and oil spill bioremediation. In Advances in Microbial Ecology, Vol. 12, ed. K. C. Marshall. 287–338. New York: Plenum Press. 1990.
  • Prince, R.C. Petroleum spill bioremediation in marine environment. Critical Reviews in Microbiology 36: 1993, 724–728.
  • Wang, Z.D., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., and Sigouin, L. Study of the 25-year-old Nipisi oil spill: persistence ofoil residues and comparisons between surface and subsurface sediments. Environmental Science and Technology 32: 1998a, 2222–2232.
  • Wang, Z.D., Fingas, M., and Sergy, G. Chemical characterization of crude oil residues from an Arctic Beach by GC/MS and GC/FID. Environmental Science and Technology 29: 1995a, 2622–2631.
  • Ehrhardt, M. and M. Blumer., The source identification of marine hydrocarbons by gas chromatography. Environ. Pollut.; 3, 1972, 179–194.
  • Rasmussen, W.V. Characterization of oil spills by capillary column gas chromatography. Anal. Chem.; 48, 1975, 1562–1566.
  • Bentz, A.P., Oil spill identification. Anal. Chem., 48, 1976, 454A–472A.
  • Seifert, W.K., J.M. Moldowan, and G.J. Demaison, Source correlation of biodegraded oils, Org. Geochem., 6, 1984, 633–643.
  • Wang, Z.D., Fingas, M., Landriault, M., Sigouin, L., Feng, Y., and Mullin, J. Using systematic and comparative analytical data to identify the source of an unknown oil on contaminated birds. Journal of Chromatography 775: 1997, 251–265.
  • Boehm P.D., Page, D.S., Burns, W.A., Bence, A.E., Mankiewicz, P.J., and Brown, J.S., Resolving the origin of the petrogenic hydrocarbonbackground in PrinceWilliam Sound, Alaska. Environmental Science and Technology 35, 2001, 471–479.
  • Short, J. W., Lindeberg, M. R., Harris, P. M., Maselko, J. M., Pella, J. J., and Rice, S. D.. Estimate of oil persisting on the beaches of Prince Willam Sound 12 years after the Exxon Valdez spill. Environmental Science Technology 38, 2004, 19–25.
  • Mulabagal V., Yin F., John G.F, Hayworth J.S., Clement T.P., Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shorline, Marine Pollution Bulletin, 70, 2013, 147-154.
  • Wang, Z.D., Fingas, M., and Sigouin, L., Characterization and identification of a “mystery” oil spill from Quebec (1999). Journal Chromatography 909, 2001a, 155–169.
  • Wang, Z. D., Fingas, M., Lambert P., Characterization and identification of Detroit River mystery oil spill (2002). Journal of Chromatography 1038, 2004, 201–214.
  • Ünlü V.S., "Comparative analytical data in the source determination of unknown spilled oil in theHaydarpasa Port (Marmara Sea), Turkey", Bulletın Of Environmental Contamination And Toxıcology, vol.78, 2007, 363-367.
  • Ünlü S., Alpar B., "Distribution And Sources Of Hydrocarbons In Surface Sediments Of Gemlik Bay (Marmara Sea, Turkey)", Chemosphere, vol.64, 2006, 764-777.
  • Ünlü S., Alpar B., "Polycyclic Aromatic Hydrocarbons Pollution In Sediments Of The Çanakkale (Dardanelles) Strait, Turkey ", Bulletın Of Envıronmental Contamınatıon And Toxıcology, vol.74, 2005, 946-953.

BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL

Yıl 2017, Cilt: 5 Sayı: 2, 172 - 190, 31.10.2017
https://doi.org/10.20290/aubtdb.299509

Öz

The investigation of the pollution of marine or land ecosystem
resulting from accidents or negligence of crude oil and refinery products by
biomarker data, the trace of the source and the find the suspect source (oil
tanker, ship, boat etc.) have been frequently applied for the last years by
this method.  Recently, it has become a advanced
research method by detailed and advanced instrumental methods. Biomarkers are
one of the most important hydrocarbon groups in petroleum. Biomarkers can be
detected in low quantities (ppm and sub-ppm level) in the presence of a wide
variety of other types of petroleum hydrocarbons by the use of the gas
chromatography/mass spectrometry (GC/MS) apparatus. Relative to other
hydrocarbon groups in oil such as alkanes and most aromatic compounds,
biomarkers are more degradation-resistant in the environment. Furthermore,
biomarkers formed under different geological conditions and ages may exhibit
different biomarker fingerprints. Therefore, chemical analysis of biomarkers
generates information of great importance to environmental forensic
investigations in terms of determining the source of spilled oil,
differentiating and correlating oils, and monitoring the degradation process
and weathering state of oils under a wide variety of conditions. This article
briefly reviews biomarker chemistry, biomarker characterization and
quantification, distributions, weathering effects on biomarker composition,
diagnostic ratios, application of biomarker fingerprinting techniques for spill
source investigations.

Kaynakça

  • Yalçın Erik, N., Petrol Tankeri Kazaları ve neden olduğu çevre kirliliği. Mavi Gezegen (20), 2015, 1-11.
  • Stout, S.A., Wang, Z., Chemical Fingerprinting of Spilled or Discharged Petroleum-Methods and Factors Affecting Petroleum Fingerprints in the Environment, Environmental Forensic, 7, 2006, 231-246.
  • Wang, Z., S.A. Stout, and M. Fingas, Biomarker fingerprinting for spill oil characterization and source identification (Review). Environ. Forensics; 7(2), 2006, 105–146.
  • Eglinton, G. and M. Calvin. Chemical fossils. Sci. Am.; 261, 1967, 32–43.
  • Tissot, B.P. and D.H. Welte, Petroleum Formation and Occurrence, 2nd ed. 1984, Springer-Verlag, New York.
  • Hunt, J.M., Petroleum Geochemistry and Geology, 1996, 2nd ed. Freeman Press, USA.
  • Peters, K.E., Walters, C.C., and Moldowan, J.W., The Biomarker Guide (2nd ed). 2005, Cambridge, UK: Cambridge University Press.
  • Wang, Z.D., Fingas, M., and Li, K., Fractionation of ASMB Oil, identification and quantitation of aliphatic, aromatic and biomarker compoundsby GC/FID and GC/MSD. J. Chromatogrophy Science Series 32; 1994a, 361–366 (Part I) and 367–382 (Part II).
  • Bence, A.E., Kvenvolden, K.A., and Kennicutt II, M.C., Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill—A review. Organic Geochemistry 24: 1996, 7–42.
  • Volkman, J.K., A.T. Revill, and A.P. Murray, Applications of biomarkers for identifying sources of natural and pollutant hydrocarbons in aquatic environments. In: R.P. Eganhouse (ed.), Molecular Markers in Environmental Geochemistry; Am. Chem. Soc., Washington, D.C.; 1997, 110–132.
  • Zakaria, M. P., Horinouchi, A., Tsutsumi, S., Takada, H., Tanabe, S., and Ismail, A., Oil pollution in the Straits of Malacca, Malaysia: Application of molecular markers for source identification. Environmental Science and Technology 34: 2000, 1189–1196.
  • Stout, S.A., A.D. Uhler, and K.J. McCarthy, Middle distillate fuel fingerprinting using drimane-based bicyclic sesquiterpanes. Environmental Forensics, 6, 2005, 241–252.
  • Olah, G.A. and Molnar, A., Hydrocarbon Chemistry. 1995, New York: Wiley-Interscience.
  • Speight, J.G. Handbook of petroleum product analysis. 2002, Hoboken, NJ: Wiley-Interscience.
  • Stout, S.A. and G.S. Douglas, Diamondoid hydrocarbons - application in the chemical fingerprinting of natural gas condensate and gasoline, Environmental Forensics, 5, 2004, 225–235.
  • Bieger, T., Helou, J., and Abrajano Jr, T.A., Petroleum biomarkers as tracers of lubricating oil contamination. Marine Pollution Bulletin 32: 1996, 270–274.
  • Wang, Z.D., Yang, C., Fingas, M., Hollebone, B., Peng, X., Hansen, A., and Christensen, J. 2005. Characterization, weathering, and application of sesquiterpanes to source identification of spilled petroleum products. Environmental Science and Technology 39: 8700– 8707.
  • Song, C., Introduction to Chemistry of Diesel Fuels; 2000, Taylor and Francis, New York, USA
  • Peters, K.E., Moldowan, J.W. The Biomarker Guide: InterpretingMolecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, 1993., New Jersey: Prentice Hall.
  • Pieri, N., F. Jacquot, G. Mille, J.P. Planche, and J. Kister., GC-MS identification of biomarkers in road asphalts and in their parent crude oils. Relationships between crude oil maturity and asphalt reactivity towards weathering. Org. Geochem.; 25, 1996, 51–68.
  • Petrov, A.A. Petroleum hydrocarbons. 1987, New York, Berlin, Germany: Springer-Verlag.
  • Wingert, W.S. GC-MS analysis of diamondoid hydrocarbons in Smackover petroleums. Fuel 71: 1992, 37–43.
  • Dahl, J. E., Moldowan, J. M., Peters, K. E., Claypool, G. E., Rooney, M. A., Michael, G. E., Mello, M. R., and Kohnen, M. L. Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 399: 1999, 54–57.
  • Grice, K., R. Alexander, and R.I. Kagi, Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils, Organic Geochemistry, 31, 2000, 67–73, 2000.
  • ASTM Method 3328-90, In: Annual Book of ASTM Standards, Water (II), Vol. 11.02, American Society for Testing and Materials, Philadelphia, PA, 1997a.
  • ASTM Method 5739-95, In: Annual Book of ASTM Standards, Water (II), Vol. 11.02, American Society for Testing and Materials, Philadelphia, PA, 1997b.
  • Faksness, L.G., Weiss, H., and Daling, P.S., Revision of the NORDTEST Methodology for Oil Spill Identification – Technical Report. SINTEF Report STF66 A01028. 2002a, Trondheim, Norway.
  • Wang, Z.D., Fingas, M., and Page, D., Oil spill identification, Journal of Chromatography 843: 1999a, 369–411.
  • Barakat, A.O., Mostafa, A.R., Rullkotter, J., and Hegazi, A.R., Application of a multimolecular marker approach to fingerprint petroleumpollution in the marine environment. Marine Pollution Bulletin 38: 1999, 535–544.
  • Kvenvolden, K. A., Hostettler, F. D., Carlson, P. R., Rapp, J. B., Threlkeld, C. N., and Warden, A., Ubiquitous tar balls with a Carlifonia-source signature on the shorelines of Prince William Sound, Alaska. Environmental Science and Technology 29: 1995, 2684–2694.
  • Kvenvolden, K.A., Rapp, J.B., and Bourell, J.H. In: Alaska North Slope Oil/Rock Correlation Study, eds. L. B. Magoon, G. E. Claypool, 593–617. American Association of Petroleum Geologists Studies in Geology, 1985, Tulsa, OK, No. 20.
  • Stout, S.A., A.D. Uhler, and K.J. McCarthy, A strategy and methodology for defensibly correlating spilled oil to source candidates, Environmental Forensics, 2, 2001, 87–98.
  • Alpar B., Ünlü S., "Petroleum Residue Following Volgoneft-248 Oil Spill At The Coasts Of The Suburb Of Florya, Marmara Sea (Turkey): A Critique.", Journal Of Coastal Research, vol.23, 2007, pp.515-520.
  • Mckirdy, D. M., Cox, R. E., Volkman, J. K., and Howell, V. J. Botryococcane in a new class of Australian non-marine crude oils. Nature 320: 1986, 57–59.
  • Seifert, W.K. and J.M. Moldowan. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim. Cosmochim. Acta; 42, 1978, 77–95.
  • Summons, R.E., J. Thomas, J.R. Maxwell, and C.J. Boreham, Secular and environmental constraints on the occurrence of dinosterane in sediments, Geochim. Cosmochim. Acta, 56, 1992, 2437–2444.
  • Grantham P.J., Posthuma J. and Baak A., Triterpanes in a number of Far Eastern crude oils. Ind. Adv. in Org. Geochemistry, 1983, 675-683, Wiley Chiechester.
  • Van Aarssen, B.G.K., Cox, H. C., Hoogendoorn, P., and de Leeuw, J. W. 1990. A cadinene biopolymer present in fossil and extract Dammar resins as source for cadinanes and dicadinanes in crude oils from Southeast Asia. Geochimica et Cosmochimica Acta 54: 3021–3031.
  • Riva, A., Caccialanza, P., and Quagliaroli, F., Recognition of 18α(H)- oleanane in several crudes and Tertiary-Upper Cretaceous sediments. Organic Geochemistry 13: 1988, 671–675.
  • Fu, J., C. Pei, G. Sheng, and D. Liu, A., Geochemical investigation of crude oils from eastern Pearl River mouth basin, South China, J. Southeast Asian Earth Science, 7, 1992, 271–272.
  • Zhang, S., Liang, D., Gong, Z., Wu, K., Li, M., Song, F., Song, Z., Zhang, D., and Wang, P. Geochemistry of petroleum system in the eastern Pearl River Mouth Basin: Evidence for mixed oils. Organic Geochemistry 34: 2003, 971–991.
  • Murrisepp, A. M., Urof, K., Liiv, M., Sumberg, A. A comparative study of non-aromatic hydrocarbons from kukersite and dictyonema shale semicoking oils. Oil Shale 11: 1994, 211–216.
  • Dahlmann, G., Characteristic features of different oil types in oil spill identification, 2003, Berichte des BSH 31, ISSN 0946–6010, Germany.
  • Jordan, R.E., Payne, J.R. Fate andWeathering of Petroleum Spills in the Marine Environment: A Literature Review and Synopsis. Ann Arbor, MI: Ann Arbor Science Publishers, 1980.
  • NRC (National Research Council). Oil in the Sea III: Inputs, Fates, and Effects. Washington, DC: The National Academies Press. 2002.
  • Leahy, J.G., and Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbial Rev. 54: 305–315.
  • Atlas, R.M., and Bartha, R. Hydrocarbon biodegradation and oil spill bioremediation. In Advances in Microbial Ecology, Vol. 12, ed. K. C. Marshall. 287–338. New York: Plenum Press. 1990.
  • Prince, R.C. Petroleum spill bioremediation in marine environment. Critical Reviews in Microbiology 36: 1993, 724–728.
  • Wang, Z.D., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., and Sigouin, L. Study of the 25-year-old Nipisi oil spill: persistence ofoil residues and comparisons between surface and subsurface sediments. Environmental Science and Technology 32: 1998a, 2222–2232.
  • Wang, Z.D., Fingas, M., and Sergy, G. Chemical characterization of crude oil residues from an Arctic Beach by GC/MS and GC/FID. Environmental Science and Technology 29: 1995a, 2622–2631.
  • Ehrhardt, M. and M. Blumer., The source identification of marine hydrocarbons by gas chromatography. Environ. Pollut.; 3, 1972, 179–194.
  • Rasmussen, W.V. Characterization of oil spills by capillary column gas chromatography. Anal. Chem.; 48, 1975, 1562–1566.
  • Bentz, A.P., Oil spill identification. Anal. Chem., 48, 1976, 454A–472A.
  • Seifert, W.K., J.M. Moldowan, and G.J. Demaison, Source correlation of biodegraded oils, Org. Geochem., 6, 1984, 633–643.
  • Wang, Z.D., Fingas, M., Landriault, M., Sigouin, L., Feng, Y., and Mullin, J. Using systematic and comparative analytical data to identify the source of an unknown oil on contaminated birds. Journal of Chromatography 775: 1997, 251–265.
  • Boehm P.D., Page, D.S., Burns, W.A., Bence, A.E., Mankiewicz, P.J., and Brown, J.S., Resolving the origin of the petrogenic hydrocarbonbackground in PrinceWilliam Sound, Alaska. Environmental Science and Technology 35, 2001, 471–479.
  • Short, J. W., Lindeberg, M. R., Harris, P. M., Maselko, J. M., Pella, J. J., and Rice, S. D.. Estimate of oil persisting on the beaches of Prince Willam Sound 12 years after the Exxon Valdez spill. Environmental Science Technology 38, 2004, 19–25.
  • Mulabagal V., Yin F., John G.F, Hayworth J.S., Clement T.P., Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shorline, Marine Pollution Bulletin, 70, 2013, 147-154.
  • Wang, Z.D., Fingas, M., and Sigouin, L., Characterization and identification of a “mystery” oil spill from Quebec (1999). Journal Chromatography 909, 2001a, 155–169.
  • Wang, Z. D., Fingas, M., Lambert P., Characterization and identification of Detroit River mystery oil spill (2002). Journal of Chromatography 1038, 2004, 201–214.
  • Ünlü V.S., "Comparative analytical data in the source determination of unknown spilled oil in theHaydarpasa Port (Marmara Sea), Turkey", Bulletın Of Environmental Contamination And Toxıcology, vol.78, 2007, 363-367.
  • Ünlü S., Alpar B., "Distribution And Sources Of Hydrocarbons In Surface Sediments Of Gemlik Bay (Marmara Sea, Turkey)", Chemosphere, vol.64, 2006, 764-777.
  • Ünlü S., Alpar B., "Polycyclic Aromatic Hydrocarbons Pollution In Sediments Of The Çanakkale (Dardanelles) Strait, Turkey ", Bulletın Of Envıronmental Contamınatıon And Toxıcology, vol.74, 2005, 946-953.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Bölüm Derleme
Yazarlar

Nazan Yalcın Erik

Yayımlanma Tarihi 31 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 2

Kaynak Göster

APA Yalcın Erik, N. (2017). BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL. Anadolu University Journal of Science and Technology B - Theoretical Sciences, 5(2), 172-190. https://doi.org/10.20290/aubtdb.299509
AMA Yalcın Erik N. BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL. AUBTD-B. Ekim 2017;5(2):172-190. doi:10.20290/aubtdb.299509
Chicago Yalcın Erik, Nazan. “BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL”. Anadolu University Journal of Science and Technology B - Theoretical Sciences 5, sy. 2 (Ekim 2017): 172-90. https://doi.org/10.20290/aubtdb.299509.
EndNote Yalcın Erik N (01 Ekim 2017) BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL. Anadolu University Journal of Science and Technology B - Theoretical Sciences 5 2 172–190.
IEEE N. Yalcın Erik, “BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL”, AUBTD-B, c. 5, sy. 2, ss. 172–190, 2017, doi: 10.20290/aubtdb.299509.
ISNAD Yalcın Erik, Nazan. “BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL”. Anadolu University Journal of Science and Technology B - Theoretical Sciences 5/2 (Ekim 2017), 172-190. https://doi.org/10.20290/aubtdb.299509.
JAMA Yalcın Erik N. BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL. AUBTD-B. 2017;5:172–190.
MLA Yalcın Erik, Nazan. “BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL”. Anadolu University Journal of Science and Technology B - Theoretical Sciences, c. 5, sy. 2, 2017, ss. 172-90, doi:10.20290/aubtdb.299509.
Vancouver Yalcın Erik N. BIODETECTIVE; BIOMARKER DATA USAGE IN CRUDE OIL SPILL AND ENVIRONMENTAL POLLUTION STUDIES RELATED OIL. AUBTD-B. 2017;5(2):172-90.