Year 2018, Volume 20, Issue 3, Pages 664 - 676 2018-12-15

Biomimetic Surface Designs for Smart Materials
Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları

FERHAT ÖZDEMİR [1] , Doğu RAMAZANOĞLU [2] , Ahmet TUTUŞ [3]

89 466

Mankind is the most vulnerable compared to other living things against the living that has been living since the first day of the earth. With his intelligence, he began to ask questions and examined all the living and non-living beings around him, conveying the knowledge and experiences he gained during his life to the new generations and succeeding in creating a more comfortable life level for himself. In the early ages, this instinctual research sentiment. Today, this instinctual research sentiment has been emerged as a scientific discipline (biomimetics) that tries to find solutions to the problems of humanity inspired by these unique designs that exist by examining the models in the nature. These designs, which are examined more closely together with the developing technology, are seen to have more mysterious and detailed structures than what they actually see. Researches and studies have led to the emergence of new generation designs especially in the field of material science. In recent years, In recent years, intelligent materials and surface designs that promise to respond in the form of external stimuli or energy conversion have promised humanity. In this study, it is aimed that the ecosystem living creatures have what kind of surface equipment they have in order to be adaptable to the living environment, and that the artificial intelligent surface designs inspired by these surfaces are aimed to raise awareness of the potential benefits of humanity.
İnsanoğlu yeryüzüne geldiği ilk günden beri yaşadığı ortama karşı diğer canlılar ile kıyaslandığında en savunmasız olanıdır. Sahip olduğu zekâsı sayesinde soru sormaya başlamış ve çevresindeki canlı, cansız tüm varlıkları inceleyerek yaşamı süresince edindiği bilgi ve deneyimleri yeni nesillere aktarmış ve her seferinde daha rahat bir yaşam seviyesini kendisi için oluşturmayı başarmıştır. İlk çağlarda, içgüdüsel olarak yapılan bu araştırma duygusu, bugün karşımıza, doğadaki modelleri inceleyerek var olan bu eşsiz tasarımlardan esinlenerek insanlığın problemlerine çözümler bulmaya çalışan bir bilim dalı (biyomimetik) olarak çıkmaktadır. Gelişen teknoloji ile birlikte daha yakından incelenen bu tasarımların aslında göründüklerinden daha gizemli ve detaylı yapılara sahip oldukları görülmektedir. Yapılan araştırmalar ve incelemeler özellikle malzeme bilimi alanında yeni nesil tasarımların ortaya çıkmasına neden olmuştur. Son yıllarda, dış uyarılara şekil ya da enerjinin dönüşümü şeklinde istenilen ölçülerde cevap verebilen akıllı malzeme ve yüzey tasarımları insanlık adına gelecek vaat etmektedir. Bu çalışmada, ekosistemde yaşayan canlıların yaşadıkları ortama adapte olabilmeleri için nasıl bir yüzey donanımlarına sahip oldukları ve bu yüzeylerden esinlenerek yapılan yapay akıllı yüzey tasarımlarının akıllı malzeme olarak insanlığa sağlayabileceği yarar potansiyelinde farkındalık oluşturulması amaçlanmıştır.
  • Bai H, Wang L, Ju J, Sun R, Zheng Y, Jiang L (2014). Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv. Mater., 26, 5025–5030.
  • Balu B, Breedveld V, Hess DW (2008). Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir, 24, 4785–4790.
  • Barthlott W, Neinhuis C (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8.
  • Bauer U, Federle W (2009). The insect-trapping rim of nepenthes pitchers. Plant Signal. Behav., 4, 1019–1023.
  • Beutel RG, Gorb SN (2001). Ultrastructure of attachment specializations of hexapods (arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res., 39, 177–207.
  • Belgacem MN, Gandini A (2005) The surface modification of cellulose fibers for use as reinforcing elements in compostite materials. Compos. Interfaces, 12, 41–75.
  • Bixler GD, Bhushan B (2012). Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter, 8, 11271–11284.
  • Bixler GD, Theiss A, Bhushan B, Lee SC (2014). Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J. Colloid Interface Sci., 419, 114–133.
  • Bohn HF, Federle W (2004). Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fullywettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. USA, 101, 14138–14143.
  • Buck ME, Schwartz SC, Lynn DM (2010). Superhydrophobic thin films fabricated by reactive layer-by-layer assembly of azlactone-functionalized polymers. Chem. Mater., 22, 6319–6327.
  • Bledzki AK, Gassan J (1999). Composites reinforced with cellulose based fibers. Progr. Polym. Sci. 24, 221–274.
  • Coffinier Y (2012). Investigation of silicon-based nanostructure morphology and chemical termination on laser desorption ionization mass spectrometry performance. Anal. Chem., 84, 10637–10644.
  • Coffinier Y, Piret G, Das MR (2013). Boukherroub, R. Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates. C. R. Chim., 16, 65–72.
  • Cui Z, Zhang F, Wang L, Xu S, Guo X (2010). In situ crystallized zirconium phenylphosphonate films with crystals vertically to the substrate and their hydrophobic, dielectric, and anticorrosion properties. Langmuir, 26, 179–182.
  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8, 1–12.
  • Doelker E (1993). Cellulose derivatives. Adv. Polym. Sci., 107, 199–265.
  • Dupré M, Enjalbal C, Cantel S, Martinez J, Megouda N, Hadjersi T, Boukherroub R, Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002). Superhydrophobic surfaces: From natural to artificial. Adv. Mater., 14, 1857–1860.
  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001). Advances in cellulose ester performance and application. Progr. Polym. Sci., 26, 1605–1688.
  • Eichhorn SJ (2011). Cellulose nanowhiskers: Promising materials for advanced applications. Soft Matter, 7, 303–315.
  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S (2010). Review: Current international research into cellulose nanofibers and nanocomposites. J. Mater. Sci., 45, 1–33.
  • Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008). Petal effect: A superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119.
  • Vincent JFV, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl AK (2006). Biomimetics: its practice and theory DOI: 10.1098/rsif.2006.0127
  • Gao J, Liu Y, Xu H, Wang Z, Zhang X (2009). Mimicking biological structured surfaces by phase-separation micromolding. Langmuir 2009, 25, 4365–4369.
  • Gardner DJ, Oporto GS, Mills R, Samird MA SA (2008) Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol., 22, 545–567.
  • Garrod RP, Harris LG, Schofield WCE, McGettrick J, Ward LJ, Teare DOH, Badyal JPS (2007). Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir, 23, 689–693.
  • Gorb E, Kastner V, Peressadko A, Arzt E, Gaume L, Rowe N, Gorb S (2004). Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant nepenthes ventrata and its role in insect trapping and retention. J. Exp. Biol. 2004, 207, 2947–2963.
  • Grignard B, Vaillant A, de Coninck J, Piens M, Jonas AM, Detrembleur C, Jerome C (2011). Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates. Langmuir, 27, 335–342.
  • He G, Wang K (2011). The super hydrophobicity of ZnO nanorods fabricated by electrochemical deposition method. Appl. Surf. Sci., 257, 6590–6594.
  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008). Cellulosic nanocomposites: A review. BioResources, 3, 929–980.induced microscale wrinkling of thin hydrophobic multilayers fabricated on flexible shrink-wrap substrates.
  • Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MP, (2012). A critical review of all-cellulose composites. J. Mater. Sci., 47, 1171–1186.
  • Kalia S, Kaith BS, Kaur I (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci., 49, 1253–1272.
  • Kang SM, Lee C, Kim HN, Lee BJ, Lee JE, Kwak MK, Suh KY, (2013). Directional oil sliding surfaces with hierarchical anisotropic groove microstructures. Adv. Mater., 25, 5756–5761.
  • Kang SM, You I, Cho WK, Shon HK, Lee TG, Choi IS, Karp JM, Lee H (2010). One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem. Int. Ed., 49, 9401–9404.
  • Kavalenka MN, Hopf A, Schneider M, Worgull M, Hölscher H (2014). Wood-based microhaired superhydrophobic and underwater superoleophobic surfaces for oil/water separation. RSC Adv., 4, 31079–31083.
  • Khalil HPSA, Bhat AH, Yusra AFI (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym., 87, 963–979.
  • Kessler F, Kühn S, RadtkeC, Weibel DE (2013). Controlling the surface wettability of poly(sulfone) films by UV-assisted treatment: Benefits in relation to plasma treatment. Polym. Int., 62, 310–318.
  • Kim HC, Kreller CR, Tran KA, Sisodiya V, Angelos S, Wallraff G, Swanson S, Miller RD (2004). Nanoporous thin films with hydrophilicity-contrasted patterns. Chem. Mater., 16, 4267–4272.
  • Kim T, Tahk D, Lee HH (2009). Wettability-controllable super water- and moderately oil-repellent surface fabricated by wet chemical etching. Langmuir, 25, 6576–6579.
  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 44, 3358–3393.
  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998). Comprehensive Cellulose Chemistry, Volume 1: Fundamentals and Analytical Methods; WILEY-VCH VerlagGmbH: Weinheim, Germany.
  • Kontturi E, Tammelin T, Österberg M (2006). Cellulose—Model films and the fundamental approach. Chem. Soc. Rev., 35, 1287–1304.
  • Khalil HPSA, Bhat AH, Yusra AFI, (2012) Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym., 87, 963–979.
  • Latthe SS, Terashima C, Nakata K, Sakai M, Fujishima A (2014). Development of sol-gel processed semi-transparent and self-cleaning superhydrophobic coatings. J. Mater. Chem. A, 2, 5548–5553.
  • Lee H, Dellatore SM, Miller WM, Messersmith PB (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318, 426–430.
  • Lee SH, Dilworth ZR, Hsiao E, Barnette AL, Marino M, Kim JH, Kang JG, Jung TH, Kim SH (2011). One-step production of superhydrophobic coatings on flat substrates via atmospheric rf plasma process using non-fluorinated hydrocarbons. ACS Appl. Mater. Interfaces, 3, 476–481.
  • Li J, Kleintschek T, Rieder A, Cheng Y, Baumbach T, Obst U, Schwartz T, Levkin PA (2013). Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications. ACS Appl. Mater. Interfaces, 5, 6704–6711.
  • Li JS, Ueda E, Nallapaneni A, Li LX, Levkin PA (2012). Printable superhydrophilic-superhydrophobic micropatterns based on supported lipid layers. Langmuir, 28, 8286–8291.
  • Li Y, Huang XJ, Heo SH, Li CC, Choi YK, Cai WP, Cho SO, (2007). Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir, 23, 2169–2174.
  • Liu H, Szunerits S, Xu W, Boukherroub R (2009). Preparation of superhydrophobic coatings on zinc as effective corrosion barriers. ACS Appl. Mater. Interfaces, 1, 1150–1153.
  • Liu K, Jiang L (2011). Bioinspired design of multiscale structures for function integration. Nano Today, 6,155–175.
  • Liu X, Liang Y, Zhou F, Liu W (2012). Extreme wettability and tunable adhesion: Biomimicking beyond natüre. Soft Matter, 8, 2070–2086.
  • Mahadik S, Mahadik DB, Kavale MS, Parale VG, Wagh PB, Barshilia H, Gupta S, Hegde ND, Rao AV (2012). Thermally stable and transparent superhydrophobic sol-gel coatings by spray method. J. Sol Gel Sci. Technol., 63, 580–586.
  • Malvadkar NA, Hancock MJ, Sekeroglu K, Dressick WJ, Demirel, MC (2010). An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. Mater., 9, 1023–1028.
  • Mashkour M, Tajvidi M, Kimura T, Kimura F, Ebrahimi G (2011). Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticale coveres natural cellulose fibers. BioResources, 6, 4731–4738.
  • Murphy EB, Wudl F (2010). The world of smart healable materials. Progr. Polym. Sci., 35, 223–251.
  • Neinhuis C, Barthlott W, (1997). Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667–677.
  • Nguyen TPN, Dufour R, Thomy V, Senez V, Boukherroub R, Coffinier Y, (2014). Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method. Appl. Surf. Sci., 295, 38–43.
  • O’Connell DW, Birkinshaw C, O’Dwyer (2008). TF Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol., 99, 6709–6724.
  • Parker AR, Lawrence CR, (2016). Water capture by a desert beetle, peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. USA, 101, 14138–14143.
  • Piret G, Coffinier Y, Roux C, Melnyk O, Boukherroub R (2016). Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces. Langmuir, 24, 1670–1672.
  • Piret G, Desmet R, Diesis E, Drobecq H, Segers J, Rouanet C, Debrie AS, Boukherroub R, Locht C, Melnyk O, (2010). Chips from chips: Application to the study of antibody responses to methylated proteins. J. Proteome Res., 9, 6467–6478.
  • Piret G, Drobecq H, Coffinier Y, Melnyk O, Boukherroub R (2010). Matrix-free laser desorption/ionization mass spectrometry on silicon nanowire arrays prepared by chemical etching of crystalline silicon. Langmuir, 26, 1354–1361.
  • Rizzello L, Shankar SS, Fragouli D, Athanassiou A, Cingolani R, Pompa PP (2009). Microscale patterning of hydrophobic/hydrophilic surfaces by spatially controlled galvanic displacement reactions. Langmuir, 25, 6019–6023.
  • Reid ML, Brown MB, Moss GP, Jones SA (2008). An investigation into solvent-membrane interactions when assessing drug release from organic vehicles using regenerated cellulose membranes. J. Pharm. Pharmacol., 60, 1139–1147.
  • Salapare HS, III Guittard F, Noblin X, Taffin de Givenchy E, Celestini F, Ramos HJ (2013). Stability of the hydrophilic and superhydrophobic properties of oxygen plasma-treated poly(tetrafluoroethylene) surfaces. J. Colloid Interface Sci., 396, 287–292.
  • Sarkar MK, Bal K, He F, Fan J (2011). Design of an outstanding super-hydrophobic surface by electro-spinning. Appl. Surf. Sci., 257, 7003–7009.
  • Seo J, Lee S, Han H, Chung Y, Lee J, Kim SD, Kim YW, Lim S, Lee T (2013). Reversible wettability controlof silicon nanowire surfaces: From superhydrophilicity to superhydrophobicity. Thin Solid Films, 527, 179–185.
  • Seo J, Lee S, Lee J, Lee T (2011). Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires. ACS Appl. Mater. Interfaces, 3, 4722–4729.
  • Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011). Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioResources, 6, 4370–4388.
  • Shirtcliffe NJ, McHale G, Newton MI, Perry CC (2003). Intrinsically Superhydrophobic organosilica sol-gel foams. Langmuir, 19, 5626–5631.
  • Siqueira G, Bras J, Dufresne A (2010). Cellulosic bionanocomposites: A review of preparation, properties and applications properties and applications. Polymers, 2, 728–765.
  • Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D Chen Y (2005). Artificial lotus leaf by nanocasting. Langmuir, 21 8978–8981.
  • Tadanaga K, Katata N, Minami T (1997). Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method. J. Am. Ceram. Soc., 80, 3213–3216.
  • Tadanaga K, Morinaga J, Matsuda A, Minami T (2000). Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem. Mater., 12, 590–592.
  • Thomas YRJ, Benayad A, Schroder M, Morin A, Pauchet J (2015). New method for super hydrophobic treatment of gas diffusion layers for proton exchange membrane fuel cells using electrochemical reduction of diazonium salts. ACS Appl. Mater. Interfaces, 7, 15068–15077.
  • Tsai MY, Hsu CC, Chen PH, Lin CS (2011). Chen, A. Surface modification on a glass surface with a combination technique of sol-gel and air brushing processes. Appl. Surf. Sci., 257, 8640–8646.
  • Tizzotti M, Charlot A, Fleury E, Stenzel M, Bernard J (2010). Modification of polysaccharides through controlled/living radical polymerization grafting—Towards the generation of high performance hybrids. Macromol. Rapid Commun., 31, 1751–1772.
  • Wang L, Zhang X, Li B, Sun P, Yang J, Xu H, Liu Y (2011). Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl. Mater. Interfaces, 3, 1277–1281.
  • Wang P, Zhang D, Qiu R (2012). Liquid/solid contact mode of super-hydrophobic film in aqueous solution and its effect on corrosion resistance. Corros. Sci., 54, 77–84.
  • Wenzel RN (1944). Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. Cassie, A.B.D.; Baxter, S.Wettability of porous surfaces. Trans. Faraday Soc., 40, 546–551.
  • Wojnárovits L, Földváry CM, Takács E (2010). Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: A review. Radiat. Phys. Chem., 79, 848–862.
  • Wu D, Wang JN, Wu SZ, Chen QD, Zhao S, Zhang H, Sun HB, Jiang L (2011). Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding. Adv. Funct. Mater., 21, 2927–2932.
  • Wu D, Wu SZ, Chen QD, Zhang YL, Yao J, Yao X, Niu LG, Wang JN, Jiang L, Sun HB (2011). Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic states for water droplet transportation. Adv. Mater., 23, 545–549.
  • Wu H, Zhang R, Sun Y, Lin D, Sun Z, Pan W, Downs P (2008). Biomimetic nanofiber patterns with controlled wettability. Soft Matter, 4, 2429–2433.
  • Wu SZ, Wu D, Yao J, Chen QD, Wang JN, Niu LG, Fang HH, Sun HB (2010). One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting. Langmuir, 26, 12012–12016.
  • Wu T, Suzuki H, Su Y, Tang Z, Zhang L, Yomo T (2013). Bio-inspired three-dimensional self-patterning of functional coatings for PDMS microfluidics. Soft Matter, 9, 3473–3477.
  • Xia D (2008). Brueck, S.R.J. Strongly anisotropic wetting on one-dimensional nanopatterned surfaces. Nano Lett., 8, 2819–2824.
  • Yao X, Song Y, Jiang L (2005). Applications of bio-inspired special wettable surfaces. Adv. Mater. 23, 719–734. A Chinese nano-society Nat. Mater., 4, 355.
  • Yin Y, Liu T, Chen S, Liu T, Cheng S (2008). Structure stability and corrosion inhibition of super hydrophobic film on aluminum in seawater. Appl. Surf. Sci., 255, 2978–2984.
  • Young T (2009). An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. Yu, L.-Y.; Shen, H.-M.; Xu, Z.-L. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J. Appl. Polym. Sci., 113, 1763–1772.
  • Yu L, Dean K, Li L (2006). Polymer blends and composites from renewable resources. Progr.Polym. Sci., 31,576–602.
  • Zhai L, Berg MC, Cebeci FÇ, Kim Y, Milwid JM, Rubner MF, Cohen RE (2006). Patterned superhydrophobic surfaces: Toward a synthetic mimic of the namib desert beetle. Nano Lett., 6, 1213–1217.
  • Zhang L, Wu J, Hedhili MN, Yang X, Wang P (2015). Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces. J. Mater. Chem. A, 3, 2844–2852.
  • Zhang QX, Chen YX, Guo Z, Liu HL, Wang DP, Huang XJ (2013). Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection. ACS Appl. Mater. Interfaces, 5, 10633–10642.
  • Zhang X, Zhang J, Ren Z, Li X, Zhang X, Zhu D, Wang T, Tian T, Yang B (2009). Morphology and wettability control of silicon cone arrays using colloidal lithography. Langmuir, 25, 7375–7382.
  • Zhang YL, Xia H, Kim E, Sun HB (2012). Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 8, 11217–11231.
  • Zhang X, Jin M, Liu Z, Tryk DA, Nishimoto S, Murakami T, Fujishima A (2007). Superhydrophobic TiO2 surfaces: Preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning. J. Phys. Chem. C., 111, 14521–14529.
  • Zhang LM (2001a) Cellulosic associative thickeners. Carbohydr. Polym., 45, 1–10.
  • Zhang LM (2001b) New water-soluble cellulosic polymers: A review. Macromol. Mater. Eng.,285, 267–275.
  • Zhao Y, Lu Q, Li M, Li X (2007). Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface. Langmuir, 23, 6212–6217.
  • Zhu X, Zhang Z, Men X, Yang J, Xu X (2010). Rapid formation of superhydrophobic surfaces with fast response wettability transition. ACS Appl. Mater. Interfaces, 2, 3636–3641.
  • Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L (2006). Stable Superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Adv. Funct. Mater., 16, 568–574.
  • Zimmermann J, Reifler FA, Fortunato G, Gerhardt LC, Seeger S (2008). A simple, one-step approach todurable and robust superhydrophobic textiles. Adv. Funct. Mater., 18, 3662–3669.
Primary Language tr
Subjects Science
Journal Section Review Articles and Editorials
Authors

Author: FERHAT ÖZDEMİR (Primary Author)
Institution: kahramanmaraş Sütçüimam Üniversitesi
Country: Turkey


Author: Doğu RAMAZANOĞLU

Author: Ahmet TUTUŞ

Dates

Publication Date: December 15, 2018

Bibtex @review { barofd427841, journal = {Bartın Orman Fakültesi Dergisi}, issn = {1302-0943}, eissn = {1308-5875}, address = {Bartin University}, year = {2018}, volume = {20}, pages = {664 - 676}, doi = {}, title = {Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları}, key = {cite}, author = {ÖZDEMİR, FERHAT and RAMAZANOĞLU, Doğu and TUTUŞ, Ahmet} }
APA ÖZDEMİR, F , RAMAZANOĞLU, D , TUTUŞ, A . (2018). Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları. Bartın Orman Fakültesi Dergisi, 20 (3), 664-676. Retrieved from http://dergipark.org.tr/barofd/issue/38873/427841
MLA ÖZDEMİR, F , RAMAZANOĞLU, D , TUTUŞ, A . "Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları". Bartın Orman Fakültesi Dergisi 20 (2018): 664-676 <http://dergipark.org.tr/barofd/issue/38873/427841>
Chicago ÖZDEMİR, F , RAMAZANOĞLU, D , TUTUŞ, A . "Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları". Bartın Orman Fakültesi Dergisi 20 (2018): 664-676
RIS TY - JOUR T1 - Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları AU - FERHAT ÖZDEMİR , Doğu RAMAZANOĞLU , Ahmet TUTUŞ Y1 - 2018 PY - 2018 N1 - DO - T2 - Bartın Orman Fakültesi Dergisi JF - Journal JO - JOR SP - 664 EP - 676 VL - 20 IS - 3 SN - 1302-0943-1308-5875 M3 - UR - Y2 - 2018 ER -
EndNote %0 Journal of Bartin Faculty of Forestry Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları %A FERHAT ÖZDEMİR , Doğu RAMAZANOĞLU , Ahmet TUTUŞ %T Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları %D 2018 %J Bartın Orman Fakültesi Dergisi %P 1302-0943-1308-5875 %V 20 %N 3 %R %U
ISNAD ÖZDEMİR, FERHAT , RAMAZANOĞLU, Doğu , TUTUŞ, Ahmet . "Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları". Bartın Orman Fakültesi Dergisi 20 / 3 (December 2018): 664-676.
AMA ÖZDEMİR F , RAMAZANOĞLU D , TUTUŞ A . Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları. Bartın Orman Fakültesi Dergisi. 2018; 20(3): 664-676.
Vancouver ÖZDEMİR F , RAMAZANOĞLU D , TUTUŞ A . Akıllı Malzemeler için Biyomimetik Yüzey Tasarımları. Bartın Orman Fakültesi Dergisi. 2018; 20(3): 676-664.