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1 Introduction and Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties
assumed. If A⊂X, cl(A) and int(A) will, respectively, denote the closure and interior
of A in (X, τ). A subset A of a space (X, τ) is said to be regular open if A=int(cl(A))
and A is said to be regular closed if A=cl(int(A)). A subset A of a space (X, τ) is said
to be semi-open [7] if A⊂cl(int(A)). The complement of semi-open set is semi-closed.
A subset A of a space (X, τ) is an α-open [15] (resp. preopen [12]) if A⊂int(cl(int(A)))
(resp. A⊂int(cl(A))). The complement of α-open set is α-closed. The α-closure [15] of
a subset A of X, denoted by αcl(A), is defined to be the intersection of all α-closed sets
containing A. The α-interior [15] of a subset A of X, denoted by αint(A), is defined to
be the union of all α-open sets contained in A. The family of all α-open sets in (X, τ),
denoted by τα, is a topology on X finer than τ . The interior of a subset A in (X, τα)
is denoted by intα(A). The closure of a subset A in (X, τα) is denoted by clα(A). A
subset A of a space (X, τ) is said to be ω-closed [21] if cl(A)⊂U whenever A⊂U and
U is semi-open. The complement of ω-closed set is ω-open. A subset A of a space (X,
τ) is said to be αĝ-closed [1] ( resp. rαg-closed [17]) if clα(A)⊂U whenever A⊂U and
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U is ω-open (resp. regular open). A is said to be αĝ-open (resp. rαg-open) if X−A is
αĝ-closed (resp. rαg-closed). A subset A of a space (X, τ) is said to be *g-closed [19]
if cl(A)⊆U whenever A⊆U and U is ω-open. A space (X, τ) is said to be *g-normal, if
for every disjoint *g-closed sets A and B, there exist disjoint open sets U and V such
that A⊂U, B⊂V.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X
which satisfies (i) A∈I and B⊂A imply B∈I and (ii) A∈I and B∈I imply A∪B∈I.
Given a topological space (X, τ) with an ideal I on X and if ℘(X) is the set of all
subsets of X, a set operator (.)* : ℘(X) → ℘(X), called a local function [6] of A with
respect to τ and I is defined as follows: for A⊂X, A*(I, τ)={x∈X : U∩A/∈I for every
U∈τ(x)} where τ(x)={U∈τ : x∈U}. We will make use of the basic facts about the
local functions [5, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure
operator cl*(.) for a topology τ*(I, τ), called the ?-topology, finer than τ is defined
by cl*(A)=A∪A*(I, τ) [23]. When there is no chance for confusion, we will simply
write A* for A*(I, τ) and τ* for τ*(I, τ). int*(A) will denote the interior of A in (X,
τ*). If I is an ideal on X, then (X, τ , I) is called an ideal space. N is the ideal of all
nowhere dense subsets in (X, τ). A subset A of an ideal space (X, τ , I) is τ*-closed
[5] or ∗-closed (resp. ∗-dense in itself [4]) if A*⊂A (resp. A⊂A*). A subset A of an
ideal space (X, τ , I) is I∗g-closed [19] if A*⊂U whenever U is ω-open and A⊂U. By
Theorem 2.3 of [19], every ∗-closed and hence every closed set is I∗g-closed. A subset
A of an ideal space (X, τ , I) is said to be I∗g-open [19] if X−A is I∗g-closed. In this
paper, we define I∗g-normal, ∗gI-normal and I∗g-regular spaces using I∗g-open sets and
give characterizations and properties of such spaces. Also, characterizations of normal,
mildly normal, *g-normal and regular spaces are given.

An ideal I is said to be codense [3] if τ∩I={∅}. I is said to be completely codense
[3] if PO(X)∩I={∅}, where PO(X) is the family of all preopen sets in (X, τ). Every
completely codense ideal is codense but not conversely [3]. The following lemmas will
be useful in the sequel.

Lemma 1.1 ([20], Theorem 6). Let (X, τ , I) be an ideal space. If I is completely
codense, then τ*⊂τα.

Lemma 1.2 ([19], Theorem 2.16). Let (X, τ , I) be an ideal space where I is completely
codense. Then the following are equivalent.

1. X is normal.

2. For any disjoint closed sets A and B, there exist disjoint I∗g-open sets U and V
such that A⊂U, B⊂V.

3. For a closed set A and an open set V containing A, there exists an I∗g-open set
U such that A⊂U⊂cl*(U)⊂V.

Lemma 1.3. If (X, τ , I) is an ideal space and A⊂X, then the following hold.

1. If I={∅}, then A is I∗g-closed if and only if A is *g-closed [[19], Corollary 2.3].

2. If I=N, then A is I∗g-closed if and only if A is αĝ-closed [19].

Lemma 1.4 ([19], Theorem 2.2). If (X, τ , I) is an ideal space and A⊂X, then the
following are equivalent.
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1. A is I∗g-closed.
2. cl*(A)⊂U whenever A⊂U and U is ω-open in X.

Lemma 1.5 ([19], Theorem 2.12). Let (X, τ , I) be an ideal space and A⊂X. Then A
is I∗g-open if and only if F⊂int*(A) whenever F is ω-closed and F⊂A.

Lemma 1.6 ([19], Theorem 2.15). Let (X, τ , I) be an ideal space. Then every subset
of X is I∗g-closed if and only if every ω-open set is ∗-closed.
Proposition 1.7. [21] Every open set is ω-open but not conversely.

2 I∗g-normal and ∗gI-normal Spaces

An ideal space (X, τ , I) is said to be an I∗g-normal space if for every pair of disjoint
closed sets A and B, there exist disjoint I∗g-open sets U and V such that A⊂U and
B⊂V. Since every open set is an I∗g-open set, every normal space is I∗g-normal. The
following Example 2.1 shows that an I∗g-normal space is not necessarily a normal space.
Theorem 2.2 below gives characterizations of I∗g-normal spaces. Theorem 2.3 below
shows that the two concepts coincide for completely codense ideal spaces.

Example 2.1. Let X={a, b, c}, τ={∅, {b}, {a, b}, {b, c}, X} and I={∅, {b}}. Then
∅*=∅, ({a, b})*={a}, ({b, c})*={c}, ({b})*=∅ and X*={a, c}. Here every ω-open
set is ∗-closed and so, by Lemma 1.6, every subset of X is I∗g-closed and hence every
subset of X is I∗g-open. This implies that (X, τ , I) is I∗g-normal. Now {a} and {c}
are disjoint closed subsets of X which are not separated by disjoint open sets and so (X,
τ) is not normal.

Theorem 2.2. Let (X, τ , I) be an ideal space. Then the following are equivalent.

1. X is I∗g-normal.

2. For every pair of disjoint closed sets A and B, there exist disjoint I∗g-open sets
U and V such that A⊂U and B⊂V.

3. For every closed set A and an open set V containing A, there exists an I∗g-open
set U such that A⊂U⊂cl*(U)⊂V.

Proof. (1)⇒(2). The proof follows from the definition of I∗g-normal spaces.
(2)⇒(3). Let A be a closed set and V be an open set containing A. Since A and

X−V are disjoint closed sets, there exist disjoint I∗g-open sets U and W such that A⊂U
and X−V⊂W. Again, U∩W=∅ implies that U∩int*(W)=∅ and so cl*(U)⊂X−int*(W).
Since X−V is ω-closed and W is I∗g-open, X−V⊂W implies that X−V⊂int*(W) and
so X−int*(W)⊂V. Thus, we have A⊂U⊂cl*(U)⊂X−int*(W)⊂V which proves (3).

(3)⇒(1). Let A and B be two disjoint closed subsets of X. By hypothesis, there
exists an I∗g-open set U such that A⊂U⊂cl*(U)⊂X−B. If W=X−cl*(U), then U and
W are the required disjoint I∗g-open sets containing A and B respectively. So, (X, τ ,
I) is I∗g-normal.

Theorem 2.3. Let (X, τ , I) be an ideal space where I is completely codense. If (X,
τ , I) is I∗g-normal, then it is a normal space.
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Proof. Suppose that I is completely codense. By Theorem 2.2, (X, τ , I) is I∗g-normal
if and only if for each pair of disjoint closed sets A and B, there exist disjoint I∗g-open
sets U and V such that A⊂U and B⊂V if and only if X is normal, by Lemma 1.2.

Theorem 2.4. Let (X, τ , I) be an I∗g-normal space. If F is closed and A is a *g-closed
set such that A∩F=∅, then there exist disjoint I∗g-open sets U and V such that A⊂U
and F⊂V.

Proof. Since A∩F=∅, A⊂X−F where X−F is ω-open. Therefore, by hypothesis, cl(A)⊂X−F.
Since cl(A)∩F=∅ and X is I∗g-normal, there exist disjoint I∗g-open sets U and V such
that cl(A)⊂U and F⊂V.

The following Corollaries 2.5 and 2.6 give properties of normal spaces. If I={∅}
in Theorem 2.4, then we have the following Corollary 2.5, the proof of which follows
from Theorem 2.3 and Lemma 1.3, since {∅} is a completely codense ideal. If I=N in
Theorem 2.4, then we have the Corollary 2.6 below, since τ*(N)=τα and I∗g-open sets
coincide with αĝ-open sets.

Corollary 2.5. Let (X, τ) be a normal space. If F is a closed set and A is a *g-closed
set disjoint from F, then there exist disjoint *g-open sets U and V such that A⊂U and
F⊂V.

Corollary 2.6. Let (X, τ , I) be a normal ideal space where I=N. If F is a closed set
and A is a *g-closed set disjoint from F, then there exist disjoint αĝ-open sets U and
V such that A⊂U and F⊂V.

Theorem 2.7. Let (X, τ , I) be an ideal space which is I∗g-normal. Then the following
hold.

1. For every closed set A and every *g-open set B containing A, there exists an
I∗g-open set U such that A⊂int*(U)⊂U⊂B.

2. For every *g-closed set A and every open set B containing A, there exists an
I∗g-closed set U such that A⊂U⊂cl*(U)⊂B.

Proof. (1) Let A be a closed set and B be a *g-open set containing A. Then A∩(X−B)=∅,
where A is closed and X−B is *g-closed. By Theorem 2.4, there exist disjoint I∗g-open
sets U and V such that A⊂U and X−B⊂V. Since U∩V=∅, we have U⊂X−V. By Lemma
1.5, A⊂int*(U). Therefore, A⊂int*(U)⊂U⊂X−V⊂B. This proves (1).

(2) Let A be a *g-closed set and B be an open set containing A. Then X−B is
a closed set contained in the *g-open set X−A. By (1), there exists an I∗g-open set
V such that X−B⊂int*(V)⊂V⊂X−A. Therefore, A⊂X−V⊂cl*(X−V)⊂B. If U=X−V,
then A⊂U⊂cl*(U)⊂B and so U is the required I∗g-closed set.

The following Corollaries 2.8 and 2.9 give some properties of normal spaces. If
I={∅} in Theorem 2.7, then we have the following Corollary 2.8. If I=N in Theorem
2.7, then we have the Corollary 2.9 below.

Corollary 2.8. Let (X, τ) be a normal space. Then the following hold.

1. For every closed set A and every *g-open set B containing A, there exists a *g-open
set U such that A⊂int(U)⊂U⊂B.
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2. For every *g-closed set A and every open set B containing A, there exists a *g-
closed set U such that A⊂U⊂cl(U)⊂B.

Corollary 2.9. Let (X, τ) be a normal space. Then the following hold.

1. For every closed set A and every *g-open set B containing A, there exists an
αĝ-open set U such that A⊂intα(U)⊂U⊂B.

2. For every *g-closed set A and every open set B containing A, there exists an
αĝ-closed set U such that A⊂U⊂clα(U)⊂B.

An ideal space (X, τ , I) is said to be ∗gI-normal if for each pair of disjoint I∗g-closed
sets A and B, there exist disjoint open sets U and V in X such that A⊂U and B⊂V.
Since every closed set is I∗g-closed, every ∗gI-normal space is normal. But a normal
space need not be ∗gI-normal as the following Example 2.10 shows. Theorems 2.11 and
2.13 below give characterizations of ∗gI-normal spaces.

Example 2.10. Let X={a, b, c}, τ = {∅, X, {a}, {b, c}} and I = {∅, {a}, {b},
{c}, {a, b}, {a, c}, {b, c}, X}. Every ω-open set is ∗-closed and so every subset of
X is I∗g-closed. Now A={a, b} and B={c} are disjoint I∗g-closed sets, but they are
not separated by disjoint open sets. So (X, τ , I) is not ∗gI-normal. But (X, τ , I) is
normal.

Theorem 2.11. In an ideal space (X, τ , I), the following are equivalent.

1. X is ∗gI-normal.

2. For every I∗g-closed set A and every I∗g-open set B containing A, there exists an
open set U of X such that A⊂U⊂cl(U)⊂B.

Proof. (1)⇒(2). Let A be an I∗g-closed set and B be an I∗g-open set containing A.
Since A and X−B are disjoint I∗g-closed sets, there exist disjoint open sets U and
V such that A⊂U and X−B⊂V. Now U∩V=∅ implies that cl(U)⊂X−V. Therefore,
A⊂U⊂cl(U)⊂X−V⊂B. This proves (2).

(2)⇒(1). Suppose A and B are disjoint I∗g-closed sets, then the I∗g-closed set A
is contained in the I∗g-open set X−B. By hypothesis, there exists an open set U of
X such that A⊂U⊂cl(U)⊂X−B. If V=X−cl(U), then U and V are disjoint open sets
containing A and B respectively. Therefore, (X, τ , I) is ∗gI-normal.

If I={∅}, then ∗gI-normal spaces coincide with *g-normal spaces and so if we take
I={∅}, in Theorem 2.11, then we have the following characterization for *g-normal
spaces.

Corollary 2.12. In a space (X, τ), the following are equivalent.

1. X is *g-normal.

2. For every *g-closed set A and every *g-open set B containing A, there exists an
open set U of X such that A⊂U⊂cl(U)⊂B.

Theorem 2.13. In an ideal space (X, τ , I), the following are equivalent.

1. X is ∗gI-normal.



Journal of New Results in Science 6 (2014) 15-26 20

2. For each pair of disjoint I∗g-closed subsets A and B of X, there exists an open set
U of X containing A such that cl(U)∩B=∅.

3. For each pair of disjoint I∗g-closed subsets A and B of X, there exist an open set
U containing A and an open set V containing B such that cl(U)∩cl(V)=∅.

Proof. (1)⇒(2). Suppose that A and B are disjoint I∗g-closed subsets of X. Then the
I∗g-closed set A is contained in the I∗g-open set X−B. By Theorem 2.11, there exists
an open set U such that A⊂U⊂cl(U)⊂X−B. Therefore, U is the required open set
containing A such that cl(U)∩B=∅.

(2)⇒(3). Let A and B be two disjoint I∗g-closed subsets of X. By hypothesis, there
exists an open set U of X containing A such that cl(U)∩B=∅. Also, cl(U) and B are
disjoint I∗g-closed sets of X. By hypothesis, there exists an open set V of X containing
B such that cl(U)∩cl(V)=∅.

(3)⇒(1). The proof is clear.
If I={∅}, in Theorem 2.13, then we have the following characterizations for *g-

normal spaces.

Corollary 2.14. Let (X, τ) be a space. Then the following are equivalent.

1. X is *g-normal.

2. For each pair of disjoint *g-closed subsets A and B of X, there exists an open set
U of X containing A such that cl(U)∩B=∅.

3. For each pair of disjoint *g-closed subsets A and B of X, there exist an open set
U containing A and an open set V containing B such that cl(U)∩cl(V)=∅.

Theorem 2.15. Let (X, τ , I) be an ∗gI-normal space. If A and B are disjoint I∗g-
closed subsets of X, then there exist disjoint open sets U and V such that cl*(A)⊂U and
cl*(B)⊂V.

Proof. Suppose that A and B are disjoint I∗g-closed sets. By Theorem 2.13(3), there ex-
ist an open set U containing A and an open set V containing B such that cl(U)∩cl(V)=∅.
Since A is I∗g-closed, A⊂U implies that cl*(A)⊂U. Similarly cl*(B)⊂V.

If I={∅}, in Theorem 2.15, then we have the following property of disjoint *g-closed
sets in *g-normal spaces.

Corollary 2.16. Let (X, τ) be a *g-normal space. If A and B are disjoint *g-closed sub-
sets of X, then there exist disjoint open sets U and V such that cl(A)⊂U and cl(B)⊂V.

Theorem 2.17. Let (X, τ , I) be an ∗gI-normal space. If A is an I∗g-closed set
and B is an I∗g-open set containing A, then there exists an open set U such that
A⊂cl*(A)⊂U⊂int*(B)⊂B.

Proof. Suppose A is an I∗g-closed set and B is an I∗g-open set containing A. Since A
and X−B are disjoint I∗g-closed sets, by Theorem 2.15, there exist disjoint open sets U
and V such that cl*(A)⊂U and cl*(X−B)⊂V. Now, X−int*(B)=cl*(X−B)⊂V implies
that X−V⊂int*(B). Again, U∩V=∅ implies U⊂X−V and so A⊂cl*(A)⊂U⊂X−V⊂
int*(B)⊂B.

If I={∅}, in Theorem 2.17, then we have the following Corollary 2.18.
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Corollary 2.18. Let (X, τ) be a *g-normal space. If A is a *g-closed set and B is a *g-
open set containing A, then there exists an open set U such that A⊂cl(A)⊂U⊂int(B)⊂B.

The following Theorem 2.19 gives a characterization of normal spaces in terms of
*g-open sets which follows from Lemma 1.2 if I={∅}.
Theorem 2.19. Let (X, τ) be a space. Then the following are equivalent.

1. X is normal.

2. For any disjoint closed sets A and B, there exist disjoint *g-open sets U and V
such that A⊂U and B⊂V.

3. For any closed set A and open set V containing A, there exists a *g-open set U
such that A⊂U⊂cl(U)⊂V.

The rest of the section is devoted to the study of mildly normal spaces in terms of
I∗g-open sets, Ig-open sets and Irg-open sets. A space (X, τ) is said to be a mildly
normal space [22] if disjoint regular closed sets are separated by disjoint open sets. A
subset A of a space (X, τ) is said to be αg-closed [11] if clα(A)⊂U whenever A⊂U and
U is open. A subset A of a space (X, τ) is said to be g-closed [8] (resp. rg-closed [18])
if cl(A)⊂U whenever A⊂U and U is open (resp. regular open) in X. The complements
of the above closed sets are called their respective open sets.

A subset A of an ideal topological space (X, τ , I) is said to be Ig-closed [14] if
A*⊂U whenever A⊂U and U is open. A subset A of an ideal topological space (X, τ ,
I) is said to be a regular generalized closed set with respect to an ideal I (Irg-closed)
[14] if A*⊂U whenever A⊂U and U is regular open. A is called Ig-open (resp. Irg-
open) if X−A is Ig-closed (resp. Irg-closed). Clearly, every I∗g-closed set is Ig-closed
and every Ig-closed set is Irg-closed but the separate converses are not true. Theorem
2.21 below gives characterizations of mildly normal spaces. Corollary 2.22 below gives
characterizations of mildly normal spaces in terms of αĝ-open, αg-open and rαg-open
sets. Corollary 2.23 below gives characterizations of mildly normal spaces in terms
of *g-open, g-open and rg-open sets. The following Lemma 2.20 is essential to prove
Theorem 2.21.

Lemma 2.20. [14] Let (X, τ , I) be an ideal space. A subset A⊂X is Irg-open if and
only if F⊂int*(A) whenever F is regular closed and F⊂A.

Theorem 2.21. Let (X, τ , I) be an ideal space where I is completely codense. Then
the following are equivalent.

1. X is mildly normal.

2. For disjoint regular closed sets A and B, there exist disjoint I∗g-open sets U and
V such that A⊂U and B⊂V.

3. For disjoint regular closed sets A and B, there exist disjoint Ig-open sets U and
V such that A⊂U and B⊂V.

4. For disjoint regular closed sets A and B, there exist disjoint Irg-open sets U and
V such that A⊂U and B⊂V.
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5. For a regular closed set A and a regular open set V containing A, there exists an
Irg-open set U of X such that A⊂U⊂cl*(U)⊂V.

6. For a regular closed set A and a regular open set V containing A, there exists an
∗-open set U of X such that A⊂U⊂cl*(U)⊂V.

7. For disjoint regular closed sets A and B, there exist disjoint ∗-open sets U and V
such that A⊂U and B⊂V.

Proof. (1)⇒(2). Suppose that A and B are disjoint regular closed sets. Since X is
mildly normal, there exist disjoint open sets U and V such that A⊂U and B⊂V. But
every open set is an I∗g-open set. This proves (2).

(2)⇒(3). The proof follows from the fact that every I∗g-open set is an Ig-open set.
(3)⇒(4). The proof follows from the fact that every Ig-open set is an Irg-open set.
(4)⇒(5). Suppose A is a regular closed and B is a regular open set containing A.

Then A and X−B are disjoint regular closed sets. By hypothesis, there exist disjoint
Irg-open sets U and V such that A⊂U and X−B⊂V. Since X−B is regular closed and
V is Irg-open, by Lemma 2.20, X−B⊂int*(V) and so X−int*(V)⊂B. Again, U∩V=∅
implies that U∩int*( V)=∅ and so cl*(U)⊂X−int*(V)⊂B. Hence U is the required
Irg-open set such that A⊂U⊂cl*(U)⊂B.

(5)⇒(6). Let A be a regular closed set and V be a regular open set containing
A. Then there exists an Irg-open set G of X such that A⊂G⊂cl*(G)⊂V. By Lemma
2.20, A⊂int*(G). If U=int*(G), then U is an ∗-open set and A⊂U⊂cl*(U)⊂cl*(G)⊂V.
Therefore, A⊂U⊂cl*(U)⊂V.

(6)⇒(7). Let A and B be disjoint regular closed subsets of X. Then X−B is a
regular open set containing A. By hypothesis, there exists an ∗-open set U of X such
that A⊂U⊂cl*(U)⊂X−B. If V=X−cl*(U), then U and V are disjoint ∗-open sets of X
such that A⊂U and B⊂V.

(7)⇒(1). Let A and B be disjoint regular closed sets of X. Then there exist
disjoint ∗-open sets U and V such that A⊂U and B⊂V. Since I is completely co-
dense, by Lemma 1.1, τ*⊂τα and so U, V∈τα. Hence A⊂U⊂int(cl(int(U)))=G and
B⊂V⊂int(cl(int(V)))=H. G and H are the required disjoint open sets containing A and
B respectively. This proves (1).

If I=N, in the above Theorem 2.21, then Irg-closed sets coincide with rαg-closed
sets and so we have the following Corollary 2.22.

Corollary 2.22. Let (X, τ) be a space. Then the following are equivalent.

1. X is mildly normal.

2. For disjoint regular closed sets A and B, there exist disjoint αĝ-open sets U and
V such that A⊂U and B⊂V.

3. For disjoint regular closed sets A and B, there exist disjoint αg-open sets U and
V such that A⊂U and B⊂V.

4. For disjoint regular closed sets A and B, there exist disjoint rαg-open sets U and
V such that A⊂U and B⊂V.

5. For a regular closed set A and a regular open set V containing A, there exists an
rαg-open set U of X such that A⊂U⊂clα(U)⊂V.
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6. For a regular closed set A and a regular open set V containing A, there exists an
α-open set U of X such that A⊂U⊂clα(U)⊂V.

7. For disjoint regular closed sets A and B, there exist disjoint α-open sets U and V
such that A⊂U and B⊂V.

If I={∅} in the above Theorem 2.21, we get the following Corollary 2.23.

Corollary 2.23. Let (X, τ) be a space. Then the following are equivalent.

1. X is mildly normal.

2. For disjoint regular closed sets A and B, there exist disjoint *g-open sets U and
V such that A⊂U and B⊂V.

3. For disjoint regular closed sets A and B, there exist disjoint g-open sets U and V
such that A⊂U and B⊂V.

4. For disjoint regular closed sets A and B, there exist disjoint rg-open sets U and
V such that A⊂U and B⊂V.

5. For a regular closed set A and a regular open set V containing A, there exists an
rg-open set U of X such that A⊂U⊂cl(U)⊂V.

6. For a regular closed set A and a regular open set V containing A, there exists an
open set U of X such that A⊂U⊂cl(U)⊂V.

7. For disjoint regular closed sets A and B, there exist disjoint open sets U and V
such that A⊂U and B⊂V.

3 I∗g-regular Spaces

An ideal space (X, τ , I) is said to be an I∗g-regular space if for each pair consisting
of a point x and a closed set B not containing x, there exist disjoint I∗g-open sets U
and V such that x∈U and B⊂V. Every regular space is I∗g-regular, since every open
set is I∗g-open. The following Example 3.1 shows that an I∗g-regular space need not
be regular. Theorem 3.2 gives a characterization of I∗g-regular spaces.

Example 3.1. Consider the ideal space (X, τ , I) of Example 2.1. Then ∅*=∅, ({b})*=∅,
({a, b})*={a}, ({b, c})*={c} and X*={a, c}. Since every ω-open set is ∗-closed, every
subset of X is I∗g-closed and so every subset of X is I∗g-open. This implies that (X,
τ , I) is I∗g-regular. Now, {c} is a closed set not containing a∈X, {c} and a are not
separated by disjoint open sets. So (X, τ , I) is not regular.

Theorem 3.2. In an ideal space (X, τ , I), the following are equivalent.

1. X is I∗g-regular.

2. For every closed set B not containing x∈X, there exist disjoint I∗g-open sets U
and V such that x∈U and B⊂V.
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3. For every open set V containing x∈X, there exists an I∗g-open set U of X such
that x⊂U⊂cl*(U)⊂V.

Proof. (1) and (2) are equivalent by the definition.
(2)⇒(3). Let V be an open subset such that x∈V. Then X−V is a closed set not

containing x. Therefore, there exist disjoint I∗g-open sets U and W such that x∈U
and X−V⊂W. Now, X−V⊂W implies that X−V⊂int*(W) and so X−int*(W)⊂V.
Again, U∩W=∅ implies that U∩int*(W)=∅ and so cl*(U)⊂X−int*(W). Therefore,
x∈U⊂cl*(U)⊂V. This proves (3).

(3)⇒(1). Let B be a closed set not containing x. By hypothesis, there exists an I∗g-
open set U such that x∈U⊂cl*(U)⊂X−B. If W=X−cl*(U), then U and W are disjoint
I∗g-open sets such that x∈U and B⊂W. This proves (1).

Theorem 3.3. If (X, τ , I) is an I∗g-regular, T1-space where I is completely codense,
then X is regular.

Proof. Let B be a closed set not containing x∈X. By Theorem 3.2, there exists an
I∗g-open set U of X such that x∈U⊂cl*(U)⊂X−B. Since X is a T1-space, {x} is ω-
closed and so {x}⊂int*(U), by Lemma 1.5. Since I is completely codense, τ*⊂τα and
so int*(U) and X−cl*(U) are τα-open sets. Now, x∈int*(U)⊂int(cl(int(int*(U))))=G
and B⊂X−cl*(U)⊂int(cl(int(X−cl*(U))))=H. Then G and H are disjoint open sets
containing x and B respectively. Therefore, X is regular.

If I=N in Theorem 3.2, then we have the following Corollary 3.4 which gives char-
acterizations of regular spaces, the proof of which follows from Theorem 3.3.

Corollary 3.4. If (X, τ) is a T1-space, then the following are equivalent.

1. X is regular.

2. For every closed set B not containing x∈X, there exist disjoint αĝ-open sets U
and V such that x∈U and B⊂V.

3. For every open set V containing x∈X, there exists an αĝ-open set U of X such
that x∈U⊂clα(U)⊂V.

If I={∅} in Theorem 3.2, then we have the following Corollary 3.5 which gives
characterizations of regular spaces.

Corollary 3.5. If (X, τ) is a T1-space, then the following are equivalent.

1. X is regular.

2. For every closed set B not containing x∈X, there exist disjoint *g-open sets U and
V such that x∈U and B⊂V.

3. For every open set V containing x∈X, there exists a *g-open set U of X such that
x∈U⊂clα(U)⊂V.

Theorem 3.6. If every ω-open subset of an ideal space (X, τ , I) is ∗-closed, then (X,
τ , I) is I∗g-regular.
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Proof. Suppose every ω-open subset of X is ∗-closed. Then by Lemma 1.6, every subset
of X is I∗g-closed and hence every subset of X is I∗g-open. If B is a closed set not
containing x, then {x} and B are the required disjoint I∗g-open sets containing x and
B respectively. Therefore, (X, τ , I) is I∗g-regular.

The following Example 3.7 shows that the reverse direction of the above Theorem
3.6 is not true.

Example 3.7. Consider the real line R with the usual topology. Let I={∅}. Then R
is regular and hence I∗g-regular. But open sets are not closed and hence open sets are
not ∗-closed. Thus ω-open sets are not ∗-closed.
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