Year 2016, Volume 1, Issue 1, Pages 20 - 28 2016-12-01

Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması
Comparision of Automatic and Interactive Segmentatition Methods

Serdar Alasu [1] , Muhammed Fatih Talu [2]

225 466

Bu makale, otomatik ve interaktif bölütleme yöntemlerinin karşılaştırılmasını içermektedir. Her iki yöntem renkli görüntülerin bölütlenmesi için kullanılmakta ve Gauss Karışım Modelini (Gaussian Mixture Model) temel almaktadır. Otomatik bölütlemede, kullanıcıdan her hangi bir önsel bilgi istenmeden görüntü pikselleri bölütlenir. İnteraktif  bölütlemede ise kullanıcı tarafından sağlanan önsel bilgiye ihtiyaç vardır ve bölütleme işlemi bu önsel bilgiye göre yapılmaktadır. Elde edilen sonuçlar interaktif bölütlemenin, otomatik bölütlemeden daha hızlı ve doğru olduğunu ortaya koymaktadır.
This paper includes comparision of automatic and interactive segmentation methods. Both methods are used for color images segmentatiton and based Gaussian Mixture Model. In automatic segmentation is segmented image pixels without any prior knowledge provided by the user. Interactive segmentation needs prior knowledge provided by the user and segmentation process are based prior knowledge. Obtained results demonstrate that interactive segmentatiton is faster and more accure than automatic segmentation.
  • [1] H. Renjini and P. Bhagavathi Sivakumar, “Comparison of Automatic and Interactive Image Segmentation Methods”, International Journal of Engineering Research & Technology (IJERT), vol. 2, no. 6, pp. 3162-3170, 2013.
  • [2] C. M. Smith, et al. Automatic thresholding of three-dimensional microvascular structures from confocal microscopy images. J. Microscopy , 225(3):244–257, 2007.
  • [3] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331, 1987. 179.
  • [4] V. Grau, A. U. J. Mewes, M. Alcaniz, R. Kikinis, and S. K. Warfield. Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med.Imag., 23(4):447–458, 2004.
  • [5] A. Pitiot, A.W. Toga, N. Ayache, and P. Thompson. Texture based MRI segmentation with a two-stage hybrid neural classifier. In Proc.World Congress Computational Intelligence/INNSIEEE Int. Joint Conf. Neural Networks, pages 2053–2058, 2002.
  • [6] Alasu Serdar, and Muhammed Fatih Talu. "Interactive segmentatition implementation." 2015 23nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2015.
  • [7] Boykov Y, JollyM(2001) Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceeding of 8th IEEE international conference on computer vision, ICCV 2001, IEEE, vol 1, pp 105–112
  • [8] Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Models Image Process 60(5):349–384
  • [9] Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783
  • [10] Bai, X., Sapiro, G, “A geodesic framework for fast interactive image and video segmentation and matting.” In: Proceedings of International Conference on Computer Vision (ICCV), pp. 1–8 (2007)
  • [11] Photoshop / Renk modları, https://helpx.adobe.com/tr/photoshop /using/color-modes.html.
  • [12] Ortalama normalizasyonu, https://en.wikipedia.org/wiki/ Normalization_(statistics)
Journal Section PAPERS
Authors

Author: Serdar Alasu
Country: Turkey


Author: Muhammed Fatih Talu
Country: Turkey


Bibtex @research article { bbd307006, journal = {Anatolian Science - Bilgisayar Bilimleri Dergisi}, issn = {2548-1304}, address = {Ali KARCI}, year = {2016}, volume = {1}, pages = {20 - 28}, doi = {}, title = {Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması}, key = {cite}, author = {Alasu, Serdar and Talu, Muhammed Fatih} }
APA Alasu, S , Talu, M . (2016). Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması. Anatolian Science - Bilgisayar Bilimleri Dergisi, 1 (1), 20-28. Retrieved from http://dergipark.org.tr/bbd/issue/28692/307006
MLA Alasu, S , Talu, M . "Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması". Anatolian Science - Bilgisayar Bilimleri Dergisi 1 (2016): 20-28 <http://dergipark.org.tr/bbd/issue/28692/307006>
Chicago Alasu, S , Talu, M . "Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması". Anatolian Science - Bilgisayar Bilimleri Dergisi 1 (2016): 20-28
RIS TY - JOUR T1 - Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması AU - Serdar Alasu , Muhammed Fatih Talu Y1 - 2016 PY - 2016 N1 - DO - T2 - Anatolian Science - Bilgisayar Bilimleri Dergisi JF - Journal JO - JOR SP - 20 EP - 28 VL - 1 IS - 1 SN - 2548-1304- M3 - UR - Y2 - 2016 ER -
EndNote %0 Journal of Computer Science Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması %A Serdar Alasu , Muhammed Fatih Talu %T Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması %D 2016 %J Anatolian Science - Bilgisayar Bilimleri Dergisi %P 2548-1304- %V 1 %N 1 %R %U
ISNAD Alasu, Serdar , Talu, Muhammed Fatih . "Otomatik Ve İnteraktif Bölütleme Yöntemlerinin Karşılaştırılması". Anatolian Science - Bilgisayar Bilimleri Dergisi 1 / 1 (December 2016): 20-28.