Year 2018, Volume 39, Issue 1, Pages 250 - 257 2018-03-16

Hidrojen İndirgenme Reaksiyonu İçin Yeni Bir Küresel Katalizör
A New Spherical Catalyst For Hydrogen Evolution Reaction

Murat FARSAK [1]

126 191

CuFeZn kompozit katalizörleri, hidrojen indirgenme reaksiyonu (HER) için elektrokimyasal malzemeler olarak elektrokimyasal biriktirme ile grafit elektrotu üzerinde hazırlanmıştır. Sodyum hidroksit çözeltideki aşındırma işlemi, çinkoyu yüzeyden uzaklaştırmak ve hidrojen indirgeme için gözenekli bir elektrokatalitik yüzey üretmek için katalizörler üzerinde uygulanmıştır. Yüzey morfolojileri taramalı elektron mikroskobu ile araştırıldı. HER aktivitesi katodik akım-potansiyel eğrileri, dönüşümlü voltametri, elektrokimyasal impedans spektroskopisi ve elektroliz teknikleri kullanılarak değerlendirildi. Sonuçlar, aşındırılmış katalizörlerin, alkali ortamlarda HER için iyi bir elektrokatalitik aktivitenin yanı sıra, kompakt ve gözenekli bir yapıya sahip olduğunu göstermektedir.

CuFeZn composite catalysts have been prepared on the graphite electrode by electrochemical deposition as electrocatalytic materials for hydrogen evolution reaction (HER). The etching process was applied on catalysts in caustic solution to leach out zinc and to produce a porous electrocatalytic surface for hydrogen evolution. The surface morphologies were investigated by scanning electron microscopy. HER activity is assessed by recording cathodic current–potential curves, cyclic voltammetry, electrochemical impedance spectroscopy and electrolysis techniques. The results show that etched catalysts have a compact and porous structure as well as a good electrocatalytic activity for the HER in alkaline media.

  • [1]. Bicer Y., Chehade G., Dincer I., Experimental investigation of various copper oxide electrodeposition conditions on photoelectrochemical hydrogen production, Int. J. Hydrogen Energy, 42 (2017) 6490-6501.
  • [2]. Ngamlerdpokin K., Tantavichet N., Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media, Int. J. Hydrogen Energy, 39 (2014) 2505-2515.
  • [3]. Telli E., Döner A., Kardaş G., Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium, Electrochim. Acta, 107 (2013) 216-224.
  • [4]. Parsons R., The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen, Transactions of the Faraday Society, 54 (1958) 1053-1063.
  • [5]. Crnkovic F., Machado S., Avaca L., Electrochemical and morphological studies of electrodeposited Ni–Fe–Mo–Zn alloys tailored for water electrolysis, Int. J. Hydrogen Energy, 29 (2004) 249-254.
  • [6]. Mouanga M., Puiggali M., Devos O., EIS and LEIS investigation of aging low carbon steel with Zn–Ni coating, Electrochim. Acta, 106 (2013) 82-90.
  • [7]. Ortiz-Aparicio J., Meas Y., Trejo G., Ortega R., Chapman T., Chaînet E., Ozil P., Electrodeposition of zinc–cobalt alloy from a complexing alkaline glycinate bath, Electrochim. Acta, 52 (2007) 4742-4751.
  • [8]. Szczygieł B., Laszczyńska A., Tylus W., Influence of molybdenum on properties of Zn–Ni and Zn–Co alloy coatings, Surf. Coat. Technol., 204 (2010) 1438-1444.
  • [9]. Winiarski J., Tylus W., Krawczyk M., Szczygieł B., The influence of molybdenum on the electrodeposition and properties of ternary Zn–Fe–Mo alloy coatings, Electrochim. Acta, 196 (2016) 708-726.
  • [10]. Golvano-Escobal I., Suriñach S., Baró M.D., Pané S., Sort J., Pellicer E., Electrodeposition of sizeable and compositionally tunable rhodium-iron nanoparticles and their activity toward hydrogen evolution reaction, Electrochim. Acta, 194 (2016) 263-275.
  • [11]. Safizadeh F., Ghali E., Houlachi G., Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review, Int. J. Hydrogen Energy, 40 (2015) 256-274.
  • [12]. Sequeira C., Santos D., Brito P., Electrocatalytic activity of simple and modified Fe–P electrodeposits for hydrogen evolution from alkaline media, Energy, 36 (2011) 847-853.
  • [13]. Döner A., Solmaz R., Kardaş G., Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution, Int. J. Hydrogen Energy, 36 (2011) 7391-7397.
  • [14]. Döner A., Solmaz R., Kardaş G., Fabrication and characterization of alkaline leached CuZn/Cu electrode as anode material for direct methanol fuel cell, Energy, 90 (2015) 1144-1151.
  • [15]. Farsak M., Telli E., Yüce A.O., Kardaş G., The noble metal loading binary iron–zinc electrode for hydrogen production, Int. J. Hydrogen Energy, (2016)
  • [16]. Solmaz R., Döner A., Doğrubaş M., Erdoğan İ.Y., Kardaş G., Enhancement of electrochemical activity of Raney-type NiZn coatings by modifying with PtRu binary deposits: Application for alkaline water electrolysis, Int. J. Hydrogen Energy, 41 (2016) 1432-1440.
  • [17]. Solmaz R., Döner A., Kardaş G., Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution, Int. J. Hydrogen Energy, 35 (2010) 10045-10049.
  • [18]. Solmaz R., Kardaş G., Hydrogen evolution and corrosion performance of NiZn coatings, Energy Convers. Manage., 48 (2007) 583-591.
  • [19]. Solmaz R., Kardaş G., Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis, Electrochim. Acta, 54 (2009) 3726-3734.
  • [20]. Solmaz R., Kardaş G., Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production, Int. J. Hydrogen Energy, 36 (2011) 12079-12087.
  • [21]. Solmaz R., Salcı A., Yüksel H., Doğrubaş M., Kardaş G., Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis, Int. J. Hydrogen Energy, 42 (2017) 2464-2475.
  • [22]. Kaninski M.P.M., Nikolić V.M., Potkonjak T.N., Simonović B.R., Potkonjak N.I., Catalytic activity of Pt-based intermetallics for the hydrogen production-Influence of ionic activator, Applied Catalysis A: General, 321 (2007) 93-99.
  • [23]. Navarro-Flores E., Chong Z., Omanovic S., Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium, J. Mol. Catal. A: Chem., 226 (2005) 179-197.
  • [24]. Yüce A.O., Döner A., Kardaş G., NiMn composite electrodes as cathode material for hydrogen evolution reaction in alkaline solution, Int. J. Hydrogen Energy, 38 (2013) 4466-4473.
Primary Language en
Subjects Basic Sciences
Journal Section Engineering Sciences
Authors

Author: Murat FARSAK (Primary Author)

Bibtex @research article { csj406167, journal = {Cumhuriyet Science Journal}, issn = {2587-2680}, eissn = {2587-246X}, address = {Cumhuriyet University}, year = {2018}, volume = {39}, pages = {250 - 257}, doi = {10.17776/csj.406167}, title = {A New Spherical Catalyst For Hydrogen Evolution Reaction}, key = {cite}, author = {FARSAK, Murat} }
APA FARSAK, M . (2018). A New Spherical Catalyst For Hydrogen Evolution Reaction. Cumhuriyet Science Journal, 39 (1), 250-257. DOI: 10.17776/csj.406167
MLA FARSAK, M . "A New Spherical Catalyst For Hydrogen Evolution Reaction". Cumhuriyet Science Journal 39 (2018): 250-257 <http://dergipark.org.tr/csj/issue/36110/406167>
Chicago FARSAK, M . "A New Spherical Catalyst For Hydrogen Evolution Reaction". Cumhuriyet Science Journal 39 (2018): 250-257
RIS TY - JOUR T1 - A New Spherical Catalyst For Hydrogen Evolution Reaction AU - Murat FARSAK Y1 - 2018 PY - 2018 N1 - doi: 10.17776/csj.406167 DO - 10.17776/csj.406167 T2 - Cumhuriyet Science Journal JF - Journal JO - JOR SP - 250 EP - 257 VL - 39 IS - 1 SN - 2587-2680-2587-246X M3 - doi: 10.17776/csj.406167 UR - https://doi.org/10.17776/csj.406167 Y2 - 2018 ER -
EndNote %0 Cumhuriyet Science Journal A New Spherical Catalyst For Hydrogen Evolution Reaction %A Murat FARSAK %T A New Spherical Catalyst For Hydrogen Evolution Reaction %D 2018 %J Cumhuriyet Science Journal %P 2587-2680-2587-246X %V 39 %N 1 %R doi: 10.17776/csj.406167 %U 10.17776/csj.406167
ISNAD FARSAK, Murat . "A New Spherical Catalyst For Hydrogen Evolution Reaction". Cumhuriyet Science Journal 39 / 1 (March 2018): 250-257. https://doi.org/10.17776/csj.406167