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1 Introduction

Sometimes a few mathematical problems arise in economics, engineering and en-
vironment which can not be solved successfully by use classical methods because of
various type of uncertainties are present in these problems. To solve these problems, a
few concepts have been constructed in several times such as theory of probability, the-
ory of fuzzy sets, and the interval mathematics etc. Soft set is the most recent notion
of these concepts.

The concept of soft set was first introduced by D. Molodtsov [7] in 1999. In his
work, he defined the operation on soft sets like union, intersection, cartesian product
etc. Also he constructed some applications of soft sets in his first paper of soft set
theory. Thereafter so many research works[1, 2, 4, 5, 6, 8, 9, 10] have been done on this
concept in different disciplines of mathematics.

In functional analysis, certain types of sets viz. balanced set, absorbing set and
convex set are found to play pivotal roles. In this paper, we also try to define the
concept of balanced soft set, absorbing soft set over a linear space to study the functional
analysis. Then we establish some theorems concerning the said notions.
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2 Preliminary

In this section, U refers to an initial universe, E is the set of parameters, P (U) is the
power set of U and A ⊆ E.

Definition 2.1. [3] A soft set FA on the universe U is defined by the set of ordered pairs
FA = {(e, FA(e)) : e ∈ E, FA(e) ∈ P (U)} where FA : E → P (U) such that FA(e) = φ if
e is not an element of A. The set of all soft sets over (U,E) is denoted by S(U).

Definition 2.2. [3] Let FA ∈ S(U). If FA(e) = φ, for all e ∈ E, then FA is called a
empty soft set, denoted by Φ. FA(e) = φ means that there is no element in U related to
the parameter e ∈ E.

Definition 2.3. [3] Let FA, GB ∈ S(U). We say that FA is a soft subsets of GB and
we write FA v GB if and only if FA(e) ⊆ GB(e) for all e ∈ E.

Definition 2.4. [3] Let FA, GB ∈ S(U). Then FA and GB are said to be soft equal,
denoted by FA = GB if FA(e) = GB(e) for all e ∈ E.

Definition 2.5. [3] Let FA, GB ∈ S(U). Then the soft union of FA and GB is also a
soft set FA tGB = HA∪B ∈ S(U), defined by
HA∪B(e) = (FA tGB)(e) = FA(e) ∪GB(e) for all e ∈ E.

Definition 2.6. [3] Let FA, GB ∈ S(U). Then the soft intersection of FA and GB is
also a soft set FA uGB = HA∩B ∈ S(U), defined by
HA∩B(e) = (FA uGB)(e) = FA(e) ∩GB(e) for all e ∈ E.

Definition 2.7. Let U be an initial universe and f : X → Y be a mapping, where X
and Y are set of parameters. If FA be a soft set over (U,X), then f(FA), a soft set
over (U, Y ), is defined by

f(FA)(y) =

{ ∪x∈f−1(y)FA(x) if f−1(y) 6= Φ,
Φ otherwise.

Definition 2.8. Let U be an initial universe and f : X → Y be a mapping, where X
and Y are set of parameters. If GB be a soft set over (U, Y ), then f−1(GB), a soft set
over (U,X), is defined by
f−1(GB)(x) = GB(f(x)).

Definition 2.9. [11] Let U be a universal set and E be a usual vector space over R or
C and FA1 , FA2 , · · · , FAn be soft sets over (U,E) and f : En → E be a function defined
by f(e1, e2, · · · , en) = e1 + e2 + · · ·+ en. Then the vector sum FA1 + FA2 + · · ·+ FAn is
defined by
(FA1 + FA2 + · · ·+ FAn)(e)
=

⋃
(e1,e2,··· ,en)∈f−1(e){FA1(e1) ∩ FA2(e2) ∩ · · · ∩ FAn(en)}

Definition 2.10. [11] If U be a universal set and E be a usual vector space over R or
C and t be a scalar and g : E → E be a mapping defined by g(e) = te, then the scalar
multiplication tFA of a soft set FA is defined by tFA = g(FA).



Journal of New Results in Science 8 (2015) 36-46 38

Proposition 2.11. [11] If FA is a soft set over the universal set U and the parameter
set E, where E is an usual vector space over K(R or C) and t ∈ K, then

tFA(e) =





FA(t−1e) if t 6= 0,
Φ if t = 0 and e 6= 0,⋃

p∈E FA(p) if t = 0 and e = 0.

2.1 Balanced Soft set

Throughout this work, we denote E as a vector space over the field K(R or C) and
U as an initial universe. Also we denote 0 and 1 as the zero element and unity of the
field respectively. Also the zero vector of the linear space is denoted by 0 which can be
easily separated from the zero element of the field.

Definition 2.12. A soft set FA over (U,E) is said to be balanced soft set if tFA v FA

for all t ∈ K with |t| ≤ 1.

Example 2.13. Let the universal set U= the set of all real numbers and E be a real
vector space and 0 ∈ A ⊆ E. Let FA be a soft set defined by

FA(e) =

{
(|e|, ∞) if e 6= 0,
U if e = 0, where e ∈ A.

Then obviously, FA is a balanced soft set.

Theorem 2.14. If FA is a soft set over (U,E), then t|λ|≤1λFA is a balanced soft set.

Proof: Let |α| ≤ 1 and e ∈ E.
Case 1. 0 < |α| ≤ 1.
α(t|λ|≤1λFA)(e)
= (t|λ|≤1λFA)( 1

α
e)

= ∪|λ|≤1λFA( 1
α
e)

= (t|λ|≤1αλFA)(e)
⊆ (t|λ|≤1λFA)(e), since |α| ≤ 1 and |λ| ≤ 1, |αλ| ≤ 1
Case 2. α = 0.
Subcase 1. If e 6= 0, then obviously, 0(t|λ|≤1λFA)(e) = Φ ⊆ (t|λ|≤1λFA)(e).
Subcase 2. If e = 0, then
0(t|λ|≤1λFA)(0)
= ∪x∈E{(t|λ|≤1λFA)(x)}
= ∪x∈E{∪|λ|≤1λFA(x)}
= {0FA(0)} ∪ {∪x(6=0)∈E0FA(x)} ∪ {∪x∈E{∪0<|λ|≤1λFA(x)}}
= {0FA(0)} ∪ {∪x∈E{∪0<|λ|≤1FA( 1

λ
x)}, as ∪x(6=0)∈E0FA(x) = Φ

= 0FA(0).
Again, (t|λ|≤1λFA)(0)
= ∪|λ|≤1λFA(0)
= {∪0<|λ|≤1λFA(0)} ∪ {0FA(0)}
= {∪0<|λ|≤1FA(0)} ∪ {0FA(0)}
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= 0FA(0).
Thus, 0(t|λ|≤1λFA)(0) = (t|λ|≤1λFA)(0).
Hence, t|λ|≤1λFA is a balanced soft set.

Theorem 2.15. Let FA be a balanced soft set over (U,E). Then
i) α, β ∈ K and |α| ≤ |β| ⇒ αFA v βFA

ii) α ∈ K and |α| = 1 ⇒ αFA = FA

Proof: i) Case 1. α = 0.
Subcase 1. If β = 0, then clearly, αFA = βFA.
Subcase 2. If β 6= 0, then for any non-zero e ∈ E, αFA(e) = Φ ⊆ βFA(e) and for zero
element of E, we have αFA(0) = 0FA(0) ⊆ FA(0) as FA is a balanced soft set. That is,
αFA(0) ⊆ FA( 1

β
0) = βFA(0). Therefore in this case αFA v βFA.

Case 2. α 6= 0. Since |α
β
| ≤ 1, we have α

β
FA v FA.

Let e ∈ E and 1
β
e = e1. Now since α

β
FA v FA, then

α
β
FA(e1) ⊆ FA(e1)

or, FA(β
α
e1) ⊆ FA(e1)

or, FA(β
α

1
β
e) ⊆ FA( 1

β
e)

or, FA( 1
α
e) ⊆ FA( 1

β
e)

or, αFA(e) ⊆ βFA(e)
that is, αFA v βFA.

ii) Let |α| ≤ 1. Then αFA v FA. Again let |α| ≥ 1. Then | 1
α
| ≤ 1 which implies

that 1
α
FA v FA. So as the procedure of case 2 for proof (i), we get FA v αFA. Thus,

αFA = FA if |α| = 1.

Theorem 2.16. If {FAα : α ∈ Λ} is a collection of balanced soft sets over (U,E), then
uα∈ΛFAα is balanced.

Proof: Let {FAα : α ∈ Λ} be a collection of balanced soft sets over (U,E) and
FA = uα∈ΛFAα . Also let |t| ≤ 1 and e ∈ E.
Case 1. t = 0.
Subcase 1. If e 6= 0, then tFA(e) = Φ. So tFA v FA.
Subcase 2. If e = 0, then
tFA(e) = 0FA(0) = ∪p∈EFA(p)

= ∪p∈E(uα∈ΛFAα)(p)

= ∪p∈E(∩α∈ΛFAα(p))

⊆ ∩α∈Λ(∪p∈EFAα(p))

= ∩α∈Λ0FAα(0)

⊆ ∩α∈ΛFAα(0) [as each FAα is balanced, 0FAα(0) ⊆ FAα(0)]

= FA(0).

Case 2. t 6= 0.
tFA(e) = FA(t−1e)

= (uα∈ΛFAα)(t−1e)
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= ∩α∈ΛFAα(t−1e)

= ∩α∈ΛtFAα(e)

⊆ ∩α∈ΛFAα(e) [as each FAα is balanced ]

= FA(e).

Hence FA is also a balanced soft set.

Theorem 2.17. If {FAα : α ∈ Λ} is a collection of balanced soft sets over (U,E), then
tα∈ΛFAα is balanced.

Proof: Let {FAα : α ∈ Λ} be a collection of balanced soft sets over (U,E) and
FA = tα∈ΛFAα . Also let |t| ≤ 1 and e ∈ E.
Case 1. t = 0.
Subcase 1. If e 6= 0, then tFA(e) = Φ. So tFA v FA.
Subcase 2. If e = 0, then
tFA(e) = 0FA(0) = ∪p∈EFA(p)

= ∪p∈E(tα∈ΛFAα)(p)

= ∪p∈E(∪α∈ΛFAα(p))

= ∪α∈Λ(∪p∈EFAα(p))

= ∪α∈Λ0FAα(0)

⊆ ∪α∈ΛFAα(0) [as each FAα is balanced, 0FAα(0) ⊆ FAα(0)]

= FA(0).

Case 2. t 6= 0.
tFA(e) = FA(t−1e)

= (tα∈ΛFAα)(t−1e)

= ∪α∈ΛFAα(t−1e)

= ∪α∈ΛtFAα(e)

⊆ ∪α∈ΛFAα(e) [as each FAα is balanced]

= FA(e).

Hence, FA is also a balanced soft set.

Theorem 2.18. If λ ∈ K and FA is balanced soft set over (U,E), then λFA is balanced.

Proof: Let |t| ≤ 1. If λ = 0, there is nothing to prove. So we take λ 6= 0.
Case 1. t = 0.
Subcase 1. If e 6= 0, then tλFA(e) = 0FA(e) = Φ ⊆ λFA(e).
Subcase 2. If e = 0, then 0λFA(0) = 0FA(0) ⊆ FA(0) = FA(λ−10) = λFA(0).
Case 2. t 6= 0.
tλFA(e) = FA((tλ)−1e) = FA(λ−1t−1e) = FA(t−1λ−1e) = tFA(λ−1e) ⊆ FA(λ−1e) =
λFA(e).
Hence, λFA is balanced soft set.

Theorem 2.19. If FA and GB are balanced soft sets over (U,E) and λ, µ ∈ K then
λFA + µGB is also a balanced soft set.
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Proof: Since FA and GB are balanced soft sets, λFA and µGB are balanced soft
sets. Let |t| ≤ 1.
Case 1. t = 0.
Subcase 1. If e 6= 0, then t(λFA + µGB)(e) = Φ ⊆ (λFA + µGB)(e).
Subcase 2. If e = 0, then
0(λFA + µGB)(0)
= ∪e∈E(λFA + µGB)(e)
= ∪e∈E{∪e=e1+e2(λFA(e1) ∩ µGB(e2))}
= ∪e1, e2∈E(λFA(e1) ∩ µGB(e2))
⊆ {∪e1∈EλFA(e1)} ∩ {∪e2∈EµGB(e2)}
= 0λFA(0) ∩ 0µGB(0)
⊆ λFA(0) ∩ µGB(0) [ as both λFA and µGB are balanced soft sets. ]

⊆ ∪e∈E(λFA(e) ∩ µGB(−e))
= ∪0=e+(−e)(λFA(e) ∩ µGB(−e))
= (λFA ∩ µGB)(0).
Case 2. t 6= 0.
t(λFA + µGB)(e)
= (λFA + µGB)(t−1e)
= ∪t−1e=e1+e2

(λFA(e1) ∩ µGB(e2))
= ∪e=te1+te2(λFA(e1) ∩ µGB(e2))
= ∪e=x1+x2, x1=te1, x2=te2(λFA(t−1x1) ∩ µGB(t−1x2))
= ∪e=x1+x2(tλFA(x1) ∩ tµGB(x2))
⊆ ∪e=x1+x2(λFA(x1) ∩ µGB(x2)) [ as both λFA and µGB are balanced soft sets.]

= (λFA + µGB)(e).
This completes the proof of the theorem.

Definition 2.20. Let FA be a soft set over (U,E). Then
i) the intersection of all balanced soft sets over (U,E), each containing FA, is called the
balanced hull of FA.
ii) the union of all balanced soft sets over (U,E), each contained in FA, is called the
balanced core of FA.

Theorem 2.21. Let H and C respectively denotes the balanced hull and the balanced
core of a soft set FA over (U,E). Then
i) H = t{λFA : |λ| ≤ 1},
ii) C = u{λFA : |λ| ≥ 1} if FA(0) = 0FA(0).

Proof: i) Let B = t{λFA : |λ| ≤ 1}. Then B is a balanced soft set by theorem
2.14. Also clearly, FA v B. Then by definition of H, H v B. Again FA v H. Then
λFA v λH v H for |λ| ≤ 1, as H is balanced. So B = t{λFA : |λ| ≤ 1} v H. Hence
H = B.

ii) Let GD be a soft set such that GD v C. Then we have αGD v αC v C for all
|α| ≤ 1, as C is balanced

⇒ αGD v FA for all |α| ≤ 1

⇒ GD v 1
α
FA for all 0 < |α| ≤ 1
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⇒ GD v λFA for all |λ| ≥ 1

⇒ GD v u|λ|≥1λFA.

Therefore for any soft subset GD of C we have GD v u|λ|≥1λFA. Since C is also a soft
subset of C, C v u|λ|≥1λFA.
Again let, GD v u|λ|≥1λFA

⇒ GD v λFA for all |λ| ≥ 1

⇒ 1
λ
GD v FA for all |λ| ≥ 1

⇒ αGD v FA for all 0 < |α| ≤ 1

⇒ t0<|α|≤1αGD v FA

⇒ t0≤|α|≤1αGD v FA, as 0GD(0) v 0FA(0) = FA(0).

Again t0≤|α|≤1αGD is balanced by theorem 2.14, So t0≤|α|≤1αGD v C. Then GD v C.
Therefore for any soft subset GD of u|λ|≥1λFA we have GD v C. So, u|λ|≥1λFA v C.
Hence C = u|λ|≥1λFA.

Example 2.22. Let E = the real vector space R, U = the set of all natural numbers
including zero and A = E. Let FA be a soft set defined by
FA(x) = {[|x|], [|x|] + 1, [|x|] + 2, · · · } for x ∈ A and x 6= 0,

= {2, 3, 4, · · · } for x = 0,

where [|x|] is the greatest integer less than equal to |x|.
Let D = [2, ∞) ∪ (−∞, −2] and GA be a soft set defined by
GA(x) = FA(x) for all x ∈ D.

= {2, 3, 4, · · · } for x ∈ A\D = (−2, 2)

It is easy to see that GA(y) ⊆ GA(x) if x, y ∈ A with |x| ≤ |y|
We now show that GA is a balanced soft set. Let x ∈ A.
If 0 < |λ| ≤ 1, then λGA(x) = GA( 1

λ
x) ⊆ GA(x), as |x| ≤ | 1

λ
x|.

If λ = 0, then
Case 1. for x 6= 0, we have 0GA(x) = Φ ⊆ GA(x).
Case 2. for x = 0, we have
0GA(0) = ∪e∈EGA(e)

= {∪e∈DGA(e)} ∪ {∪e∈A\DGA(e)}
= {∪e∈DFA(e)} ∪ {2, 3, 4, · · · }
= {2, 3, 4, · · · }
= GA(0).

Thus, GA is a balanced soft set. We now show that GA is the greatest balanced soft
set contained in FA. Let GP be any balanced soft set contained in FA. Then obviously,
P ⊆ A. Let x ∈ P . Then either x ∈ D or x ∈ A\D. If x ∈ D, then GP (x) ⊆ FA(x) =
GA(x). Again ∪e∈P GP (e) = 0GP (0) ⊆ GP (0) ⊆ FA(0) = {2, 3, 4, · · · }. So, if x ∈ A\D,
then GP (x) ⊆ {2, 3, 4, · · · } = GA(x). Thus, GP (x) ⊆ GA(x) for all x ∈ P and so, GA

is the greatest balanced soft set contained in FA. Therefore the balanced core of FA is
GA.

Note 2.23. In the above example the balanced core GA 6= u{λFA : |λ| ≥ 1}. Infact, if
x = 1, then GA(1) = {2, 3, 4, · · · } and (u|λ|≥1λFA)(1) = ∩|λ|≥1FA( 1

λ
) = {0, 1, 2, 3, 4, · · · }.
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Again 0FA(0) = ∪e∈EFA(e) = {0, 1, 2, 3, 4, · · · } 6= FA(0). So, if 0FA(0) 6= FA(0), then
the balanced core of FA may not be equal to u{λFA : |λ| ≥ 1}.
Theorem 2.24. Let X and Y be linear spaces over K(R or C) and f : X → Y be a
linear map. Then FA is balanced soft set over (U,X) imply that f(FA) is also a balanced
soft set over (U, Y ).

Proof: Let λ ∈ K such that |λ| ≤ 1. We now verify that λf(FA) v f(FA).
Let y ∈ Y .
Case 1. λ = 0.
Subcase 1. If y = 0, then
0f(FA)(0) = ∪y

′∈Y f(FA)(y
′
)

= ∪y′∈Y ∪x∈f−1(y′ ) FA(x)

= ∪x∈XFA(x)

= 0FA(0)

⊆ FA(0) [ as FA is balanced soft set.]

⊆ ∪e∈f−1(0)FA(e) [ as 0 ∈ f−1(0) ]

= f(FA)(0).

Subcase 2. If y 6= 0, then 0f(FA)(y) = Φ ⊆ f(FA)(y).
Case 2. λ 6= 0.
λf(FA)(y) = f(FA)(λ−1y)

= ∪x∈f−1(λ−1y)FA(x)

= ∪λx∈f−1(y)FA(x)

= ∪x′∈f−1(y)FA(λ−1x
′
), where λx = x

′
, i.e., x = λ−1x

′

= ∪x
′∈f−1(y)λFA(x

′
)

⊆ ∪x
′∈f−1(y)FA(x

′
) [ as FA is a balanced soft set and |λ| ≤ 1 ]

= f(FA)(y)

Thus, from case 1 and case 2, we have λf(FA)(e) ⊆ f(FA)(e) for every |λ| ≤ 1 and
e ∈ Y . Hence, λf(FA) v f(FA) for all |λ| ≤ 1. This completes the proof.

Theorem 2.25. Let X and Y be linear spaces over K(R or C) and f : X → Y be
a linear map. Then GB is balanced soft set over (U, Y ) imply that f−1(GB) is also a
balanced soft set over (U,X).

Proof: Let λ ∈ K such that |λ| ≤ 1. We now verify that λf−1(GB) v f−1(GB).
Let x ∈ X.
Case 1. λ = 0.
Subcase 1. If x = 0, then
0f−1(GB)(0) = ∪x′∈Xf−1(GB)(x

′
)

= ∪x′∈XGB(f(x
′
))

⊆ ∪y∈Y GB(y)

= 0GB(0)

⊆ GB(0) [ as GB is balanced soft set.]
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= GB(f(0))

= f−1(GB)(0).

Subcase 2. If x 6= 0, then 0f−1(GB)(x) = Φ ⊆ f−1(GB)(x).
Case 2. λ 6= 0.
λf−1(GB)(x) = f−1(GB)(λ−1x)

= GB(f(λ−1x))

= GB(λ−1f(x))

= λGB(f(x))

⊆ GB(f(x)) [ as GB is a balanced soft set and |λ| ≤ 1. ]

= f−1(GB)(x)

Thus, from case 1 and case 2, we get λf−1(GB)(x) ⊆ f−1(GB)(x) for every |λ| ≤ 1 and
x ∈ X. Hence, λf−1(GB) v f−1(GB) for all |λ| ≤ 1. This completes the proof.

2.2 Absorbing Soft set

Definition 2.26. A soft set FA over (U,E) is called an absorbing soft set if tλ>0λFA =
1, where 1(e) = U for all e ∈ E.

Example 2.27. Let E = real vector space R and the universal set U = the set of all
natural numbers. Let 0 ∈ A ⊆ E such that A ∩ (−1, 1) \ {0} 6= Φ and for e ∈ A, the
soft set FA is defined by
FA(e) = {[|e|] + 1, [|e|] + 2, [|e|] + 3, · · · }, where [|e|] is the greatest integer less than
equal to |e|. Then obviously tλ>0λFA = 1 and so FA is an absorbing soft set.

Example 2.28. Let E = real vector space R and the universal set U1 = the set of all
natural numbers including zero. Let B be an unbounded (both below and above) subset
of E containing 0 and GB be a soft set defined by GB(e) = {0, 1, 2, · · · , [|e|]} for
e(6= 0) ∈ B and GB(0) = U1, where [|e|] is the greatest integer less than equal to |e|.
Then obviously tλ>0λGB = 1 and so GB is an absorbing soft set.

Note 2.29. Consider the absorbing soft set FA of the example 2.27 and the absorbing
soft set GB of the example 2.28. If A∩B = {0}, then obviously (FA uGB) = U . Again
if {0} $ A ∩B, let e(6= 0) ∈ A ∩B. Then (FA uGB)(e) = FA(e) ∩GB(e) = Φ. Hence,
(FA u GB) is not an absorbing soft set. Thus, intersection of two absorbing soft sets
may or may not be an absorbing soft set.

Theorem 2.30. Union of two absorbing soft sets is an absorbing soft set.

Example 2.31. Consider the soft set FA as defined in example 2.27 and we take A = E.
Here it is obvious that 0FA(0) = FA(0). Therefore the balanced core of FA is u|λ|≥1λFA.
Let e ∈ E. Now
u|λ|≥1λFA(e) = ∩|λ|≥1(λFA)(e)

= ∩|λ|≥1FA(λ−1e)

= ∩|λ|≥1{[|λ−1e|] + 1, [|λ−1e|] + 2, [|λ−1e|] + 3, · · · }
= {[|e|] + 1, [|e|] + 2, [|e|] + 3, · · · }
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= FA(e)

Since FA is absorbing soft set, u|λ|≥1λFA is absorbing soft set.

Example 2.32. Consider the soft set GB as defined in example 2.28. Here it is obvious
that 0GB(0) = GB(0). Therefore the balanced core of GB is u|λ|≥1λGB. Let e ∈ E. If
e 6= 0, then
(u|λ|≥1λGB)(e) = ∩|λ|≥1(λGB)(e)

= ∩|λ|≥1(GB)(λ−1e)

= ∩|λ|≥1{0, 1, 2, · · · , [|λ−1e|]}
= {0}.

If e = 0, then (u|λ|≥1λGB)(0) = ∩|λ|≥1λGB(0) = ∩|λ|≥1GB(0) = U1.
So, it is clear that balanced core of GB is not an absorbing soft set.

Note 2.33. Balanced core of an absorbing soft set may or may not be an absorbing soft
set.

Theorem 2.34. Let X and Y be linear spaces over K(R or C) and f : X → Y be a
linear map. Then FA is an absorbing soft set over (U,X) imply that f(FA) is also an
absorbing soft set over(U, Y ).

Proof: Let y ∈ Y . Now
(tλ>0λf(FA))(y)
= ∪λ>0(λf(FA))(y)
= ∪λ>0f(FA)(λ−1y)
= ∪λ>0 ∪x∈f−1(λ−1y) FA(x)
= ∪λ>0 ∪λx∈f−1(y) FA(x)
= ∪λ>0 ∪z∈f−1(y) FA(λ−1z), where λx = z
⊇ ∪λ>0FA(λ−1z) for some z ∈ f−1(y)
= ∪λ>0λFA(z)
= U , as FA is an absorbing soft set.
Therefore, tλ>0λf(FA) = 1. Hence, f(FA) is an absorbing soft set.

Theorem 2.35. Let X and Y be linear spaces over K(R or C) and f : X → Y be a
linear map. Then GB is an absorbing soft set over (U, Y ) imply that f−1(GB) is also
an absorbing soft set over (U,X).

Proof: Let x ∈ X. Now
(tλ>0λf−1(GB))(x)
= ∪λ>0(λf−1(GB))(x)
= ∪λ>0f

−1(GB)(λ−1x)
= ∪λ>0GB(f(λ−1x))
= ∪λ>0GB(λ−1f(x))
= ∪λ>0λGB(f(x))
= U , as GB is an absorbing soft set.
Thus, tλ>0λf−1(GB) = 1. Hence, f−1(GB) is an absorbing soft set.



Journal of New Results in Science 8 (2015) 36-46 46

3 Conclusion

To study the functional analysis on soft sets, balanced and absorbing soft sets are being
defined over a linear space in this paper. Then we have established some theorems which
will be needed in future for construction of a convex soft set, absolutely convex soft set
etc.

Acknowledgement

The authors are grateful to the chief editor and also to the reviewers for their suggestions
to improve this paper.

References

[1] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Computers and Mathe-
matics with applications 59, 3458-3463, 2010.

[2] H. Aktas, N.cagman, Soft sets and soft groups, Information Science 177, 2726-2735,
2007.

[3] N. Cagman, S. Enginoglu, Soft set theory and uni−int decision making, European
Journal of Operational Research, 207, 848-855, 2010.

[4] J. Ghosh, T. K. Samanta, S. K. Roy, A note on operations of intuitionistic fuzzy
soft sets, Journal of Hyperstructures 2 (2), 163-184, 2013.

[5] J. Ghosh, B. Dinda, T. K. Samanta, Fuzzy soft rings and fuzzy soft ideals, Int. J.
Pure Appl. Sci. Technol., 2(2), 66-74, 2011.

[6] P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision making
problem, Comput. Math. Appl. 44(8-9), 1077-1083, 2002.

[7] D. Molodtsov, Soft set theory-First results, Computers and Mathematics with Ap-
plications 37(4-5), 19-31, 1999.

[8] S. Roy, T.K. Samanta, A note on a Soft Topological Space, Punjab University
Journal of Mathematics 46(1), 19-24, 2014.

[9] S. Roy, T.K. Samanta, A note on fuzzy soft topological spaces, Annals of Fuzzy
Mathematics and Informatics 3(2), 305-311, 2012.

[10] S. Roy, T.K. Samanta, An introduction of open and closed sets on fuzzy soft topo-
logical spaces, Annals of Fuzzy Mathematics and Informatics 6(2), 425-431, 2013.

[11] S. Roy, T.K. Samanta, Some Properties of Vector Sum and Scalar Multiplication
of Soft Sets over a Linear Space, Communicated.


