Araştırma Makalesi
BibTex RIS Kaynak Göster

60Co’ın Nükleer Yapı Özelliklerinin Fenemojiksel Yaklaşımlarla İncelenmesi

Yıl 2017, Cilt: 38 Ek Sayı 4, 98 - 104, 08.12.2017
https://doi.org/10.17776/csj.363311

Öz

Bu
çalışmada, 60Co’ın nükleer yapı özellikleri olan parçacık başına
bağlanma enerjileri, kare ortalama karekök (rms) yük, proton ve nötron
yarıçapları, proton, nötron ve yük yoğunluk dağılımları yarıçapın bir
fonksiyonu olarak HAFOMN kodu vasıtasıyla, Skyrme kuvvetli Hartree-Fock methodu
kullanılarak araştırılmıştır.  Nötron
yüzey kalınlığına hacim ve yüzey katkıları, proton ve nötron yoğunluk
dağılımlarından elde edilen sonuçlardan analiz edilmiştir. Hesaplanan sonuçlar
literatürdeki deneysel sonuçlar ile karşılaştırılmıştır. İlaveten, 60Co’ın
proton, nötron, döteron, triton, he-3 ve alfa ayırma enerjileri Talys kodu ile
belirlenmiştir. Çünkü, bu ayırma enerjileri çekirdeklerin yüzey davranışları,
r-process ve nükleer reaksiyonlarda kullanılabilir.

Kaynakça

  • [1]. Asai M., Heßberger F.P., Martensd A.L. Nuclear structure of elements with 100≤Z≤10 from alpha spectroscopy. Nucl Phys A 2015; 944: 308-32.
  • [2]. Sheikh J.A., Ring P. Symmetry-projected Hartree-Fock-Bogoliubov equations. Nucl Phys A 2000; 665(1): 71-91.
  • [3]. Reinhard P.G., Flocard H. Nuclear effective forces and isotope shifts. Nucl Phys A 1995; 584: 467-88.
  • [4]. Chabanat E., Bonche P., Haensel P., Meyer J., Schaeffer R. A Skyrme parametrization from subnuclear to neutron star densities. Nucl Phys A 1997; 627: 710-46.
  • [5]. Chabanat E., Bonche P., Haensel P., Meyer J., Schaeffer R. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl Phys A 1998; 635: 231-56.
  • [6]. Artun O., Aytekin C., Aytekin H. An investigation of nuclear properties ofeven even natural 92–100Mo isotopes. Mod Phys Lett A 2014; 29(39): 1450208-11
  • [7]. Aytekin H., Artun O. An investigation of the nuclear structures of even-even neutron-rich Sr, Zr and Mo isotopes. Mod Phys Lett A 2013; 28(5): 1350007-11.
  • [8]. Wooten H.O., Rodriguez V., Green O., Kashani R., Santanam L., Tanderup K., Mutic S., Li H.H. Radiother Oncol 2015; 114(3): 402-5.
  • [9]. Hung T.V., Khac T.A. Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam. Appl Radiat Isot 2010; 68: 1104-7.
  • [10]. Mutic S., Dempsey J.F. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 2014; 24: 196-9.
  • [11]. Yong J.S., Ung N.M., Jamalludin Z., Malik R.A., Wong J.H.D., Liew Y.M., Ng K.H. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study. Radiat Phys and Chem 2016; 119: 264-71.
  • [12]. Lange R.G., Carroll W.P. Review of recent advances of radioisotope power systems. Energy Convers Manage 2008; 49(3): 393-01.
  • [13]. Bennett G.L. Mission interplanetary: Using radioisotope power to explore the solar system. Energy Convers Manage 2008; 49: 382-92.
  • [14]. National Research Council Radioisotope Power Systems. Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration. Washington, DC: The National Academies Press., USA, 2009.
  • [15]. Prelas M.A., Weaver C.L., Watermann M.L., Lukosi E.D., Schott R.J., Wisniewski D.A. A review of nuclear batteries. Prog Nucl Energy 2014; 75: 117-48.
  • [16]. Doherty B.J. Design of a cobalt-60 fueled thermionic power supply. Department of Physics, Massachusetts Institute of Technology, Master Thesis, Massachusetts, USA, 1969; 1-80. Adres: https://calhoun.nps.edu/handle/10945/11956
  • [17]. Aytekin H., Baldik R., Tel E. Calculation of the Ground State Properties of Even–Even Sn Isotopes. Phys Atomic Nucl 2010; 73(6): 922-6.
  • [18]. Skyrme T.H.R. The nuclear surface. Philos Mag 1956; 1: 1043-54.
  • [19]. Skryme T.H.R. The effective nuclear potential. Nucl Phys 1959; 9: 615-34.
  • [20]. Lingxiao G., Yizhong Z., Nörenberg W. Temperature-dependent optical potential and mean free path based on skyrme interactions. Nucl Phys A 1986; 459: 77-92.
  • [21]. Vautherin D., Brink D.M. Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei. Phys Rev C 1972; 5: 626-47.
  • [22]. Bennaceur K., Dobaczewski J. Coordinate-space solution of the Skyrme–Hartree–Fock–Bogolyubov equations within spherical symmetry. The program HFBRAD (v1.00). Comput Phys Commun 2005; 168: 96-122.
  • [23]. Reinhard P.G., Grummer F., Goeke K.Z. A comparative study of mass parameters and linear response in three-dimensional grids. Z. Phys A 1984; 317(3): 339-46.
  • [24]. Dreher B., Friedrich J., Merle K., Rothhaas H., Lührs G. The determination of the nuclear ground state and transition charge density from measured electron scattering data. Nucl Phys A 1974; 235: 219-48.
  • [25]. Warda M., Centelles M., Viñas X., Maza X. R. Influence of the single-particle structure on the nuclear surface and the neutron skin. Phys Rew C 2014; 89(6): 064302
  • [26]. Artun O. Investigation of the production of promethium-147 via particle accelerator. Indian J Phys 2017; 91(8): 909-914.
  • [27]. Artun O. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery. Mod Phys Lett A 2017; 32: 1750117.
  • [28]. Artun O. Estimation of the production of medical Ac-225 on thorium material viaproton accelerator. Appl Radiat Isot 2017; 127: 166-72.
  • [29]. Koning A., Hilaire S., Goriely S. Talys 1.8, User Manual, 2015. Adres: http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf
  • [30]. Audi G., Wapstra A.H., Thibault C. The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl Phys A 2003; 729: 337-676.

Investigation of the Nuclear Structure Properties of 60Co via Phenomenological Approach

Yıl 2017, Cilt: 38 Ek Sayı 4, 98 - 104, 08.12.2017
https://doi.org/10.17776/csj.363311

Öz

In the
present paper, the nuclear structure properties of 60Co were
investigated by using the Hartree-Fock method with Skyrme forces, such as the
binding energy per particle, the root-mean-square (rms) nuclear charge, proton,
neutron radii and charge, proton, neutron density distributions as a function
of radius via HAFOMN code. The bulk and surface contributions to neutron skin
thickness were analyzed by results obtained from proton and neutron density
distributions. The calculated results were compared with the experimental
results in the literature. Additionally, proton, neutron, deuteron, triton,
he-3 and alpha separation energies of 60Co were determined by Talys
code. Because, these separation energies can be used for nuclear reaction,
r-process and skin behavior of nuclei.

Kaynakça

  • [1]. Asai M., Heßberger F.P., Martensd A.L. Nuclear structure of elements with 100≤Z≤10 from alpha spectroscopy. Nucl Phys A 2015; 944: 308-32.
  • [2]. Sheikh J.A., Ring P. Symmetry-projected Hartree-Fock-Bogoliubov equations. Nucl Phys A 2000; 665(1): 71-91.
  • [3]. Reinhard P.G., Flocard H. Nuclear effective forces and isotope shifts. Nucl Phys A 1995; 584: 467-88.
  • [4]. Chabanat E., Bonche P., Haensel P., Meyer J., Schaeffer R. A Skyrme parametrization from subnuclear to neutron star densities. Nucl Phys A 1997; 627: 710-46.
  • [5]. Chabanat E., Bonche P., Haensel P., Meyer J., Schaeffer R. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl Phys A 1998; 635: 231-56.
  • [6]. Artun O., Aytekin C., Aytekin H. An investigation of nuclear properties ofeven even natural 92–100Mo isotopes. Mod Phys Lett A 2014; 29(39): 1450208-11
  • [7]. Aytekin H., Artun O. An investigation of the nuclear structures of even-even neutron-rich Sr, Zr and Mo isotopes. Mod Phys Lett A 2013; 28(5): 1350007-11.
  • [8]. Wooten H.O., Rodriguez V., Green O., Kashani R., Santanam L., Tanderup K., Mutic S., Li H.H. Radiother Oncol 2015; 114(3): 402-5.
  • [9]. Hung T.V., Khac T.A. Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam. Appl Radiat Isot 2010; 68: 1104-7.
  • [10]. Mutic S., Dempsey J.F. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 2014; 24: 196-9.
  • [11]. Yong J.S., Ung N.M., Jamalludin Z., Malik R.A., Wong J.H.D., Liew Y.M., Ng K.H. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study. Radiat Phys and Chem 2016; 119: 264-71.
  • [12]. Lange R.G., Carroll W.P. Review of recent advances of radioisotope power systems. Energy Convers Manage 2008; 49(3): 393-01.
  • [13]. Bennett G.L. Mission interplanetary: Using radioisotope power to explore the solar system. Energy Convers Manage 2008; 49: 382-92.
  • [14]. National Research Council Radioisotope Power Systems. Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration. Washington, DC: The National Academies Press., USA, 2009.
  • [15]. Prelas M.A., Weaver C.L., Watermann M.L., Lukosi E.D., Schott R.J., Wisniewski D.A. A review of nuclear batteries. Prog Nucl Energy 2014; 75: 117-48.
  • [16]. Doherty B.J. Design of a cobalt-60 fueled thermionic power supply. Department of Physics, Massachusetts Institute of Technology, Master Thesis, Massachusetts, USA, 1969; 1-80. Adres: https://calhoun.nps.edu/handle/10945/11956
  • [17]. Aytekin H., Baldik R., Tel E. Calculation of the Ground State Properties of Even–Even Sn Isotopes. Phys Atomic Nucl 2010; 73(6): 922-6.
  • [18]. Skyrme T.H.R. The nuclear surface. Philos Mag 1956; 1: 1043-54.
  • [19]. Skryme T.H.R. The effective nuclear potential. Nucl Phys 1959; 9: 615-34.
  • [20]. Lingxiao G., Yizhong Z., Nörenberg W. Temperature-dependent optical potential and mean free path based on skyrme interactions. Nucl Phys A 1986; 459: 77-92.
  • [21]. Vautherin D., Brink D.M. Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei. Phys Rev C 1972; 5: 626-47.
  • [22]. Bennaceur K., Dobaczewski J. Coordinate-space solution of the Skyrme–Hartree–Fock–Bogolyubov equations within spherical symmetry. The program HFBRAD (v1.00). Comput Phys Commun 2005; 168: 96-122.
  • [23]. Reinhard P.G., Grummer F., Goeke K.Z. A comparative study of mass parameters and linear response in three-dimensional grids. Z. Phys A 1984; 317(3): 339-46.
  • [24]. Dreher B., Friedrich J., Merle K., Rothhaas H., Lührs G. The determination of the nuclear ground state and transition charge density from measured electron scattering data. Nucl Phys A 1974; 235: 219-48.
  • [25]. Warda M., Centelles M., Viñas X., Maza X. R. Influence of the single-particle structure on the nuclear surface and the neutron skin. Phys Rew C 2014; 89(6): 064302
  • [26]. Artun O. Investigation of the production of promethium-147 via particle accelerator. Indian J Phys 2017; 91(8): 909-914.
  • [27]. Artun O. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery. Mod Phys Lett A 2017; 32: 1750117.
  • [28]. Artun O. Estimation of the production of medical Ac-225 on thorium material viaproton accelerator. Appl Radiat Isot 2017; 127: 166-72.
  • [29]. Koning A., Hilaire S., Goriely S. Talys 1.8, User Manual, 2015. Adres: http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf
  • [30]. Audi G., Wapstra A.H., Thibault C. The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl Phys A 2003; 729: 337-676.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Bölüm Natural Sciences
Yazarlar

Ozan Artun

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 12 Eylül 2017
Kabul Tarihi 1 Kasım 2017
Yayımlandığı Sayı Yıl 2017Cilt: 38 Ek Sayı 4

Kaynak Göster

APA Artun, O. (2017). Investigation of the Nuclear Structure Properties of 60Co via Phenomenological Approach. Cumhuriyet Science Journal, 38(4), 98-104. https://doi.org/10.17776/csj.363311