Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 15 Sayı: 2, 211 - 215, 30.06.2019
https://doi.org/10.18466/cbayarfbe.528144

Öz

Kaynakça

  • 1. Ali HS, Abdullah AA, Pınar PT, Yardım Y, Şentürk Z. 2017. Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: Its comparison with HPLC-DAD. Talanta; 170: 384–391.
  • 2. Almeida ARRP, Freitas VLS, Campos JIS, da Silva MDMCR, Monte MJS. 2019. Volatility and thermodynamic stability of vanillin. Journal of Chemical Thermodynamics; 128: 45–54.
  • 3. Altunay N. Development of vortex-assisted ionic liquid-dispersive microextraction methodology for vanillin monitoring in food products using ultravioletvisible spectrophotometry. 2018. LWT - Food Science and Technology; 93: 9–15.
  • 4. Minematsu S, Xuan G-S, Wu X-Z. 2013. Determination of vanillin in vanilla perfumes and air by capillary electrophoresis. Journal of Environmental Sciences; 25: S8–S14.
  • 5. Shen Y, Han C, Liu B, Lin Z, Zhou X, Wang C, Zhu Z. 2014. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry. Journal of Dairy Science; 9: 679–686.
  • 6. Timotheou-Potamia M, Calokerinos AC. 2007. Chemiluminometric determination of vanillin in commercial vanillin products. Talanta; 71: 208–212.
  • 7. Palanisamy S, Kokulnathan T, Chen S-M, Velusamy V, Ramaraj SK. 2017. Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. Journal of Electroanalytical Chemistry; 794: 64–70.
  • 8. Kumar AA, Swamy BEK, Rani TS, Ganesh PS, Raj YP. 2019. Voltammetric determination of catechol and hydroquinone at poly (murexide) modified glassy carbon electrode. Materials Science & Engineering C; 98: 746–752.
  • 9. Shahrokhian S, Hafezi-Kahnamouei M. 2018. Glassy carbon electrode modified with a nanocomposite of multi-walled carbon nanotube decorated with Ag nanoparticles for electrochemical investigation of Isoxsuprine. Journal of Electroanalytical Chemistry; 825: 30–39.
  • 10. Manasa G, Mascarenhas RJ, Satpati AK, D'Souza OJ, Dhason A. 2017. Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Materials Science and Engineering C; 73: 552–561.
  • 11. Brett CMA, Inzelt GÈ, Kertesz V. 1999. Poly(methylene blue) modified electrode sensor for haemoglobin. Analytica Chimica Acta; 385: 119-123.
  • 12. Sun W, Wang Y, Zhang Y, Ju X, Li G, Sun Z. 2012. Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Analytica Chimica Acta; 751: 59–65.
  • 13. Chen H, Zhang Z, Cai D, Zhang S, Zhang B, Tang J, Wu Z. 2012. Attapulgite with poly(methylene blue) composite film:Electrocatalytic determination of ascorbic acid. Solid State Sciences; 14: 362-366.
  • 14. Dilgin Y, Canarslan S, Ayyildiz O, Ertek B, Nişli G. 2012. Flow injection analysis of sulphide based on its photoelectrocatalytic oxidation at poly-methylene blue modified glassy carbon electrode. Electrochimica Acta; 66: 173–179.
  • 15. Ahmed AM, Sayed SY, El-Nagar GA, Morsi WM, El-Deab MS, El-Anadouli BE. 2019. Enhanced electrocatalytic oxidation of glucose at graphene nanosheets–Metal oxides nanoparticles modified GC electrodes. Journal of Electroanalytical Chemistry; 835: 313–323.
  • 16. Arslan E, Çakır S. 2016. Electrochemical fabrication of polyproline modified graphite electrode decorated with Pd–Au bimetallic nanoparticles: Application for determination of carminic acid. Journal of Electroanalytical Chemistry; 760: 32–41.
  • 17. Daneshvar L, Rounaghi GH, Es'haghi Z, Chamsaz M, Tarahomi S. 2016. Fabrication a new modified electrochemical sensor based on Au–Pd bimetallic nanoparticle decorated graphene for citalopram determination. Materials Science and Engineering C; 69: 653–660.
  • 18. Shang L, Zhao F, Zeng B. 2014.Sensitive voltammetric determination of vanillin with an AuPd nanoparticles−graphene composite modified electrode. Food Chemistry; 151: 53-57.
  • 19. Koçak ÇC, Karabiberoğlu Ş. 2018. Electrochemical Vanillin Determination on Gold Nanoparticles Modified Multiwalled Carbon Nanotube Electrode. Dokuz Eylul University-Faculty of Engineering, Journal of Science and Engineering; 20(59): 461-470.
  • 20. Huang L, Hou K, Jia X, Pan H, Du M. 2014. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Material Science and Engineering C; 38: 39-45.

Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode

Yıl 2019, Cilt: 15 Sayı: 2, 211 - 215, 30.06.2019
https://doi.org/10.18466/cbayarfbe.528144

Öz

Here, metal nanoparticles modified conductive polymer film electrode was
fabricated via electrochemical technique. Methylene blue was electrochemically
polymerized on the bare glassy carbon electrode surface. Then palladium
nanoparticles were modified on the polymer surface by consecutive potential
cycles. Resulting composite electrode was characterized with scanning electron
microscopy and electrochemical impedance spectroscopy. Palladium nanoparticles
modified poly(methylene blue) film glassy carbon electrode was used for
sensitive and selective determination of vanillin with two linear ranges
between 0.02 - 1 µM and 2 - 50 µM and a limit of detection as 0.01 µM. Proposed
electrode accurately determine vanillin content in commercial biscuit and cake
samples

Kaynakça

  • 1. Ali HS, Abdullah AA, Pınar PT, Yardım Y, Şentürk Z. 2017. Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: Its comparison with HPLC-DAD. Talanta; 170: 384–391.
  • 2. Almeida ARRP, Freitas VLS, Campos JIS, da Silva MDMCR, Monte MJS. 2019. Volatility and thermodynamic stability of vanillin. Journal of Chemical Thermodynamics; 128: 45–54.
  • 3. Altunay N. Development of vortex-assisted ionic liquid-dispersive microextraction methodology for vanillin monitoring in food products using ultravioletvisible spectrophotometry. 2018. LWT - Food Science and Technology; 93: 9–15.
  • 4. Minematsu S, Xuan G-S, Wu X-Z. 2013. Determination of vanillin in vanilla perfumes and air by capillary electrophoresis. Journal of Environmental Sciences; 25: S8–S14.
  • 5. Shen Y, Han C, Liu B, Lin Z, Zhou X, Wang C, Zhu Z. 2014. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry. Journal of Dairy Science; 9: 679–686.
  • 6. Timotheou-Potamia M, Calokerinos AC. 2007. Chemiluminometric determination of vanillin in commercial vanillin products. Talanta; 71: 208–212.
  • 7. Palanisamy S, Kokulnathan T, Chen S-M, Velusamy V, Ramaraj SK. 2017. Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. Journal of Electroanalytical Chemistry; 794: 64–70.
  • 8. Kumar AA, Swamy BEK, Rani TS, Ganesh PS, Raj YP. 2019. Voltammetric determination of catechol and hydroquinone at poly (murexide) modified glassy carbon electrode. Materials Science & Engineering C; 98: 746–752.
  • 9. Shahrokhian S, Hafezi-Kahnamouei M. 2018. Glassy carbon electrode modified with a nanocomposite of multi-walled carbon nanotube decorated with Ag nanoparticles for electrochemical investigation of Isoxsuprine. Journal of Electroanalytical Chemistry; 825: 30–39.
  • 10. Manasa G, Mascarenhas RJ, Satpati AK, D'Souza OJ, Dhason A. 2017. Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Materials Science and Engineering C; 73: 552–561.
  • 11. Brett CMA, Inzelt GÈ, Kertesz V. 1999. Poly(methylene blue) modified electrode sensor for haemoglobin. Analytica Chimica Acta; 385: 119-123.
  • 12. Sun W, Wang Y, Zhang Y, Ju X, Li G, Sun Z. 2012. Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Analytica Chimica Acta; 751: 59–65.
  • 13. Chen H, Zhang Z, Cai D, Zhang S, Zhang B, Tang J, Wu Z. 2012. Attapulgite with poly(methylene blue) composite film:Electrocatalytic determination of ascorbic acid. Solid State Sciences; 14: 362-366.
  • 14. Dilgin Y, Canarslan S, Ayyildiz O, Ertek B, Nişli G. 2012. Flow injection analysis of sulphide based on its photoelectrocatalytic oxidation at poly-methylene blue modified glassy carbon electrode. Electrochimica Acta; 66: 173–179.
  • 15. Ahmed AM, Sayed SY, El-Nagar GA, Morsi WM, El-Deab MS, El-Anadouli BE. 2019. Enhanced electrocatalytic oxidation of glucose at graphene nanosheets–Metal oxides nanoparticles modified GC electrodes. Journal of Electroanalytical Chemistry; 835: 313–323.
  • 16. Arslan E, Çakır S. 2016. Electrochemical fabrication of polyproline modified graphite electrode decorated with Pd–Au bimetallic nanoparticles: Application for determination of carminic acid. Journal of Electroanalytical Chemistry; 760: 32–41.
  • 17. Daneshvar L, Rounaghi GH, Es'haghi Z, Chamsaz M, Tarahomi S. 2016. Fabrication a new modified electrochemical sensor based on Au–Pd bimetallic nanoparticle decorated graphene for citalopram determination. Materials Science and Engineering C; 69: 653–660.
  • 18. Shang L, Zhao F, Zeng B. 2014.Sensitive voltammetric determination of vanillin with an AuPd nanoparticles−graphene composite modified electrode. Food Chemistry; 151: 53-57.
  • 19. Koçak ÇC, Karabiberoğlu Ş. 2018. Electrochemical Vanillin Determination on Gold Nanoparticles Modified Multiwalled Carbon Nanotube Electrode. Dokuz Eylul University-Faculty of Engineering, Journal of Science and Engineering; 20(59): 461-470.
  • 20. Huang L, Hou K, Jia X, Pan H, Du M. 2014. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Material Science and Engineering C; 38: 39-45.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çağrı Ceylan Koçak

Yayımlanma Tarihi 30 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 15 Sayı: 2

Kaynak Göster

APA Koçak, Ç. C. (2019). Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode. Celal Bayar University Journal of Science, 15(2), 211-215. https://doi.org/10.18466/cbayarfbe.528144
AMA Koçak ÇC. Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode. CBUJOS. Haziran 2019;15(2):211-215. doi:10.18466/cbayarfbe.528144
Chicago Koçak, Çağrı Ceylan. “Vanillin Determination in Food Products With Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode”. Celal Bayar University Journal of Science 15, sy. 2 (Haziran 2019): 211-15. https://doi.org/10.18466/cbayarfbe.528144.
EndNote Koçak ÇC (01 Haziran 2019) Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode. Celal Bayar University Journal of Science 15 2 211–215.
IEEE Ç. C. Koçak, “Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode”, CBUJOS, c. 15, sy. 2, ss. 211–215, 2019, doi: 10.18466/cbayarfbe.528144.
ISNAD Koçak, Çağrı Ceylan. “Vanillin Determination in Food Products With Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode”. Celal Bayar University Journal of Science 15/2 (Haziran 2019), 211-215. https://doi.org/10.18466/cbayarfbe.528144.
JAMA Koçak ÇC. Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode. CBUJOS. 2019;15:211–215.
MLA Koçak, Çağrı Ceylan. “Vanillin Determination in Food Products With Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode”. Celal Bayar University Journal of Science, c. 15, sy. 2, 2019, ss. 211-5, doi:10.18466/cbayarfbe.528144.
Vancouver Koçak ÇC. Vanillin Determination in Food Products with Pd Nanoparticles Modified Poly(Methylene Blue) Film Electrode. CBUJOS. 2019;15(2):211-5.