SOME FORMULAS FOR THE ACTION OF STEENROD POWERS ON COHOMOLOGY RING OF $K\left(\mathbb{Z}_{p}^{n}, 2\right)$

BEKİR TANAY and TARKAN ÖNER

Abstract

In this study we give some formulas for the action of Steenrod powers on certain monomials and some polynomials having these monomials as a factor in the polynomial algebra $\mathbf{P}(n)=\mathbb{Z}_{p}\left[x_{1}, \ldots, x_{n}\right], \operatorname{deg}\left(x_{i}\right)=2, i=1, \ldots, n$ and p is an odd prime. We also give some new family of hit polynomials.

1. Introduction and Preliminaries

Steenrod square $S q^{k}: H^{n}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow H^{n+k}\left(X ; \mathbb{Z}_{2}\right)$ and Steenrod power $P^{k}: H^{n}\left(X ; \mathbb{Z}_{p}\right) \longrightarrow$ $H^{n+2 k(p-1)}\left(X ; \mathbb{Z}_{p}\right)$ operations are cohomology operations. They were introduced by Norman Steenrod $[\mathbf{1}, \mathbf{2}]$. These operations are used to solve some problems in algebraic topology $[3,4]$. Steenrod algebra is generated by these operations and the structure of this algebra was studied by various mathematicians [5]-[10]. This algebra acts on the cohomology ring $H^{*}\left(X ; \mathbb{Z}_{p}\right)$. These actions are determined by the following propositions.

Proposition 1.1. [11] For $\alpha, \alpha_{1}, \alpha_{2} \in H^{*}\left(X ; \mathbb{Z}_{2}\right)$,
i) $S q^{0}$ is the identity morphism,
ii) $S q^{k}(\alpha)=\alpha^{2}$ if $k=\operatorname{deg}(\alpha)$,
iii) $S q^{k}(\alpha)=0$ if $k>\operatorname{deg}(\alpha)$,
iv) The Cartan formula

$$
S q^{k}\left(\alpha_{1} \cup \alpha_{2}\right)=\sum_{i+j=k} S q^{i}\left(\alpha_{1}\right) S q^{j}\left(\alpha_{2}\right)
$$

holds.
Proposition 1.2. [11] For $\alpha, \alpha_{1}, \alpha_{2} \in H^{*}\left(X ; \mathbb{Z}_{p}\right)$,
i) P^{0} is the identity morphism,
ii) $P^{k}(\alpha)=\alpha^{p}$ if $2 k=\operatorname{deg}(\alpha)$,
iii) $P^{k}(\alpha)=0$ if $2 k>\operatorname{deg}(\alpha)$,
iv) The Cartan formula

$$
P^{k}\left(\alpha_{1} \cup \alpha_{2}\right)=\sum_{i+j=k} P^{i}\left(\alpha_{1}\right) P^{j}\left(\alpha_{2}\right)
$$

Received June 26, 2013.
2010 Mathematics Subject Classification. Primary 55S10.
Keywords and phrases. Steenrod power operations, hit problems.
holds.
For the topological space $X=\prod_{i=1}^{n} \mathbb{R} P^{\infty}$, the cohomology ring $H^{*}\left(X ; \mathbb{Z}_{2}\right)$ is the polynomial algebra $\wp(n)=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]=\oplus_{d \geq 0 \wp^{d}}(n), \operatorname{deg}\left(x_{i}\right)=1, i=1, \ldots, n[\mathbf{1 2}]$ and the action of Steenrod squares on $\wp(n)$ as follows by the Proposition 1.1.

Proposition 1.3. For the homogeneous element f in $\wp(n)$ we have
i) $S q^{0}$ is the identity morphism,
ii) $S q^{k}(f)=f^{2}$ if $k=\operatorname{deg}(f)$,
iii) $S q^{k}(f)=0$ if $k>\operatorname{deg}(f)$,
iv) The Cartan formula

$$
S q^{k}(f g)=\sum_{i+j=k} S q^{i}(f) S q^{j}(g)
$$

where f, g are homogeneous elements in $\wp(n)$ holds.
Similarly, the cohomology ring $H^{*}\left(X ; \mathbb{Z}_{p}\right)$ is the polynomial algebra $\mathbf{P}(n)=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ $=\oplus_{d \geq 0} \mathbf{P}^{d}(n)$, $\operatorname{deg}\left(x_{i}\right)=2, i=1, \ldots, n$ where $X=K\left(\mathbb{Z}_{p}^{n} ; 2\right)[\mathbf{1 3}]$. The action of Steenrod powers on $\mathbf{P}(n)$ is given as follows by the Proposition 1.2.

Proposition 1.4. For the homogeneous element f in $\mathbf{P}(n)$ we have
i) P^{0} is the identity morphism,
ii) $P^{k}(f)=f^{p}$ if $2 k=\operatorname{deg}(f)$,
iii) $P^{k}(f)=0$ if $2 k>\operatorname{deg}(f)$,
iv) The Cartan formula

$$
P^{k}(f g)=\sum_{i+j=k} P^{i}(f) P^{j}(g)
$$

where f, g are homogeneous elements in $\mathbf{P}(n)$ holds.
In [14], Janfada gave useful formulas for the action of Steenrod squares on the monomials of the polynomial algebra $\wp(n)$ and by using these formulas, he also gave an application on hit polynomials.
Aim of this study is to give similar formulas given in [14] for Steenrod powers P^{k}.
To obtain the action of P^{k} on powers of a generator of $\mathbf{P}(n)$, we need the followings.
Definition 1.5. [15] Summation of all Steenrod powers

$$
P=\sum_{k \geq 0} P^{k}
$$

is called total Steenrod power.
Lemma 1.6. [15] If $f \in \mathbf{P}^{2}(n)$, then we have $P(f)=f+f^{p}$.
Total Steenrod power defines an action on $\mathbf{P}(n)$ by the property (iii) of Proposition 1.4, since only a finite number of P^{k} can be nonzero on a given polynomial. By using Cartan formula, it can be shown that $P(f g)=P(f) P(g)$. So $P: \mathbf{P}(n) \longrightarrow \mathbf{P}(n)$ becomes a ring homomorphism. By using this property we have the following lemma.

Lemma 1.7. [15] If $f \in \mathbf{P}^{2}(n)$, then we have $P^{k}\left(f^{r}\right)=\binom{r}{k} f^{(p-1) k+r}$.
In particular, if we take $f=x_{i} \in \mathbf{P}^{2}(n)$ in Lemma 1.7, we have the following corollary.
Corollary 1.8. If $x \in \mathbf{P}^{2}(n)$, then we have

$$
P^{k}\left(x_{i}^{r}\right)=\binom{r}{k} x_{i}^{(p-1) k+r}
$$

Hence we have a formula for the action of P^{k} on powers of generators. But since Steenrod power operations are not ring homomorphisms, we cannot extend this corollary to any monomial.
The aim of this study is to give a formula for the action of P^{k} on the monomials $x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}$ where $m_{i} \geq 0$ and $t \geq 1$ for some special values of k. Moreover if a polynomial

$$
\begin{equation*}
g=\left(x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}\right) f \tag{1}
\end{equation*}
$$

is given, by using Cartan formula we have

$$
P^{k}(g)=\sum_{i+j=k} P^{i}\left(x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}\right) P^{j}(f)
$$

After having formulas on $P^{i}\left(x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}\right)$ for some special values of k, we only need to know the value of $P^{j}(f)$ to calculate monomial $P^{k}(g)$.
This result will be used to obtain new hit polynomials by using certain hit polynomials. If we take g as a monomial $x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}$, then for $m_{i} \geq 0$ and certain t_{i} we have

$$
g=x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}=\left(x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}\right)\left(x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right)
$$

where $x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ corresponds f in the equation (1). We will use this result in applications. Throughout the paper, we will use the following notations for simplicity:

$$
\begin{aligned}
x^{a} & =x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}, \\
x^{m\left(p^{t}\right)} & =x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}} .
\end{aligned}
$$

2. Results

We start with the following results which can be found in [16] for the action of Steenrod squares on $\mathbb{Z}_{2}\left[x_{1}, \ldots, x_{n}\right]$.
Theorem 2.1. For $f \in \mathbf{P}(n)$ and $k, s \geq 0$,

$$
P^{k}\left(f^{p}\right)=\left\{\begin{array}{cl}
{\left[P^{s}(f)\right]^{p}} & , k=s p, \\
0 & , \text { otherwise } .
\end{array}\right.
$$

Proof. Since P is a ring homomorphism we have $P\left(f^{p}\right)=[P(f)]^{p}$. From the left hand side, we have

$$
\begin{aligned}
P\left(f^{p}\right) & =\sum_{k \geq 0} P^{k}\left(f^{p}\right) \\
& =P^{0}\left(f^{p}\right)+P^{1}\left(f^{p}\right)+P^{2}\left(f^{p}\right)+\cdots
\end{aligned}
$$

and from the right hand side, we have

$$
\begin{aligned}
{[P(f)]^{p} } & =\left[\sum_{k \geq 0} P^{k}(f)\right]^{p}=\sum_{k \geq 0}\left[P^{k}(f)\right]^{p} \\
& =\left[P^{0}(f)\right]^{p}+\left[P^{1}(f)\right]^{p}+\left[P^{2}(f)\right]^{p}+\cdots
\end{aligned}
$$

Since the terms having the same exponents must be equal, the claim is true.
Theorem 2.2. For $f \in \mathbf{P}(n)$ and $k, t \geq 0$,

$$
P^{k}\left(f^{p^{t}}\right)=\left\{\begin{array}{cl}
{\left[P^{s}(f)\right]^{p^{t}}} & , k=s p^{t} \\
0 & , \text { otherwise }
\end{array}\right.
$$

Proof. We prove by induction on t. For $t=0$, the result is obvious. For $t=1$, it is true by Theorem 2.1. Assume that the result is true for smaller values than t. Since we can write

$$
P^{k}\left(f^{p^{t}}\right)=P^{k}\left(f^{p^{t-1} p}\right)=P^{k}\left(\left[f^{p^{t-1}}\right]^{p}\right)
$$

for t, by Theorem 2.1 we have

$$
P^{k}\left(f^{p^{t}}\right)=\left\{\begin{array}{cl}
{\left[P^{s_{1}}\left(f^{p^{t-1}}\right)\right]^{p}} & , k=s_{1} p \\
0 & , \text { otherwise }
\end{array}\right.
$$

Then we have

$$
P^{s_{1}}\left(f^{p^{t-1}}\right)=\left\{\begin{array}{cl}
{\left[P^{s}(f)\right]^{p^{t-1}}} & , s_{1}=s p^{t-1} \\
0 & , \text { otherwise }
\end{array}\right.
$$

by the assumption of induction. These prove the theorem.
Theorem 2.3. For $f, g \in \mathbf{P}(n)$ and $k, s \geq 0$,

$$
P^{k}\left(g f^{p^{t}}\right)=\sum_{i+s p^{t}=k} P^{i}(g)\left[P^{s}(f)\right]^{p^{t}}
$$

Proof. This is a consequence of the Cartan formula and Theorem 2.2.

Theorem 2.4. Let $n \in \mathbb{Z}^{+}$. The following relation

$$
P^{k}\left(x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}\right)=\sum_{i_{1}+\cdots+i_{n}=k} P^{i_{1}}\left(x_{1}^{e_{1}}\right) \ldots P^{i_{n}}\left(x_{n}^{e_{n}}\right)
$$

holds.
Proof. We prove by induction on n. For $n=2$, it is true by Cartan formula. Assume that the following is true for n.

$$
P^{k}\left(x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}\right)=\sum_{i_{1}+\cdots+i_{n}=k} P^{i_{1}}\left(x_{1}^{e_{1}}\right) \ldots P^{i_{n}}\left(x_{n}^{e_{n}}\right) .
$$

For $n+1$, we can write

$$
\begin{aligned}
P^{k}\left(x_{1}^{e_{1}} \ldots x_{n}^{e_{n}} x_{n+1}^{e_{n+1}}\right) & =\sum_{i+i_{n+1}=k} P^{i}\left(x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}\right) P^{i_{n+1}}\left(x_{n+1}^{e_{n+1}}\right) \\
& =\sum_{i+i_{n+1}=k}\left[\sum_{i_{1}+\cdots+i_{n}=i} P^{i_{1}}\left(x_{1}^{e_{1}}\right) \ldots P^{i_{n}}\left(x_{n}^{e_{n}}\right)\right] P^{i_{n+1}}\left(x_{n+1}^{e_{n+1}}\right) \\
& =\sum_{i_{1}+\cdots+i_{n+1}=k} P^{i_{1}}\left(x_{1}^{e_{1}}\right) \ldots P^{i_{n+1}}\left(x_{n+1}^{e_{n+1}}\right)
\end{aligned}
$$

Hence proof is completed.
Lemma 2.5. Let $f \in \mathbf{P}^{2}(n), t \geq 1$ and $0 \leq r \leq p-1$. Then

$$
P^{k}\left(f^{r p^{t}}\right)=\left\{\begin{array}{cl}
\binom{r}{s} f^{(p-1) k+r p^{t}} & , k=s p^{t}, 1 \leq s \leq r \\
0 & , \text { otherwise }
\end{array}\right.
$$

Proof. By Theorem 2.2 and Lemma 1.7, we have

$$
\begin{aligned}
P^{k}\left(f^{r p^{t}}\right) & =P^{k}\left(\left[f^{r}\right]^{p^{t}}\right)=\left\{\begin{array}{cl}
{\left[P^{s}\left(f^{r}\right)\right]^{p^{t}}} & , k=s p^{t}, 1 \leq s \leq r \\
0 & , \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cl}
{\left[\binom{r}{s} f^{(p-1) s+r}\right]^{p t}} & , k=s p^{t}, 1 \leq s \leq r \\
0 & , \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cl}
\binom{r}{s} f^{(p-1) s p^{t}+r p^{t}} & , k=s p^{t}, 1 \leq s \leq r \\
0 & , \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{ccc}
\binom{r}{s} f^{(p-1) k+r p^{t}} & , k=s p^{t}, 1 \leq s \leq r \\
0 & , \text { otherwise }
\end{array}\right.
\end{aligned}
$$

By Lemma 2.5, we have the following corollary.
Corollary 2.6. Let $x_{i} \in \mathbf{P}^{2}(n), t \geq 1$ and $0 \leq r \leq p-1$. Then

$$
P^{k}\left(x_{i}^{r p^{t}}\right)=\left\{\begin{array}{cl}
\binom{r}{s} x_{i}^{(p-1) k+r p^{t}} & , k=s p^{t}, 1 \leq s \leq r \\
0 & , \text { otherwise }
\end{array}\right.
$$

Next corollary is an extension of Corollary 2.6 to n variables.
Corollary 2.7. Let $t \geq 1,0 \leq r_{i} \leq p-1$ and $x_{1}^{r_{1} p^{t}} \ldots x_{n}^{r_{n} p^{t}} \in P(n)$. Then

$$
P^{k}\left(x^{r\left(p^{t}\right)}\right)=\left\{\begin{array}{cl}
\sum_{s_{1}+\ldots+s_{n}=s}\binom{\left.r_{1}\right)}{s_{1}} x_{1}^{(p-1) s_{1} p^{t}+r_{1} p^{t} \ldots\binom{r_{n}}{s_{n}} x_{n}^{(p-1) s_{n} p^{t}+r_{n} p^{t}}} \begin{array}{ll}
& , k=s p^{t}, 1 \leq s_{j} \leq r_{j}, \\
0 & \text { otherwise } .
\end{array}
\end{array}\right.
$$

Proof. By Theorem 2.4 and Corollary 2.6, we have the followings:

$$
\begin{aligned}
& P^{k}\left(x^{r\left(p^{t}\right)}\right)=\sum_{i_{1}+\cdots+i_{n}=k} P^{i_{1}}\left(x_{1}^{r_{1} p^{t}}\right) \ldots P^{i_{n}}\left(x_{n}^{r_{n} p^{t}}\right) \\
& =\left\{\begin{array}{cl}
\sum_{i_{1}+\cdots+i_{n}=k}\binom{r_{1}}{s_{1}} x_{1}^{(p-1) s_{1} p^{t}+r_{1} p^{t}} \ldots\binom{r_{n}}{s_{n}} x_{n}^{(p-1) s_{n} p^{t}+r_{n} p^{t}} & , i_{j}=s_{j} p^{t}, 1 \leq s_{j} \leq r_{j}, \\
0 & , \text { otherwise. }
\end{array}\right. \\
& =\left\{\begin{array}{cl}
\sum_{s_{1}+\cdots+s_{n}=s}\binom{r_{1}}{s_{1}} x_{1}^{(p-1) s_{1} p^{t}+r_{1} p^{t} \ldots\binom{r_{n}}{s_{n}} x_{n}^{(p-1)} s_{n} p^{t}+r_{n} p^{t}} & , k=s p^{t}, 1 \leq s_{j} \leq r_{j} \\
0 & , \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Remark. If we take $k=p^{t}(s=1)$ in Corollary 2.7, we have

$$
\begin{align*}
P^{p^{t}}\left(x^{r\left(p^{t}\right)}\right) & =\sum_{s_{1}+\cdots+s_{n}=1}\binom{r_{1}}{s_{1}} x_{1}^{(p-1) s_{1} p^{t}+r_{1} p^{t}} \ldots\binom{r_{n}}{s_{n}} x_{n}^{(p-1) s_{n} p^{t}+r_{n} p^{t}} \\
& =\binom{r_{1}}{1} x_{1}^{(p-1) 1 p^{t}+r_{1} p^{t}\binom{r_{1}}{0} x_{2}^{(p-1) 0 p^{t}+r_{2} p^{t}} \ldots\binom{r_{n}}{0} x_{n}^{(p-1) 0 p^{t}+r_{n} p^{t}}+} \begin{array}{l}
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} r_{1} x_{1}^{(p-1) p^{t}+r_{1} p^{t}} . x_{2}^{r_{2} p_{1}^{t}} \ldots x_{1}^{r_{1} p^{t}} \ldots x_{n-1}^{r_{n-1} p^{t}} r_{n} x_{n}^{(p-1) 0 p^{t}+r_{1} p^{t}} \ldots\binom{r_{n-1}}{0} x_{n-1}^{(p-1) 0 p^{t}+r_{n-1} p^{t}+r_{n} p^{t}}\binom{r_{n}}{1} x_{n}^{(p-1) 1 p^{t}+r_{n} p^{t}} \\
& x_{1}^{r_{1} p^{t}} \ldots x_{n}^{r_{n} p^{t}}\left(r_{1} x_{1}^{(p-1) p^{t}}+\cdots+r_{n} x_{n}^{(p-1) p^{t}}\right)
\end{align*}
$$

Theorem 2.8. Let $t \geq 1, m_{i}=q_{i} p, q_{i} \geq 1,1<i<n$. Then

$$
P^{k}\left(x^{m\left(p^{t}\right)}\right)=\left\{\begin{array}{cl}
{\left[P^{s}\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)\right]^{p^{t+1}}} & , k=s p^{t+1}, 1 \leq s \leq m_{1}+\cdots+m_{n} \\
0 & , \text { otherwise }
\end{array}\right.
$$

Proof. Since $m_{i}=q_{i} p$ for all i,

$$
\begin{gathered}
x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}=x_{1}^{q_{1} p p^{t}} \ldots x_{n}^{q_{n} p p^{t}}=x_{1}^{q_{1} p^{t+1}} \ldots x_{n}^{q_{n} p^{t+1}}=\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)^{p^{t+1}} \\
P^{k}\left(x^{m\left(p^{t}\right)}\right)=P^{k}\left(\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)^{p^{t+1}}\right)
\end{gathered}
$$

then by Theorem 2.2 we have

$$
P^{k}\left(x^{m\left(p^{t}\right)}\right)=\left\{\begin{array}{cl}
{\left[P^{s}\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)\right]^{p^{t+1}}} & , k=s p^{t+1}, 1 \leq s \leq m_{1}+\cdots+m_{n} \\
0 & , \text { otherwise }
\end{array}\right.
$$

The condition $1 \leq s \leq m_{1}+\cdots+m_{n}$ comes from Proposition 1.4 (iii).

Theorem 2.9. Let $t \geq 1, q_{i} \geq 1, m_{i}=q_{i} p+r_{i}, 1 \leq r_{i} \leq p-1$ for $i=1, \ldots, h$, and $m_{i}=q_{i} p$ for $i=h+1, \ldots, n$. Then

$$
P^{k}\left(x^{m\left(p^{t}\right)}\right)=\left\{\begin{array}{cl}
\sum_{s_{1} p^{t+1}+s_{2} p^{t}=k}\left[P^{s_{1}}\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)\right]^{p^{t+1}}\left[P ^ { s _ { 2 } } \left(x_{1}^{\left.\left.r_{1} \ldots x_{h}^{r_{h}}\right)\right]^{p^{t}}} \begin{array}{ll}
& , 1 \leq s_{1} \leq q_{1}+\cdots+q_{n} \\
0 & , 0 \leq s_{2} \leq r_{1}+\cdots+r_{h} \\
& , \text { otherwise }
\end{array}\right.\right.
\end{array}\right.
$$

Proof. Since $m_{i}=q_{i} p+r_{i}, 1 \leq r_{i} \leq p-1$ for $i=1, \ldots, h$ and $m_{i}=q_{i} p$ for $i=h+1, \ldots, n$, we have

$$
\begin{aligned}
x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}} & =x_{1}^{\left(q_{1} p+r_{1}\right) p^{t}} \ldots x_{h}^{\left(q_{h} p+r_{h}\right) p^{t}} x_{h+1}^{q_{h+1} p p^{t}} x_{n}^{q_{n} p p^{t}} \\
& =x_{1}^{q_{1} p^{t+1}} \ldots x_{n}^{q_{n} p^{t+1}} x_{1}^{r_{1} p^{t}} \ldots x_{h}^{r_{h} p^{t}}=\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)^{p^{t+1}}\left(x_{1}^{r_{1}} \ldots x_{h}^{r_{h}}\right)^{p^{t}}
\end{aligned}
$$

then by Cartan formula we have

$$
P^{k}\left(x^{m\left(p^{t}\right)}\right)=\sum_{i+j=k} P^{i}\left(\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)^{p^{t+1}}\right) P^{j}\left(\left(x_{1}^{r_{1}} \ldots x_{h}^{r_{h}}\right)^{p^{t}}\right)
$$

By Theorem 2.2

$$
P^{k}\left(x^{m\left(p^{t}\right)}\right)=\left\{\begin{array}{cl}
\sum_{s_{1} p^{t+1}+s_{2} p^{t}=k}\left[P^{s_{1}}\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)\right]^{p^{t+1}}\left[P^{s_{2}}\left(x_{1}^{r_{1}} \ldots x_{h}^{r_{h}}\right)\right]^{p^{t}} & \begin{array}{l}
, 1 \leq s_{1} \leq q_{1}+\cdots+q_{n} \\
0
\end{array} \\
0 \leq s_{2} \leq r_{1}+\cdots+r_{h} \\
, \text { otherwise } .
\end{array}\right.
$$

The conditions $1 \leq s_{1} \leq q_{1}+\cdots+q_{n}$ and $0 \leq s_{2} \leq r_{1}+\cdots+r_{h}$ yield from Proposition 1.4 (iii).

From Theorem 2.8, we have the following corollary for $k \leq p^{t+1}$.
Corollary 2.10. Let $t \geq 1, m_{i}=q_{i} p, q_{i} \geq 1$. Then
for $k=0$

$$
P^{0}\left(x^{m\left(p^{t}\right)}\right)=x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}
$$

for $0<k<p^{t+1}$

$$
P^{k}\left(x^{m\left(p^{t}\right)}\right)=0
$$

for $k=p^{t+1}$

$$
P^{p^{t+1}}\left(x^{m\left(p^{t}\right)}\right)=\left[P^{1}\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)\right]^{p^{t+1}}
$$

From Theorem 2.9 and equation (2), we have the following corollary for $k \leq p^{t}$.
Corollary 2.11. Let $t \geq 1, q_{i} \geq 1, m_{i}=q_{i} p+r_{i}, 1 \leq r_{i} \leq p-1$ for $i=1, \ldots, h$, and $m_{i}=q_{i} p$ for $i=h+1, \ldots, n$. Then
for $k=0$

$$
P^{0}\left(x^{m\left(p^{t}\right)}\right)=x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}
$$

for $0<k<p^{t}$

$$
P^{k}\left(x^{m\left(p^{t}\right)}\right)=0
$$

for $k=p^{t}$

$$
P^{p^{t}}\left(x^{m\left(p^{t}\right)}\right)=x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}\left(r_{1} x_{1}^{(p-1) p^{t}}+\cdots+r_{h} x_{h}^{(p-1) p^{t}}\right) .
$$

Following theorem is one of the main results mentioned in the introduction.
Theorem 2.12. Let $f \in \mathbf{P}(n)$. Then for $x^{m\left(p^{t}\right)} f \in \mathbf{P}(n)$, we have the following formulas: i)

$$
P^{0}\left(x^{m\left(p^{t}\right)} f\right)=x^{m\left(p^{t}\right)} f
$$

ii) $t \geq 1, m_{i}=q_{i} p, q_{i} \geq 1$

$$
P^{k}\left(x^{m\left(p^{t}\right)} f\right)=\left\{\begin{array}{cl}
x^{m\left(p^{t}\right)} P^{k}(f) & , 0<k<p^{t+1} \\
x^{m\left(p^{t}\right)} P^{p^{t+1}}(f)+\left[P^{1}\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)\right]^{p^{t+1}} f & , k=p^{t+1}
\end{array}\right.
$$

iii) $t \geq 1, q_{i} \geq 1$ for $i=1, \ldots, h, m_{i}=q_{i} p+r_{i}, 1 \leq r_{i} \leq p-1$ and for $i=h+1, \ldots, n$, $m_{i}=q_{i} p$,

$$
P^{k}\left(x^{m\left(p^{t}\right)} f\right)=\left\{\begin{array}{cl}
x^{m\left(p^{t}\right)} P^{k}(f) & , 0<k<p^{t} \\
x^{m\left(p^{t}\right)} P_{p^{t}}(f)+x^{m\left(p^{t}\right)}\left(r_{1} x_{1}^{(p-1) p^{t}}+\ldots+r_{h} x_{h}^{(p-1) p^{t}}\right) f & , k=p^{t}
\end{array}\right.
$$

Proof. The equality i) is obvious. Let us analyze $i i$) in two cases.
Case 1: Let $0<k<p^{t+1}$. By Cartan formula, we have the following equation

$$
\begin{aligned}
P^{k}\left(x^{m\left(p^{t}\right)} f\right) & =\sum_{i+j=k} P^{i}\left(x^{m\left(p^{t}\right)}\right) P^{j}(f) \\
& =P^{0}\left(x^{m\left(p^{t}\right)}\right) P^{k}(f)+\sum_{\substack{i+j=k \\
0<i<k}} P^{i}\left(x^{m\left(p^{t}\right)}\right) P^{j}(f)
\end{aligned}
$$

and then by Corollary 2.10, we have $P^{i}\left(x^{m\left(p^{t}\right)}\right)=0$ for $0<i<p^{t+1}$. Hence we can write

$$
P^{k}\left(x^{m\left(p^{t}\right)} f\right)=x^{m\left(p^{t}\right)} P^{k}(f)
$$

Case 2: Let $k=p^{t+1}$. By Cartan formula, we have the following equation

$$
\begin{aligned}
P^{p^{t+1}}\left(x^{m\left(p^{t}\right)} f\right)= & \sum_{i+j=p^{t+1}} P^{i}\left(x^{m\left(p^{t}\right)}\right) P^{j}(f) \\
= & P^{0}\left(x^{m\left(p^{t}\right)}\right) P^{p^{t+1}}(f)+\sum_{\substack{i+j=p^{t+1} \\
0<i<p^{t+1}}} P^{i}\left(x^{m\left(p^{t}\right)}\right) P^{j}(f)+ \\
& +P^{p^{t+1}}\left(x^{m\left(p^{t}\right)}\right) P^{0}(f)
\end{aligned}
$$

and then by Corollary 2.10, we have $P^{i}\left(x^{m}\left(p^{t}\right)\right)=0$ for $0<i<p^{t+1}$. For $i=p^{t+1}$, we have $P^{p^{t+1}}\left(x^{m\left(p^{t}\right)}\right)=\left[P^{1}\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)\right]^{p^{t+1}}$. Hence we get

$$
P^{p^{t+1}}\left(x^{m\left(p^{t}\right)} f\right)=x^{m\left(p^{t}\right)} P^{p^{t+1}}(f)+\left[P^{1}\left(x_{1}^{q_{1}} \ldots x_{n}^{q_{n}}\right)\right]^{p^{t+1}} f
$$

We also analyze iii) in two cases.

Case 1: Let $0<k<p^{t}$. By Cartan formula, we have the following equation

$$
\begin{aligned}
P^{k}\left(x^{m\left(p^{t}\right)} f\right) & =\sum_{i+j=k} P^{i}\left(x^{m\left(p^{t}\right)}\right) P^{j}(f) \\
& =P^{0}\left(x^{m\left(p^{t}\right)}\right) P^{k}(f)+\sum_{\substack{i+j=k \\
0<i<k}} P^{i}\left(x^{m\left(p^{t}\right)}\right) P^{j}(f)
\end{aligned}
$$

and then by Corollary 2.11, we have $P^{i}\left(x^{m\left(p^{t}\right)}\right)=0$ for $0<i<p^{t}$. Hence we get

$$
P^{k}\left(x^{m\left(p^{t}\right)} f\right)=x^{m\left(p^{t}\right)} P^{k}(f)
$$

Case 2: Let $k=p^{t}$. By Cartan formula, we have the following equation

$$
\begin{aligned}
P^{t}\left(x^{m\left(p^{t}\right)} f\right)= & \sum_{i+j=p^{t}} P^{i}\left(x^{m\left(p^{t}\right)}\right) P^{j}(f) \\
= & P^{0}\left(x^{m\left(p^{t}\right)}\right) P^{p^{t}}(f)+\sum_{\substack{i+j=p^{t}+\\
0<i<p^{t}}} P^{i}\left(x^{m\left(p^{t}\right)}\right) P^{j}(f) \\
& +P^{p^{t}}\left(x^{m\left(p^{t}\right)}\right) P^{0}(f)
\end{aligned}
$$

and then by Corollary 2.11, for $0<i<p^{t}$ we have $P^{i}\left(x^{m\left(p^{t}\right)}\right)=0$. For $i=p^{t}$, we have $P^{p^{t}}\left(x^{m\left(p^{t}\right)}\right)=x_{1}^{m_{1} p^{t}} \ldots x_{n}^{m_{n} p^{t}}\left(r_{1} x_{1}{ }^{(p-1) p^{t}}+\cdots+r_{h} x_{h}{ }^{(p-1) p^{t}}\right)$. Hence we can write

$$
P^{p^{t}}\left(x^{m\left(p^{t}\right)} f\right)=x^{m\left(p^{t}\right)} P^{p^{t}}(f)+x^{m\left(p^{t}\right)}\left(r_{1} x_{1}^{(p-1) p^{t}}+\ldots+r_{h} x_{h}^{(p-1) p^{t}}\right) f
$$

In particular, if we take $f=x^{a} \in \mathbf{P}(n)$ in Theorem 2.12, we have the following corollary.
Corollary 2.13. For the monomial $x^{e}=x^{m\left(p^{t}\right)} x^{a} \in \mathbf{P}(n)$, we have
i)

$$
P^{0}\left(x^{m\left(p^{t}\right)} x^{a}\right)=x^{m\left(p^{t}\right)} x^{a}
$$

ii) $t \geq 1, m_{i}=q_{i} p, q_{i} \geq 1$,

$$
P^{k}\left(x^{m\left(p^{t}\right)} x^{a}\right)=\left\{\begin{array}{cl}
x^{m\left(p^{t}\right)} P^{k}\left(x^{a}\right) & , 0<k<p^{t+1} \\
x^{m\left(p^{t}\right)} P_{P^{t+1}}\left(x^{a}\right)+\left[P^{1}\left(x_{1}^{q_{1}} \ldots x_{n}^{q n}\right)\right]^{p^{t+1}} x^{a} & , k=p^{t+1}
\end{array}\right.
$$

iii) $t \geq 1, q_{i} \geq 1$ for $i=1, \ldots, h, m_{i}=q_{i} p+r_{i}, 1 \leq r_{i} \leq p-1$ and for $i=h+1, \ldots, n$, $m_{i}=q_{i} p$,

$$
P^{k}\left(x^{m\left(p^{t}\right)} x^{a}\right)=\left\{\begin{array}{cl}
x^{m\left(p^{t}\right)} P_{P^{k}\left(x^{a}\right)} & , 0<k<p^{t} \\
x^{m\left(p^{t}\right)} P_{p^{t}}\left(x^{a}\right)+x^{m\left(p^{t}\right)}\left(r_{1} x_{1}^{(p-1) p^{t}}+\ldots+r_{h} x_{h}^{(p-1) p^{t}}\right) x^{a} & , k=p^{t}
\end{array}\right.
$$

Example. Let $p=3$ and $x^{55} y^{31} z^{81} \in \mathbf{P}(3)$. Write this monomial as

$$
\begin{aligned}
x^{55} y^{31} z^{81} & =\left(x^{1+2.3^{3}} y^{4+1.3^{3}} z^{3.3^{3}}\right) \\
& =\left(x^{2.3^{3}} y^{1.3^{3}} z^{3.3^{3}}\right)\left(x^{1} y^{4}\right)
\end{aligned}
$$

Here $t=$ 3. Then by Corollary 2.13.iii, for $0<k<27=3^{3}$

$$
\begin{aligned}
P^{k}\left(x^{55} y^{31} z^{81}\right) & =P^{k}\left(\left(x^{2.3^{3}} y^{1.3^{3}} z^{3.3^{3}}\right)\left(x^{1} y^{4}\right)\right) \\
& =\left(x^{6.3^{2}} y^{3.3^{2}} z^{9.3^{2}}\right) P^{k}\left(x^{1} y^{4}\right)
\end{aligned}
$$

For $k=27=3^{3}$, we have

$$
\begin{aligned}
P^{27}\left(x^{55} y^{31} z^{81}\right) & =P^{27}\left(\left(x^{2.3^{3}} y^{1.3^{3}} z^{3.3^{3}}\right)\left(x^{1} y^{4}\right)\right) \\
& =\left(x^{2.3^{3}} y^{1.3^{3}} z^{3.3^{3}}\right) P^{27}\left(x^{1} y^{4}\right)+x^{2.3^{3}} y^{1.3^{3}} z^{3.3^{3}}\left(2 x^{2.27}+\right. \\
& \left.+1 y^{2.27}+3 z^{2.27}\right)\left(x^{1} y^{4}\right) \\
& =2 x^{109} y^{31} z^{81}+x^{55} y^{85} z^{81}
\end{aligned}
$$

If we write $x^{55} y^{31} z^{81}$ as $x^{55} y^{31} z^{81}=\left(x^{2.3 .3^{2}} y^{1.3 .3^{2}} z^{3.3 .3^{2}}\right)\left(x^{1} y^{4}\right)$ then $t=2$ and by Corollary 2.13.ii, for $0<k<27=3^{2+1}$

$$
\begin{aligned}
P^{k}\left(x^{55} y^{31} z^{81}\right) & =P^{k}\left(\left(x^{2.3^{3}} y^{1.3^{3}} z^{3.3^{3}}\right)\left(x^{1} y^{4}\right)\right) \\
& =\left(x^{6.3^{2}} y^{3.3^{2}} z^{9.3^{2}}\right) P^{k}\left(x^{1} y^{4}\right)
\end{aligned}
$$

For $k=27=3^{2+1}$

$$
\begin{aligned}
P^{27}\left(x^{55} y^{31} z^{81}\right) & =\left(x^{6.3^{2}} y^{3.3^{2}} z^{9.3^{2}}\right) P^{27}\left(x^{1} y^{4}\right)+\left[P^{1}\left(x^{2} y^{1} z^{3}\right)\right]^{27}\left(x^{1} y^{4}\right) \\
& =\left(2 x^{4} y^{31} z^{3}+x^{2} y^{3} z^{3}+3 x^{2} y^{1} z^{3}\right)^{27}\left(x^{1} y^{4}\right) \\
& =2 x^{109} y^{31} z^{81}+x^{55} y^{85} z^{81}
\end{aligned}
$$

3. Application to Hit Problem

Definition 3.1. [Hit Polynomial] A homogeneous element $f \in \mathbf{P}^{d}(n)$ is said to be hit if it can be written as

$$
\begin{equation*}
f=\sum_{k>0} P^{k}\left(f_{k}\right) \tag{3}
\end{equation*}
$$

where $\operatorname{deg}\left(f_{k}\right)<d$ and this equation (3) is called the hit equation.
The following propositions are consequences of Theorem 2.12.
Proposition 3.2. Let $t \geq 1$ and $f \in \mathbf{P}^{d}(n)$. Then f is hit via

$$
f=\sum_{0<k<p^{t+1}} P^{k}\left(f_{k}\right)
$$

if and only if $g=x^{m\left(p^{t}\right)} f$ is hit via

$$
g=\sum_{0<k<p^{t+1}} P^{k}\left(x^{m\left(p^{t}\right)} f_{k}\right),
$$

where $m_{i}=q_{i} p, q_{i} \geq 1$.

Proposition 3.3. Let $t \geq 1$ and $f \in \mathbf{P}^{d}(n)$. Then f is hit via

$$
f=\sum_{0<k<p^{t}} P^{k}\left(f_{k}\right)
$$

if and only if $g=x^{m\left(p^{t}\right)} f$ is hit via

$$
g=\sum_{0<k<p^{t}} P^{k}\left(x^{m\left(p^{t}\right)} f_{k}\right),
$$

where $q_{i} \geq 1, m_{i}=q_{i} p+r_{i}, 1 \leq r_{i} \leq p-1$ for $i=1, \ldots, h$, and $m_{i}=q_{i} p$ for $i=h+1, \ldots, n$.
Hence by Proposition 3.2 and 3.3, we can get new hit polynomials from the old ones satisfying the conditions given in propositions.

Example. Let $p=3$. Consider the hit polynomial

$$
\begin{aligned}
f(x, y) & =x^{21} y^{9}+2 x^{2} y^{28}+2 x^{4} y^{26} \\
& =P^{10}\left(x^{7} y^{3}\right)+P^{1}\left(x^{2} y^{26}\right)
\end{aligned}
$$

The polynomial

$$
g(x, y)=x^{1.3 .3^{2}} y^{2.3 .3^{2}}\left(x^{21} y^{9}+2 x^{2} y^{28}+2 x^{4} y^{26}\right)
$$

is hit by Proposition 3.2 since $1<27=3^{2+1}=3^{t+1}$ and $10<27$ where $t=2$. The hit equation of g is as follows

$$
\begin{aligned}
g(x, y) & =x^{27} y^{54}\left(x^{21} y^{9}+2 x^{2} y^{28}+2 x^{4} y^{26}\right) \\
& =x^{27} y^{54}\left(P^{10}\left(x^{7} y^{3}\right)+P^{1}\left(x^{2} y^{26}\right)\right) \\
& =P^{10}\left(\left(x^{27} y^{54}\right)\left(x^{7} y^{3}\right)\right)+P^{1}\left(\left(x^{27} y^{54}\right)\left(x^{2} y^{26}\right)\right) \\
& =P^{10}\left(x^{34} y^{57}\right)+P^{1}\left(x^{29} y^{80}\right)
\end{aligned}
$$

Example. Let $p=3$. Consider the hit polynomial

$$
\begin{aligned}
g(x, y) & =x^{54} y^{66}+x^{51} y^{69} \\
& =x^{5.3^{2}} y^{7.3^{2}}\left(x^{9} y^{3}+x^{6} y^{6}\right) \\
& =P^{4}\left(x^{48} y^{64}\right)+P^{1}\left(x^{51} y^{67}\right)
\end{aligned}
$$

The polynomial

$$
f(x, y)=x^{9} y^{3}+x^{6} y^{6}
$$

is hit by Proposition 3.3 since $1<9=3^{2}=3^{t}$ and $4<9$ where $t=2$. The hit equation of f is as follows

$$
f(x, y)=P^{4}\left(x^{3} y^{1}\right)+P^{1}\left(x^{6} y^{4}\right)
$$

References

[1] Steenrod, N.E., Products of cocycles and extensions of mappings, 48 (1947), 290-320.
[2] Steenrod, N.E., Cycles reduced powers of cohomology classes, Proc. Nat. Acad. Sci. U.S.A, 39 (1953), 217-223.
[3] Adams, J. F., On the non-existence of elements of Hopf invariant one, Ann. of Math., 72 (1960), 20-104.
[4] Steenrod, N.E., Whitehead, J.H.C., Vector fields on the n-sphere, Proc.Nat. Acad. Sci. U.S.A., 37 (1951), 58-63.
[5] Adams, J.F., On the structure and applications of the Steenrod algebra, Comm. Math. Helv., 32 (1958), 180-214.
[6] Adem, J., The iteration of Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A, 38 (1952), 720-726.
[7] Cartan, H., Sur les groupes d'Eilenberg-Mac Lane. II, Proc. Nat. Acad. Sci. U.S.A, 40 (1954), 704-707.
[8] Cartan, H., Sur l'itration des oprations de Steenrod, Comment. Math. Helv., 29(1) (1955), 40-58.
[9] Serre, J.P., Cohomologie modulo 2 des complexes d'Eilenberg-Mac Lane, Comment. Math. Helv., 27 (1953), 198-231.
[10] Milnor, J., The Steenrod Algebra and its dual, Ann. Of Math., 67(2) (1958), 150-171.
[11] Steenrod, N.E., Epstein, D.B.A., Cohomology Operations, Princeton University Press, 1962.
[12] Wood, M.W.R., Problems in the Steenrod Algebra, Bull. London Math. Soc., 30 (1998), 499-517.
[13] Clark, A., Ewing, J., The realization of polynomial algebras as cohomology rings, Pasific J.Math., 50 (1974), 425-434.
[14] Janfada, A.S., On the action of the Steenrod squares on polynomial algebra, Miskolc Mathematical Notes, 8(2) (2007), 157-167.
[15] Hatcher, A., Algebraic Topology, Cambridge University Press, 2002.
[16] Wood, M.W.R., Walker, G., Polynomials and Steenrod Algebra, 2010.
Bekir TANAY, Department of Mathematics, Mug̃la Sıtkı Koçman University, Mug̃la 48000, Turkey, e-mail: btanay@mu.edu.tr

Tarkan ÖNER, Department of Mathematics, Mug̃la Sıtkı Koçman University, Mug̃la 48000, Turkey, e-mail: tarkanoner@mu.edu.tr

