Year 2019, Volume 40, Issue 1, Pages 125 - 135 2019-03-22

Kurkumin Yüklü Biyo-Bazlı Elektroeğirme Poliüretan Yapılar
Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds

Nesrin HORZUM POLAT [1] , Nehir ARIK KINALI [2]

65 164

Polimerik elektroeğirme lifler, yara iyileşme uygulamaları için iyi tasarımlı iskeleler sunmaktadır. Burada, kurkumin (Cur) içeren biyobazlı poliüretan (PU) karışım liflerin üretimi rapor edilmektedir. Yalnızca polimer konsantrasyonu değil, aynı zamanda kurkumin konsantrasyonu, fiberlerin morfolojisi, çapı ve temas açısı değerlerini etkilemiştir. Morfolojik araştırmalar, PU liflerinin çapının ve hidrofilikliğinin kurkumin ilavesi üzerine arttığını ortaya koymuştur. Proses parametrelerinin (uygulanan voltaj, akış hızı ve uçtan toplayıcıya mesafe) PU ve PU/Cur liflerinin ortalama çap ve hidrofilikliği üzerindeki etkileri incelenmiştir. Homojen ve boncuksuz PU/Cur lif elde etmek için optimum koşullar 12.5 kV, 1 mL/s ve 17 cm olarak belirlenmiştir. Bu çalışma, elektroeğirme işleminin, biyoaktif madde yüklü lifli iskeleleri elde etmenin basit bir yolunu sağlamasının yanı sıra, PU/Cur karışım liflerinin imalatında yara iyileşmesi uygulamaları için işlem değişkenlerinin etkisinin daha iyi anlaşılmasına katkıda bulunduğunu göstermektedir.
Polymeric electrospun fibers present well-design scaffolds for wound healing applications. Here, the fabrication of biobased polyurethane (PU) blend fibers containing curcumin (Cur) was reported. Not only polymer concentration but also curcumin concentration affects the morphology, diameter, and contact angle values of the fibers. Morphological investigations revealed that the diameter and hydrophilicity of the PU fibers increased upon addition of curcumin. Effect of process parameters (applied voltage, flow rate, and tip-to-collector distance) on the average diameter and the hydrophilicity of the PU and PU/Cur fibers were examined. Optimum conditions to obtain uniform and bead-free PU/Cur fibers were determined as 12.5 kV, 1 mL/h, and 17 cm. This study demonstrates that the electrospinning process provides a simple way of obtaining bioactive agent loaded fibrous scaffolds, as well as contributing to a better understanding of the effect of process variables in the fabrication of PU/Cur blend fibers for wound healing applications.
  • [1]. Moura, D., M.T. Souza, L. Liverani, G. Rella, G.M. Luz, J.F. Mano, and A.R. Boccaccini, Development of a bioactive glass-polymer composite for wound healing applications. Mater. Sci. Eng. C-Mater. Biol. Appl., 76 (2017) 224-232.
  • [2]. Regnier, T., S. Combrinck, and W. Du Plooy, Essential oils and other plant extracts as food preservatives. (2012) 539-579.
  • [3]. Christaki, E., E. Bonos, I. Giannenas, and P. Florou-Paneri, Aromatic plants as a source of bioactive compounds. 2 (2012) 228-243.
  • [4]. Sarkic, A. and I. Stappen, Essential oils and their single compounds in cosmetics—a critical review. 5 (2018) 11.
  • [5]. Pizzo, P., C. Scapin, M. Vitadello, C. Florean, and L. Gorza, Grp94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells. J. Cell. Mol. Med., 14 (2010) 970-981.
  • [6]. Aziz, M.T.A., M.F. El-Asmar, I.N. El-Ibrashy, A.M. Rezq, A.L. Al-Malki, M.A. Wassef, H.H. Fouad, H.H. Ahmed, F.M. Taha, A.A. Hassouna, and H.M. Morsi, Effect of novel water soluble curcumin derivative on experimental type-1 diabetes mellitus (short term study). Diabetol. Metab. Syndr., 4 (2012) 30.
  • [7]. Lee, Y.K., W.S. Lee, J.T. Hwang, D.Y. Kwon, Y.J. Surh, and O.J. Park, Curcumin Exerts Antidifferentiation Effect through AMPK alpha-PPAR-gamma in 3T3-L1 Adipocytes and Antiproliferatory Effect through AMPK alpha-COX-2 in Cancer Cells. J. Agric. Food Chem., 57 (2009) 305-310.
  • [8]. Jordan, W.C. and C.R. Drew, Curcumin - A natural herb with anti-HIV activity. J. Natl. Med. Assoc., 88 (1996) 333.
  • [9]. Wang, M.E., Y.C. Chen, I.S. Chen, S.C. Hsieh, S.S. Chen, and C.H. Chiu, Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 23 (2012) 1352-1366.
  • [10]. Merrell, J.G., S.W. McLaughlin, L. Tie, C.T. Laurencin, A.F. Chen, and L.S. Nair, Curcumin-loaded poly(epsilon-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol., 36 (2009) 1149-1156.
  • [11]. Kumbar, S.G., R. James, S.P. Nukavarapu, and C.T. Laurencin, Electrospun nanofiber scaffolds: engineering soft tissues. Biomed. Mater., 3 (2008) 034002.
  • [12]. Rieger, K.A., N.P. Birch, and J.D. Schiffman, Designing electrospun nanofiber mats to promote wound healing - a review. J. Mat. Chem. B, 1 (2013) 4531-4541.
  • [13]. Horzum, N., E. Boyaci, A.E. Eroglu, T. Shahwan, and M.M. Demir, Sorption Efficiency of Chitosan Nanofibers toward Metal Ions at Low Concentrations. Biomacromolecules, 11 (2010) 3301-3308.
  • [14]. Suwantong, O., P. Opanasopit, U. Ruktanonchal, and P. Supaphol, Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 48 (2007) 7546-7557.
  • [15]. Unnithan, A.R., P.B.T. Pichiah, G. Gnanasekaran, K. Seenivasan, N.A.M. Barakat, Y.S. Cha, C.H. Jung, A. Shanmugam, and H.Y. Kim, Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloid Surf. A-Physicochem. Eng. Asp., 415 (2012) 454-460.
  • [16]. Dhurai, B., S. Nachimuthu, Maheswaran, G. Kumar, and R. Babu, Electrospinning of Chitosan Nanofibres Loaded with Curcumin for Wound Healing. J. Polym. Mater., 30 (2013) 471-483.
  • [17]. Dhurai, B., N. Saraswathy, R. Maheswaran, P. Sethupathi, P. Vanitha, S. Vigneshwaran, and V. Rameshbabu, Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Front. Mater. Sci., 7 (2013) 350-361.
  • [18]. Perumal, G., S. Pappuru, D. Chakraborty, A.M. Nandkumar, D.K. Chand, and M. Doble, Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng. C-Mater. Biol. Appl., 76 (2017) 1196-1204.
  • [19]. Mutlu, G., S. Calamak, K. Ulubayram, and E. Guven, Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J. Drug Deliv. Sci. Technol., 43 (2018) 185-193.
  • [20]. Shababdoust, A., M. Ehsani, P. Shokrollahi, and M. Zandi, Fabrication of curcumin-loaded electrospun nanofiberous polyurethanes with anti-bacterial activity. Prog. Biomater., 7 (2018) 23-33.
  • [21]. Sedghi, R., N. Sayyari, A. Shaabani, H. Niknejad, and T. Tayebi, Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer, 142 (2018) 244-255.
  • [22]. Li, J.Z., Y. Hu, T. He, M.W. Huang, X.C. Zhang, J.Y. Yuan, Y. Wei, X.M. Dong, W. Liu, F. Ko, and W.Y. Zhou, Electrospun Sandwich-Structure Composite Membranes for Wound Dressing Scaffolds with High Antioxidant and Antibacterial Activity. Macromol. Mater. Eng., 303 (2018) 17002270.
  • [23]. Sedghi, R. and A. Shaabani, Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer, 101 (2016) 151-157.
  • [24]. Reneker, D.H. and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer, 49 (2008) 2387-2425.
  • [25]. Maheshwari, R.K., A.K. Singh, J. Gaddipati, and R.C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci., 78 (2006) 2081-2087.
  • [26]. He, T., J.N. Wang, P.L. Huang, B.Z. Zeng, H.H. Li, Q.Y. Cao, S.Y. Zhang, Z.O. Luo, D.Y.B. Deng, H.W. Zhang, and W.Y. Zhou, Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloid Surf. B-Biointerfaces, 130 (2015) 278-286.
  • [27]. Haider, S., Y. Al-Zeghayer, F.A.A. Ali, A. Haider, A. Mahmood, W.A. Al-Masry, M. Imran, and M.O. Aijaz, Highly aligned narrow diameter chitosan electrospun nanofibers. J. Polym. Res., 20 (2013) 105.
  • [28]. Tsekova, P.B., M.G. Spasova, N.E. Manolova, N.D. Markova, and I.B. Rashkov, Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater. Sci. Eng. C-Mater. Biol. Appl., 73 (2017) 206-214.
  • [29]. Zhang, X., F. Shi, J. Niu, Y.G. Jiang, and Z.Q. Wang, Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem., 18 (2008) 621-633.
  • [30]. Hoang, M.S., D. N.H., and H. D.P., Fabrication of Curcumin Loaded Nano Polycaprolactone/Chitosan Nonwoven Fabric via Electrospinning Technique. J. Sci. Technol., 55 (2017) 99–108.
  • [31]. Rezaei, A. and A. Nasirpour, Encapsulation of curcumin using electrospun almond gum nanofibers: fabrication and characterization. Int. J. Food Prop., 21 (2018) 1608-1618.
  • [32]. Fallah, M., S.H. Bahrami, and M. Ranjbar-Mohammadi, Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. J. Ind. Text., 46 (2016) 562-577.
  • [33]. Moradkhannejhad, L., M. Abdouss, N. Nikfarjam, S. Mazinani, and P. Sayar, Electrospun curcumin loaded poly (lactic acid) nanofiber mat on the flexible crosslinked PVA/PEG membrane film: Characterization and in vitro release kinetic study. 18 (2017) 2349-2360.
  • [34]. Matabola, K.P. and R.M. Moutloali, The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. J. Mater. Sci., 48 (2013) 5475-5482.
  • [35]. Haider, A., S. Haider, and I.K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem., 11 (2018) 1165-1188.
  • [36]. Maleknia, L., M. Dilamian, M.K. Pilehrood, H. Sadeghi-Aliabadi, and A.H. Hekmati, Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds. Res. Pharm. Sci., 13 (2018) 273-282.
  • [37]. Sun, X.Z., G.R. Williams, X.X. Hou, and L.M. Zhu, Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr. Polym., 94 (2013) 147-153.
  • [38]. Zhou, Y.S., D.Z. Yang, X.M. Chen, Q. Xu, F.M. Lu, and J. Nie, Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules, 9 (2008) 349-354.
  • [39]. Dias, R.C.M., A.M. Goes, R. Serakides, E. Ayres, and R.L. Orefice, Porous Biodegradable Polyurethane Nanocomposites: Preparation, Characterization, and Biocompatibility Tests. Mater. Res.-Ibero-am. J. Mater., 13 (2010) 211-218.
Primary Language en
Subjects Basic Sciences
Journal Section Natural Sciences
Authors

Orcid: 0000-0002-2782-0581
Author: Nesrin HORZUM POLAT (Primary Author)
Institution: IZMIR KATIP CELEBI UNIVERSITY
Country: Turkey


Orcid: 0000-0002-6724-9463
Author: Nehir ARIK KINALI
Institution: IZMIR KATIP CELEBI UNIVERSITY
Country: Turkey


Dates

Publication Date: March 22, 2019

Bibtex @research article { csj505746, journal = {Cumhuriyet Science Journal}, issn = {2587-2680}, eissn = {2587-246X}, address = {Cumhuriyet University}, year = {2019}, volume = {40}, pages = {125 - 135}, doi = {10.17776/csj.505746}, title = {Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds}, key = {cite}, author = {HORZUM POLAT, Nesrin and ARIK KINALI, Nehir} }
APA HORZUM POLAT, N , ARIK KINALI, N . (2019). Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds. Cumhuriyet Science Journal, 40 (1), 125-135. DOI: 10.17776/csj.505746
MLA HORZUM POLAT, N , ARIK KINALI, N . "Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds". Cumhuriyet Science Journal 40 (2019): 125-135 <http://dergipark.org.tr/csj/issue/43798/505746>
Chicago HORZUM POLAT, N , ARIK KINALI, N . "Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds". Cumhuriyet Science Journal 40 (2019): 125-135
RIS TY - JOUR T1 - Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds AU - Nesrin HORZUM POLAT , Nehir ARIK KINALI Y1 - 2019 PY - 2019 N1 - doi: 10.17776/csj.505746 DO - 10.17776/csj.505746 T2 - Cumhuriyet Science Journal JF - Journal JO - JOR SP - 125 EP - 135 VL - 40 IS - 1 SN - 2587-2680-2587-246X M3 - doi: 10.17776/csj.505746 UR - https://doi.org/10.17776/csj.505746 Y2 - 2019 ER -
EndNote %0 Cumhuriyet Science Journal Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds %A Nesrin HORZUM POLAT , Nehir ARIK KINALI %T Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds %D 2019 %J Cumhuriyet Science Journal %P 2587-2680-2587-246X %V 40 %N 1 %R doi: 10.17776/csj.505746 %U 10.17776/csj.505746
ISNAD HORZUM POLAT, Nesrin , ARIK KINALI, Nehir . "Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds". Cumhuriyet Science Journal 40 / 1 (March 2019): 125-135. https://doi.org/10.17776/csj.505746
AMA HORZUM POLAT N , ARIK KINALI N . Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds. CSJ. 2019; 40(1): 125-135.
Vancouver HORZUM POLAT N , ARIK KINALI N . Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds. Cumhuriyet Science Journal. 2019; 40(1): 135-125.