Year 2017, Volume 38, Issue 3, Pages 535 - 543 2017-09-30

Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions
Sonlu Sayıda Süreksizlik Koşullarına Sahip ve Sınır Koşulları Parametreye Bağlı Sturm-Liouville Problemi için Teklik Teoremleri

Yaşar ÇAKMAK [1] , Baki KESKİN [2]

175 218

In this paper, we prove some uniqueness theorems for the solution of inverse spectral problems of Sturm–Liouville operators with boundary conditions depending linearly on the spectral parameter and with a finite number of transmission conditions.

Bu makalede, sonlu sayıda süreksizlik koşullarına sahip ve sınır koşulları spektral parametreye lineer şekilde bağlı Sturm–Liouville operatörlerin ters spektral problemlerinin çözümü için bazı teklik teoremleri ispatlayacağız.

  • [1]. Ambartsumyan, V. A., Uber eine frage der eigenwerttheorie, Zeitschrift für Physik, 1929, 53, 690–695.
  • [2]. Borg, G., Eine umkehrung der Sturm–Liouvilleschen eigenwertaufgabe. Bestimmung der differentialgleichung durch die eigenwerte, Acta Math., 1946, 78, 1–96.
  • [3]. Benedek, A. and Panzone, R., On inverse eigenvalue problems for a second-order differential equations with parameter contained in the boundary conditions, Notas de Algebra y Analisis, 1980, 9, 1–13.
  • [4]. Binding, P. A., Browne, P. J. and Watson, B. A., Inverse spectral problems for Sturm–Liouville equations with eigenparameter dependent boundary conditions, J. London Math. Soc., 2000, 62, 161–182.
  • [5]. Browne, P. J. and Sleeman, B. D., A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems, Inverse Problems, 1997, 13, 1453-1462.
  • [6]. Chugunova, M. V., Inverse spectral problem for the Sturm–Liouville operator with eigenvalue parameter dependent boundary conditions, Oper. Theory: Adv. Appl., 2001, 123 (Basel: Birkhauser), 187–94.
  • [7]. Fulton, C. T., Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, 1977, A77, 293-308.
  • [8]. Fulton, C. T., Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinburgh, 1980, A87, 1-34.
  • [9]. Keskin, B., Ozkan, A. S. and Yalçın, N., Inverse spectral problems for discontinuous Sturm-Liouville operator with eigenparameter dependent boundary conditions, Commun. Fac. Sci. Univ. Ank. Series A1, 2011, 60(1), 1, 15–25.
  • [10]. Ozkan, A. S. and Keskin, B., Spectral problems for Sturm–Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter, Inverse Problems in Science and Engineering, 2012, 20(6), 799–808.
  • [11]. Ozkan, A. S., Keskin, B. and Cakmak, Y., Double Discontinuous Inverse Problems for Sturm-Liouville Operator with Parameter-Dependent Conditions, Abstract and Applied Analysis, 2013, Article ID 794262, p.7.
  • [12]. Walter, J., Regular eigenvalue problems with eigenvalue parameter in the boundary condition, Math. Z., 1973, 133, 301-312.
  • [13]. Wang, Y. P., Inverse problems for Sturm–Liouville operators with interior discontinuities and boundary conditions dependent on the spectral parameter, Mathematical Methods in the Applied Sciences, 2013, 36(7), 857-868.
  • [14]. Yang, C. F. and Huang, Z. Y., A half-inverse problem with eigenparameter dependent boundary conditions, Numerical Functional Analysis and Optimization, 2010, 31(6), 754–762.
  • [15]. Binding, P. A., Browne, P. J. and Seddighi, K., Sturm–Liouville problems with eigenparameter dependent boundary conditions, Proc. Edinburgh Math. Soc.,1993, 2(37), 57–72.
  • [16]. Binding, P. A. and Browne, P. J., Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. R. Soc. Edinburgh A, 1997, 127, 1123-1136.
  • [17]. Binding, P. A., Browne, P. J. and Watson, B. A., Equivalence of inverse Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl., 2004, 291, 246–261.
  • [18]. Mennicken, R., Schmid, H. and Shkalikov, A. A., On the eigenvalue accumulation of Sturm-Liouville problems depending nonlinearly on the spectral parameter, Math. Nachr., 1998, 189, 157-170.
  • [19]. Schmid, H. and Tretter, C., Singular Dirac systems and Sturm–Liouville problems nonlinear in the spectral parameter, Journal of Differential Equations, 2002, 181(2), 511-542.
  • [20]. Altinisik, N., Kadakal, M. and Mukhtarov, O. Sh., Eigenvalues and eigenfunctions of discontinuous Sturm–Liouville problems with eigenparameter dependent boundary conditions, Acta Math. Hungar., 2004, 102(1–2), 159–175.
  • [21]. Amirov, R. Kh., Ozkan, A. S. and Keskin, B., Inverse problems for impulsive Sturm-Liouville operator with spectral parameter linearly contained in boundary conditions, Integral Transforms and Special Functions, 2009, 20(8), 607-618.
  • [22]. Freiling, G. and Yurko, V., Inverse Sturm–Liouville problems and their applications, Nova Science, New York, 2001.
  • [23]. Hald, O. H., Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math., 1984, 37, 539-577.
  • [24]. Ozkan, A. S., Inverse Sturm–Liouville problems with eigenvalue dependent boundary and discontinuity conditions, Inverse Probl. Sci. Eng., 2012, 20(6), 857–868.
  • [25]. Yurko, V. A., Integral transforms connected with discontinuous boundary value problems, Integral Transforms Spec. Funct., 2000, 10, 141–164.
  • [26]. Yurko ,V. A., Method of spectral mappings in the inverse problem theory, Inverse Ill-posed Problems Ser., VSP, Utrecht, 2002.
  • [27]. Guldu, Y., Inverse Eigenvalue Problems for a Discontinuous Sturm-Liouville Operator with Two Discontinuities, Boundary Value Problems, 2013, DOI:10.1186/1687-2770-2013-209.
Subjects Basic Sciences
Journal Section Articles
Authors

Author: Yaşar ÇAKMAK

Author: Baki KESKİN

Bibtex @research article { csj340505, journal = {Cumhuriyet Science Journal}, issn = {2587-2680}, eissn = {2587-246X}, address = {Cumhuriyet University}, year = {2017}, volume = {38}, pages = {535 - 543}, doi = {10.17776/csj.340505}, title = {Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions}, key = {cite}, author = {ÇAKMAK, Yaşar and KESKİN, Baki} }
APA ÇAKMAK, Y , KESKİN, B . (2017). Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions. Cumhuriyet Science Journal, 38 (3), 535-543. DOI: 10.17776/csj.340505
MLA ÇAKMAK, Y , KESKİN, B . "Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions". Cumhuriyet Science Journal 38 (2017): 535-543 <http://dergipark.org.tr/csj/issue/31252/340505>
Chicago ÇAKMAK, Y , KESKİN, B . "Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions". Cumhuriyet Science Journal 38 (2017): 535-543
RIS TY - JOUR T1 - Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions AU - Yaşar ÇAKMAK , Baki KESKİN Y1 - 2017 PY - 2017 N1 - doi: 10.17776/csj.340505 DO - 10.17776/csj.340505 T2 - Cumhuriyet Science Journal JF - Journal JO - JOR SP - 535 EP - 543 VL - 38 IS - 3 SN - 2587-2680-2587-246X M3 - doi: 10.17776/csj.340505 UR - https://doi.org/10.17776/csj.340505 Y2 - 2017 ER -
EndNote %0 Cumhuriyet Science Journal Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions %A Yaşar ÇAKMAK , Baki KESKİN %T Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions %D 2017 %J Cumhuriyet Science Journal %P 2587-2680-2587-246X %V 38 %N 3 %R doi: 10.17776/csj.340505 %U 10.17776/csj.340505
ISNAD ÇAKMAK, Yaşar , KESKİN, Baki . "Uniqueness Theorems for Sturm-Liouville Operator with Parameter Dependent Boundary Conditions and Finite Number Of Transmission Conditions". Cumhuriyet Science Journal 38 / 3 (September 2017): 535-543. https://doi.org/10.17776/csj.340505