Year 2018, Volume 39, Issue 1, Pages 87 - 94 2018-03-16

Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs)
Yapay Sinir Ağları (YSA) Yöntemi Kullanarak Ra-226, Th-232 ve U-238 Konsantrasyonlarının Kestirimleri

Sevim BİLİCİ [1] , Miraç KAMIŞLIOĞLU [2] , Ahmet BİLİCİ [3] , Fatih KÜLAHCI [4]

179 303

Identification and modeling of radioactive concentrations in a region is very important for the region in terms of radiological hazards. Artificial Neural Network (ANN) can successfully model large systems. The validity of the model was tested by entering the data of the proposed ANN model that had never been entered into the system. In this research, average activity concentrations of 226Ra, 232Th and 238U in the water samples collected from the lake are 1.439 Bql-1, 4.508 Bql-1 and 14.682   Bql-1, respectively. The characteristics of the study area are also determined with the spatial maps and ANNs are used to prediction and modeling of the radionuclides. The mean square errors for the obtained results are less than 1.5%. The correlation coefficient close to +1 indicates the validity of the model for this study.

Bir bölgedeki radyoaktif çekirdek konsantrasyonlarının belirlenmesi ve modellenmesi radyolojik tehlikeler açısından bölge için oldukça önemlidir. ANN büyük verilere sahip sistemleri başarılı şekilde modelleyebilir. Önerilen ANN modelinin sisteme daha önce hiç girilmemiş verileri girilerek modelin geçerliliği test edildi. Bu çalışmada, çalışma alanından toplanan su örneklerindeki ortalama aktivite konsantrasyonları 226Ra, 232Th ve 238U çekirdekleri için sırasıyla 1.439 Bql-1, 4.508 Bql-1 ve 14.682 Bql-1 dir. Çalışma alanın karakteristikleri de belirlendi ve 226Ra, 232Th ve 238U radyoaktif çekirdek konsantrasyonlarının tahmini ve modellemesi için Yapay Sinir Ağları (YSA) kullanıldı. Elde edilen sonuçlara ait ortalama kare hatalar 1,5 tan azdır. Korelasyon katsayısının da +1 e yakın çıkması modelin geçerliliğinin bu çalışma için uygunluğunu göstermektedir.

  • [1]. IAEA, Naturally Occurring Radioactive Material, 2007.
  • [2]. UNSCEAR, United Nations Scientific Committee on the Effect of Atomic Radiation, 1988.
  • [3]. Külahcı F. Spatiotemporal (four-dimensional) modeling and simulation of uranium (238) in Hazar Lake (Turkey) water, Environ Earth Sci. 75 (2016) 452.
  • [4]. Krisnaswami S., Graustein W.C., Turekian K.K, Dowd J.F., Radium, Thorium and Radioactive Lead Isotopes In Groundwaters - Application To The Insitu Determination Of Adsorption-Desorption Rate Constants And Retardation Factors, Water Resour. Res., 18 (1982) 1663-1675.
  • [5]. Závodská L., Kosorínová E., Ščerbáková L., Lesný J. Environmental Chemistry of Uranium. Hej, Env-081221-A., (2008) 1-19.
  • [6]. Yeşilkanat C.M., Kobya Y., Determination and mapping the spatial distribution of radioactivity of natural spring water in the Eastern Black Sea Region by using artificial neural network method Environ. Monit. Assess., (2015) 187-589.
  • [7]. Medhat M.E. Artificial intelligence methods applied for quantitative analysis of natural radioactive sources. Annals of Nuclear Energy, 45 (2015)73-79.
  • [8]. Akkoyun S., Bayram T., Yildiz N. Estimations of Radiation Yields for Electrons in Various Absorbing Materials, Cumhuriyet Science Journal, 37 (2016) 65-65.
  • [9]. Castin N., Malerba L., Chaouadi R. Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks. J. Nucl. Mater., 408 (2011) 30-39.
  • [10]. Külahcı F., İnceöz M., Doğru M., Aksoy E., Baykara O. Artificial neural network model for earthquake prediction with radon monitoring,A Radiation and Isotopes, 67 (2009) 212-219.
  • [11]. Niksarlioglu S., Kulahci F. An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes, WAS Engineering and Technology, 74 (2013) 984-987.
  • [12]. Negarestani A., Setayeshi S., Ghannadi-Maragheh M., Akashe B. Estimation of the radon concentration in soil related to the environmental parameters by a modified Adaline neural network. App. Radiation Isot., 58 (2003) 269-273.
  • [13]. Yeşilkanat C.M., Kobya Y., Taşkın H., Çevik U. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neuralnetworks and fuzzy logic methods, Journal of Environmental Radioactivity, (2017) 78-93.
  • [14]. Külahcı F., Doğru M. Iso-Radioactivity Curves of the water of the Hazar Lake, Elazig, Turkey, J. Radioanal. Nucl. Chem. , 260 (2004) 557-562.
  • [15]. Faussett L., Fundamentals of Neural Networks Architectures, 1994; 461 pp.
  • [16]. Fernandez C., Soria E., Martin J.D. Serrano, A.J., Neural networks for animal science applications: Two case studies, Expert. Syst. Appl., 31 (2006) 444-450.
  • [17]. Tsoukalas L.H., Uhring R.E. Fuzzy and Neural Approaches in Engineering, 1997; 600 pp.
  • [18]. Özger M., Şen Z., Triple diagram method for the prediction of wave height and period, Ocean engineering, 34 (2007) 1060-1068.
Primary Language en
Subjects Basic Sciences
Journal Section Natural Sciences
Authors

Author: Sevim BİLİCİ (Primary Author)
Institution: Bartın Üniversitesi
Country: Turkey


Author: Miraç KAMIŞLIOĞLU
Institution: Üsküdar Üniversitesi
Country: Turkey


Author: Ahmet BİLİCİ
Institution: Bartın Üniversitesi
Country: Turkey


Author: Fatih KÜLAHCI
Institution: Fırat Üniversitesi
Country: Turkey


Bibtex @conference paper { csj359924, journal = {Cumhuriyet Science Journal}, issn = {2587-2680}, eissn = {2587-246X}, address = {Cumhuriyet University}, year = {2018}, volume = {39}, pages = {87 - 94}, doi = {10.17776/csj.359924}, title = {Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs)}, key = {cite}, author = {BİLİCİ, Sevim and KAMIŞLIOĞLU, Miraç and BİLİCİ, Ahmet and KÜLAHCI, Fatih} }
APA BİLİCİ, S , KAMIŞLIOĞLU, M , BİLİCİ, A , KÜLAHCI, F . (2018). Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs). Cumhuriyet Science Journal, 39 (1), 87-94. DOI: 10.17776/csj.359924
MLA BİLİCİ, S , KAMIŞLIOĞLU, M , BİLİCİ, A , KÜLAHCI, F . "Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs)". Cumhuriyet Science Journal 39 (2018): 87-94 <http://dergipark.org.tr/csj/issue/36110/359924>
Chicago BİLİCİ, S , KAMIŞLIOĞLU, M , BİLİCİ, A , KÜLAHCI, F . "Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs)". Cumhuriyet Science Journal 39 (2018): 87-94
RIS TY - JOUR T1 - Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs) AU - Sevim BİLİCİ , Miraç KAMIŞLIOĞLU , Ahmet BİLİCİ , Fatih KÜLAHCI Y1 - 2018 PY - 2018 N1 - doi: 10.17776/csj.359924 DO - 10.17776/csj.359924 T2 - Cumhuriyet Science Journal JF - Journal JO - JOR SP - 87 EP - 94 VL - 39 IS - 1 SN - 2587-2680-2587-246X M3 - doi: 10.17776/csj.359924 UR - https://doi.org/10.17776/csj.359924 Y2 - 2018 ER -
EndNote %0 Cumhuriyet Science Journal Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs) %A Sevim BİLİCİ , Miraç KAMIŞLIOĞLU , Ahmet BİLİCİ , Fatih KÜLAHCI %T Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs) %D 2018 %J Cumhuriyet Science Journal %P 2587-2680-2587-246X %V 39 %N 1 %R doi: 10.17776/csj.359924 %U 10.17776/csj.359924
ISNAD BİLİCİ, Sevim , KAMIŞLIOĞLU, Miraç , BİLİCİ, Ahmet , KÜLAHCI, Fatih . "Forecasting of Ra(226), Th(232) and U(238) Concentrations using Artificial Neural Networks (ANNs)". Cumhuriyet Science Journal 39 / 1 (March 2018): 87-94. https://doi.org/10.17776/csj.359924