

Received: 12.01.2014 Accepted: 15.05.2014 Editors-in-Chief: Naim Çağman Area Editor: Oktay Muhtaroğlu

\mathcal{I}_{*g} -normal and \mathcal{I}_{*g} -regular spaces

O. Ravi^{a,1} (siingam@yahoo.com)
J. A. R. Rodrigo^b (antonyrexrodrigo@yahoo.co.in)
M. Sangeetha^c (sangeethaabi10@gmail.com)

^aDepartment of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India.
 ^bDepartment of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India.
 ^cDepartment of Mathematics, Yadava College, Madurai, Tamil Nadu, India.

Abstract - \mathcal{I}_{*g} -normal and \mathcal{I}_{*g} -regular spaces are introduced and various characterizations and properties are given. Characterizations of normal, mildly normal, *g-normal and regular spaces are also given. **Keywords** - \mathcal{I}_{*g} -closed sets, \mathcal{I}_{*g} -open sets, *g-closed sets, *gopen sets, \mathcal{I}_{*g} -normal spaces, \mathcal{I}_{*g} -regular spaces.

1 Introduction and Preliminaries

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) . A subset A of a space (X, τ) is said to be regular open if A=int(cl(A))and A is said to be regular closed if A=cl(int(A)). A subset A of a space (X, τ) is said to be semi-open [7] if $A \subset cl(int(A))$. The complement of semi-open set is semi-closed. A subset A of a space (X, τ) is an α -open [15] (resp. preopen [12]) if $A \subset int(cl(int(A)))$ (resp. $A \subset int(cl(A))$). The complement of α -open set is α -closed. The α -closure [15] of a subset A of X, denoted by $\alpha cl(A)$, is defined to be the intersection of all α -closed sets containing A. The α -interior [15] of a subset A of X, denoted by $\alpha int(A)$, is defined to be the union of all α -open sets contained in A. The family of all α -open sets in (X, τ) , denoted by τ^{α} , is a topology on X finer than τ . The interior of a subset A in (X, τ^{α}) is denoted by $int_{\alpha}(A)$. The closure of a subset A in (X, τ^{α}) is denoted by $cl_{\alpha}(A)$. A subset A of a space (X, τ) is said to be ω -closed [21] if $cl(A) \subset U$ whenever $A \subset U$ and U is semi-open. The complement of ω -closed set is ω -open. A subset A of a space (X, τ) is said to be $\alpha \hat{g}$ -closed [1] (resp. $r\alpha g$ -closed [17]) if $cl_{\alpha}(A) \subset U$ whenever $A \subset U$ and

¹Corresponding Author

U is ω -open (resp. regular open). A is said to be $\alpha \hat{g}$ -open (resp. r α g-open) if X-A is $\alpha \hat{g}$ -closed (resp. r α g-closed). A subset A of a space (X, τ) is said to be *g-closed [19] if cl(A) \subseteq U whenever A \subseteq U and U is ω -open. A space (X, τ) is said to be *g-normal, if for every disjoint *g-closed sets A and B, there exist disjoint open sets U and V such that A \subset U, B \subset V.

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ imply $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [6] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every} \}$ $U \in \tau(x)$ where $\tau(x) = \{U \in \tau : x \in U\}$. We will make use of the basic facts about the local functions [5, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator cl^{*}(.) for a topology $\tau^*(\mathcal{I}, \tau)$, called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [23]. When there is no chance for confusion, we will simply write A^{*} for A^{*}(\mathcal{I}, τ) and τ^* for $\tau^*(\mathcal{I}, \tau)$. int^{*}(A) will denote the interior of A in (X, τ^*). If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. N is the ideal of all nowhere dense subsets in (X, τ) . A subset A of an ideal space (X, τ, \mathcal{I}) is τ^* -closed [5] or *-closed (resp. *-dense in itself [4]) if $A^* \subset A$ (resp. $A \subset A^*$). A subset A of an ideal space (X, τ, \mathcal{I}) is \mathcal{I}_{*g} -closed [19] if $A^* \subset U$ whenever U is ω -open and $A \subset U$. By Theorem 2.3 of [19], every *-closed and hence every closed set is \mathcal{I}_{*q} -closed. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be \mathcal{I}_{*q} -open [19] if X-A is \mathcal{I}_{*q} -closed. In this paper, we define \mathcal{I}_{*g} -normal, $_{*g}\mathcal{I}$ -normal and \mathcal{I}_{*g} -regular spaces using \mathcal{I}_{*g} -open sets and give characterizations and properties of such spaces. Also, characterizations of normal, mildly normal, *g-normal and regular spaces are given.

An ideal \mathcal{I} is said to be codense [3] if $\tau \cap \mathcal{I} = \{\emptyset\}$. \mathcal{I} is said to be completely codense [3] if $PO(X) \cap \mathcal{I} = \{\emptyset\}$, where PO(X) is the family of all preopen sets in (X, τ) . Every completely codense ideal is codense but not conversely [3]. The following lemmas will be useful in the sequel.

Lemma 1.1 ([20], Theorem 6). Let (X, τ, \mathcal{I}) be an ideal space. If \mathcal{I} is completely codense, then $\tau^* \subset \tau^{\alpha}$.

Lemma 1.2 ([19], Theorem 2.16). Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} is completely codense. Then the following are equivalent.

- 1. X is normal.
- 2. For any disjoint closed sets A and B, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $A \subset U, B \subset V$.
- 3. For a closed set A and an open set V containing A, there exists an \mathcal{I}_{*g} -open set U such that $A \subset U \subset cl^*(U) \subset V$.

Lemma 1.3. If (X, τ, \mathcal{I}) is an ideal space and $A \subset X$, then the following hold.

- 1. If $\mathcal{I} = \{\emptyset\}$, then A is \mathcal{I}_{*q} -closed if and only if A is *g-closed [[19], Corollary 2.3].
- 2. If $\mathcal{I}=N$, then A is \mathcal{I}_{*q} -closed if and only if A is $\alpha \hat{g}$ -closed [19].

Lemma 1.4 ([19], Theorem 2.2). If (X, τ, \mathcal{I}) is an ideal space and $A \subset X$, then the following are equivalent.

- 1. A is \mathcal{I}_{*q} -closed.
- 2. $cl^*(A) \subset U$ whenever $A \subset U$ and U is ω -open in X.

Lemma 1.5 ([19], Theorem 2.12). Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then A is \mathcal{I}_{*a} -open if and only if $F \subset int^*(A)$ whenever F is ω -closed and $F \subset A$.

Lemma 1.6 ([19], Theorem 2.15). Let (X, τ, \mathcal{I}) be an ideal space. Then every subset of X is \mathcal{I}_{*q} -closed if and only if every ω -open set is *-closed.

Proposition 1.7. [21] Every open set is ω -open but not conversely.

2 \mathcal{I}_{*q} -normal and $_{*q}\mathcal{I}$ -normal Spaces

An ideal space (X, τ, \mathcal{I}) is said to be an \mathcal{I}_{*g} -normal space if for every pair of disjoint closed sets A and B, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $A \subset U$ and $B \subset V$. Since every open set is an \mathcal{I}_{*g} -open set, every normal space is \mathcal{I}_{*g} -normal. The following Example 2.1 shows that an \mathcal{I}_{*g} -normal space is not necessarily a normal space. Theorem 2.2 below gives characterizations of \mathcal{I}_{*g} -normal spaces. Theorem 2.3 below shows that the two concepts coincide for completely codense ideal spaces.

Example 2.1. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\emptyset^* = \emptyset$, $(\{a, b\})^* = \{a\}, (\{b, c\})^* = \{c\}, (\{b\})^* = \emptyset$ and $X^* = \{a, c\}$. Here every ω -open set is *-closed and so, by Lemma 1.6, every subset of X is \mathcal{I}_{*g} -closed and hence every subset of X is \mathcal{I}_{*g} -open. This implies that (X, τ, \mathcal{I}) is \mathcal{I}_{*g} -normal. Now $\{a\}$ and $\{c\}$ are disjoint closed subsets of X which are not separated by disjoint open sets and so (X, τ) is not normal.

Theorem 2.2. Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent.

- 1. X is \mathcal{I}_{*g} -normal.
- 2. For every pair of disjoint closed sets A and B, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $A \subset U$ and $B \subset V$.
- 3. For every closed set A and an open set V containing A, there exists an \mathcal{I}_{*g} -open set U such that $A \subset U \subset cl^*(U) \subset V$.

Proof. (1) \Rightarrow (2). The proof follows from the definition of \mathcal{I}_{*q} -normal spaces.

 $(2) \Rightarrow (3)$. Let A be a closed set and V be an open set containing A. Since A and X–V are disjoint closed sets, there exist disjoint \mathcal{I}_{*g} -open sets U and W such that A \subset U and X–V \subset W. Again, U \cap W= \emptyset implies that U \cap int*(W)= \emptyset and so cl*(U) \subset X–int*(W). Since X–V is ω -closed and W is \mathcal{I}_{*g} -open, X–V \subset W implies that X–V \subset int*(W) and so X–int*(W) \subset V. Thus, we have A \subset U \subset cl*(U) \subset X–int*(W) \subset V which proves (3).

 $(3) \Rightarrow (1)$. Let A and B be two disjoint closed subsets of X. By hypothesis, there exists an \mathcal{I}_{*g} -open set U such that $A \subset U \subset cl^*(U) \subset X-B$. If $W=X-cl^*(U)$, then U and W are the required disjoint \mathcal{I}_{*g} -open sets containing A and B respectively. So, (X, τ, \mathcal{I}) is \mathcal{I}_{*g} -normal.

Theorem 2.3. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} is completely codense. If (X, τ, \mathcal{I}) is \mathcal{I}_{*q} -normal, then it is a normal space.

Proof. Suppose that \mathcal{I} is completely codense. By Theorem 2.2, (X, τ, \mathcal{I}) is \mathcal{I}_{*g} -normal if and only if for each pair of disjoint closed sets A and B, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $A \subset U$ and $B \subset V$ if and only if X is normal, by Lemma 1.2.

Theorem 2.4. Let (X, τ, \mathcal{I}) be an \mathcal{I}_{*g} -normal space. If F is closed and A is a *g-closed set such that $A \cap F = \emptyset$, then there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $A \subset U$ and $F \subset V$.

Proof. Since $A \cap F = \emptyset$, $A \subset X - F$ where X - F is ω -open. Therefore, by hypothesis, $cl(A) \subset X - F$. Since $cl(A) \cap F = \emptyset$ and X is \mathcal{I}_{*g} -normal, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $cl(A) \subset U$ and $F \subset V$.

The following Corollaries 2.5 and 2.6 give properties of normal spaces. If $\mathcal{I}=\{\emptyset\}$ in Theorem 2.4, then we have the following Corollary 2.5, the proof of which follows from Theorem 2.3 and Lemma 1.3, since $\{\emptyset\}$ is a completely codense ideal. If $\mathcal{I}=\mathbb{N}$ in Theorem 2.4, then we have the Corollary 2.6 below, since $\tau^*(\mathbb{N})=\tau^{\alpha}$ and \mathcal{I}_{*g} -open sets coincide with $\alpha \hat{g}$ -open sets.

Corollary 2.5. Let (X, τ) be a normal space. If F is a closed set and A is a *g-closed set disjoint from F, then there exist disjoint *g-open sets U and V such that $A \subset U$ and $F \subset V$.

Corollary 2.6. Let (X, τ, \mathcal{I}) be a normal ideal space where $\mathcal{I}=N$. If F is a closed set and A is a *g-closed set disjoint from F, then there exist disjoint $\alpha \hat{g}$ -open sets U and V such that $A \subset U$ and $F \subset V$.

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal space which is \mathcal{I}_{*g} -normal. Then the following hold.

- 1. For every closed set A and every *g-open set B containing A, there exists an \mathcal{I}_{*g} -open set U such that $A \subset int^*(U) \subset U \subset B$.
- 2. For every *g-closed set A and every open set B containing A, there exists an \mathcal{I}_{*q} -closed set U such that $A \subset U \subset cl^*(U) \subset B$.

Proof. (1) Let A be a closed set and B be a *g-open set containing A. Then $A \cap (X-B) = \emptyset$, where A is closed and X-B is *g-closed. By Theorem 2.4, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $A \subset U$ and $X-B \subset V$. Since $U \cap V = \emptyset$, we have $U \subset X-V$. By Lemma 1.5, $A \subset int^*(U)$. Therefore, $A \subset int^*(U) \subset U \subset X-V \subset B$. This proves (1).

(2) Let A be a *g-closed set and B be an open set containing A. Then X–B is a closed set contained in the *g-open set X–A. By (1), there exists an \mathcal{I}_{*g} -open set V such that X–B⊂int*(V)⊂V⊂X–A. Therefore, A⊂X–V⊂cl*(X–V)⊂B. If U=X–V, then A⊂U⊂cl*(U)⊂B and so U is the required \mathcal{I}_{*g} -closed set.

The following Corollaries 2.8 and 2.9 give some properties of normal spaces. If $\mathcal{I}=\{\emptyset\}$ in Theorem 2.7, then we have the following Corollary 2.8. If $\mathcal{I}=N$ in Theorem 2.7, then we have the Corollary 2.9 below.

Corollary 2.8. Let (X, τ) be a normal space. Then the following hold.

1. For every closed set A and every *g-open set B containing A, there exists a *g-open set U such that $A \subset int(U) \subset U \subset B$.

2. For every *g-closed set A and every open set B containing A, there exists a *gclosed set U such that $A \subset U \subset cl(U) \subset B$.

Corollary 2.9. Let (X, τ) be a normal space. Then the following hold.

- 1. For every closed set A and every *g-open set B containing A, there exists an $\alpha \hat{g}$ -open set U such that $A \subset int_{\alpha}(U) \subset U \subset B$.
- 2. For every *g-closed set A and every open set B containing A, there exists an $\alpha \hat{g}$ -closed set U such that $A \subset U \subset cl_{\alpha}(U) \subset B$.

An ideal space (X, τ, \mathcal{I}) is said to be ${}_{*g}\mathcal{I}$ -normal if for each pair of disjoint \mathcal{I}_{*g} -closed sets A and B, there exist disjoint open sets U and V in X such that $A \subset U$ and $B \subset V$. Since every closed set is \mathcal{I}_{*g} -closed, every ${}_{*g}\mathcal{I}$ -normal space is normal. But a normal space need not be ${}_{*g}\mathcal{I}$ -normal as the following Example 2.10 shows. Theorems 2.11 and 2.13 below give characterizations of ${}_{*g}\mathcal{I}$ -normal spaces.

Example 2.10. Let $X=\{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Every ω -open set is *-closed and so every subset of X is \mathcal{I}_{*g} -closed. Now $A=\{a, b\}$ and $B=\{c\}$ are disjoint \mathcal{I}_{*g} -closed sets, but they are not separated by disjoint open sets. So (X, τ, \mathcal{I}) is not ${}_{*g}\mathcal{I}$ -normal. But (X, τ, \mathcal{I}) is normal.

Theorem 2.11. In an ideal space (X, τ, \mathcal{I}) , the following are equivalent.

- 1. X is $_{*a}\mathcal{I}$ -normal.
- 2. For every \mathcal{I}_{*g} -closed set A and every \mathcal{I}_{*g} -open set B containing A, there exists an open set U of X such that $A \subset U \subset cl(U) \subset B$.

Proof. (1)⇒(2). Let A be an \mathcal{I}_{*g} -closed set and B be an \mathcal{I}_{*g} -open set containing A. Since A and X-B are disjoint \mathcal{I}_{*g} -closed sets, there exist disjoint open sets U and V such that A⊂U and X-B⊂V. Now U∩V=Ø implies that cl(U)⊂X-V. Therefore, A⊂U⊂cl(U)⊂X-V⊂B. This proves (2).

 $(2) \Rightarrow (1)$. Suppose A and B are disjoint \mathcal{I}_{*g} -closed sets, then the \mathcal{I}_{*g} -closed set A is contained in the \mathcal{I}_{*g} -open set X–B. By hypothesis, there exists an open set U of X such that $A \subset U \subset cl(U) \subset X-B$. If V=X-cl(U), then U and V are disjoint open sets containing A and B respectively. Therefore, (X, τ, \mathcal{I}) is ${}_{*g}\mathcal{I}$ -normal.

If $\mathcal{I}=\{\emptyset\}$, then $_{*g}\mathcal{I}$ -normal spaces coincide with *g-normal spaces and so if we take $\mathcal{I}=\{\emptyset\}$, in Theorem 2.11, then we have the following characterization for *g-normal spaces.

Corollary 2.12. In a space (X, τ) , the following are equivalent.

- 1. X is *g-normal.
- 2. For every *g-closed set A and every *g-open set B containing A, there exists an open set U of X such that $A \subset U \subset cl(U) \subset B$.

Theorem 2.13. In an ideal space (X, τ, \mathcal{I}) , the following are equivalent.

1. X is $_{*q}\mathcal{I}$ -normal.

- 2. For each pair of disjoint \mathcal{I}_{*g} -closed subsets A and B of X, there exists an open set U of X containing A such that $cl(U) \cap B = \emptyset$.
- 3. For each pair of disjoint \mathcal{I}_{*g} -closed subsets A and B of X, there exist an open set U containing A and an open set V containing B such that $cl(U) \cap cl(V) = \emptyset$.

Proof. (1)⇒(2). Suppose that A and B are disjoint \mathcal{I}_{*g} -closed subsets of X. Then the \mathcal{I}_{*g} -closed set A is contained in the \mathcal{I}_{*g} -open set X–B. By Theorem 2.11, there exists an open set U such that A⊂U⊂cl(U)⊂X–B. Therefore, U is the required open set containing A such that cl(U)∩B=Ø.

 $(2)\Rightarrow(3)$. Let A and B be two disjoint \mathcal{I}_{*g} -closed subsets of X. By hypothesis, there exists an open set U of X containing A such that $cl(U)\cap B=\emptyset$. Also, cl(U) and B are disjoint \mathcal{I}_{*g} -closed sets of X. By hypothesis, there exists an open set V of X containing B such that $cl(U)\cap cl(V)=\emptyset$.

 $(3) \Rightarrow (1)$. The proof is clear.

If $\mathcal{I}=\{\emptyset\}$, in Theorem 2.13, then we have the following characterizations for *g-normal spaces.

Corollary 2.14. Let (X, τ) be a space. Then the following are equivalent.

- 1. X is *g-normal.
- 2. For each pair of disjoint *g-closed subsets A and B of X, there exists an open set U of X containing A such that $cl(U)\cap B=\emptyset$.
- 3. For each pair of disjoint *g-closed subsets A and B of X, there exist an open set U containing A and an open set V containing B such that $cl(U) \cap cl(V) = \emptyset$.

Theorem 2.15. Let (X, τ, \mathcal{I}) be an ${}_{*g}\mathcal{I}$ -normal space. If A and B are disjoint \mathcal{I}_{*g} closed subsets of X, then there exist disjoint open sets U and V such that $cl^*(A) \subset U$ and $cl^*(B) \subset V$.

Proof. Suppose that A and B are disjoint \mathcal{I}_{*g} -closed sets. By Theorem 2.13(3), there exist an open set U containing A and an open set V containing B such that $cl(U) \cap cl(V) = \emptyset$. Since A is \mathcal{I}_{*g} -closed, A \subset U implies that $cl^*(A) \subset U$. Similarly $cl^*(B) \subset V$.

If $\mathcal{I}=\{\emptyset\}$, in Theorem 2.15, then we have the following property of disjoint *g-closed sets in *g-normal spaces.

Corollary 2.16. Let (X, τ) be a *g-normal space. If A and B are disjoint *g-closed subsets of X, then there exist disjoint open sets U and V such that $cl(A) \subset U$ and $cl(B) \subset V$.

Theorem 2.17. Let (X, τ, \mathcal{I}) be an ${}_{*g}\mathcal{I}$ -normal space. If A is an \mathcal{I}_{*g} -closed set and B is an \mathcal{I}_{*g} -open set containing A, then there exists an open set U such that $A \subset cl^*(A) \subset U \subset int^*(B) \subset B$.

Proof. Suppose A is an \mathcal{I}_{*g} -closed set and B is an \mathcal{I}_{*g} -open set containing A. Since A and X-B are disjoint \mathcal{I}_{*g} -closed sets, by Theorem 2.15, there exist disjoint open sets U and V such that $cl^*(A) \subset U$ and $cl^*(X-B) \subset V$. Now, $X-int^*(B)=cl^*(X-B) \subset V$ implies that $X-V \subset int^*(B)$. Again, $U \cap V = \emptyset$ implies $U \subset X-V$ and so $A \subset cl^*(A) \subset U \subset X-V \subset int^*(B) \subset B$.

If $\mathcal{I} = \{\emptyset\}$, in Theorem 2.17, then we have the following Corollary 2.18.

Corollary 2.18. Let (X, τ) be a *g-normal space. If A is a *g-closed set and B is a *g-open set containing A, then there exists an open set U such that $A \subset cl(A) \subset U \subset int(B) \subset B$.

The following Theorem 2.19 gives a characterization of normal spaces in terms of *g-open sets which follows from Lemma 1.2 if $\mathcal{I} = \{\emptyset\}$.

Theorem 2.19. Let (X, τ) be a space. Then the following are equivalent.

- 1. X is normal.
- 2. For any disjoint closed sets A and B, there exist disjoint *g-open sets U and V such that $A \subset U$ and $B \subset V$.
- 3. For any closed set A and open set V containing A, there exists a *g-open set U such that $A \subset U \subset cl(U) \subset V$.

The rest of the section is devoted to the study of mildly normal spaces in terms of \mathcal{I}_{*g} -open sets, \mathcal{I}_{g} -open sets and \mathcal{I}_{rg} -open sets. A space (X, τ) is said to be a mildly normal space [22] if disjoint regular closed sets are separated by disjoint open sets. A subset A of a space (X, τ) is said to be α g-closed [11] if $cl_{\alpha}(A) \subset U$ whenever $A \subset U$ and U is open. A subset A of a space (X, τ) is said to be g-closed [8] (resp. rg-closed [18]) if $cl(A) \subset U$ whenever $A \subset U$ and U is open (resp. regular open) in X. The complements of the above closed sets are called their respective open sets.

A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I}_g -closed [14] if $A^* \subset U$ whenever $A \subset U$ and U is open. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be a regular generalized closed set with respect to an ideal \mathcal{I} (\mathcal{I}_{rg} -closed) [14] if $A^* \subset U$ whenever $A \subset U$ and U is regular open. A is called \mathcal{I}_g -open (resp. \mathcal{I}_{rg} -open) if X-A is \mathcal{I}_g -closed (resp. \mathcal{I}_{rg} -closed). Clearly, every \mathcal{I}_{*g} -closed set is \mathcal{I}_g -closed and every \mathcal{I}_g -closed set is \mathcal{I}_{rg} -closed but the separate converses are not true. Theorem 2.21 below gives characterizations of mildly normal spaces. Corollary 2.22 below gives characterizations of mildly normal spaces in terms of $\alpha \hat{g}$ -open, α g-open and $r\alpha$ g-open sets. Corollary 2.23 below gives characterizations of mildly normal spaces in terms of *g-open, g-open and rg-open sets. The following Lemma 2.20 is essential to prove Theorem 2.21.

Lemma 2.20. [14] Let (X, τ, \mathcal{I}) be an ideal space. A subset $A \subset X$ is \mathcal{I}_{rg} -open if and only if $F \subset int^*(A)$ whenever F is regular closed and $F \subset A$.

Theorem 2.21. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} is completely codense. Then the following are equivalent.

- 1. X is mildly normal.
- 2. For disjoint regular closed sets A and B, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $A \subset U$ and $B \subset V$.
- 3. For disjoint regular closed sets A and B, there exist disjoint \mathcal{I}_g -open sets U and V such that $A \subset U$ and $B \subset V$.
- 4. For disjoint regular closed sets A and B, there exist disjoint \mathcal{I}_{rg} -open sets U and V such that $A \subset U$ and $B \subset V$.

- 5. For a regular closed set A and a regular open set V containing A, there exists an \mathcal{I}_{rg} -open set U of X such that $A \subset U \subset cl^*(U) \subset V$.
- 6. For a regular closed set A and a regular open set V containing A, there exists an *-open set U of X such that $A \subset U \subset cl^*(U) \subset V$.
- 7. For disjoint regular closed sets A and B, there exist disjoint *-open sets U and V such that $A \subset U$ and $B \subset V$.

Proof. (1) \Rightarrow (2). Suppose that A and B are disjoint regular closed sets. Since X is mildly normal, there exist disjoint open sets U and V such that A \subset U and B \subset V. But every open set is an \mathcal{I}_{*q} -open set. This proves (2).

 $(2) \Rightarrow (3)$. The proof follows from the fact that every \mathcal{I}_{*g} -open set is an \mathcal{I}_{g} -open set.

(3) \Rightarrow (4). The proof follows from the fact that every \mathcal{I}_g -open set is an \mathcal{I}_{rg} -open set.

 $(4) \Rightarrow (5)$. Suppose A is a regular closed and B is a regular open set containing A. Then A and X-B are disjoint regular closed sets. By hypothesis, there exist disjoint \mathcal{I}_{rg} -open sets U and V such that A \subset U and X-B \subset V. Since X-B is regular closed and V is \mathcal{I}_{rg} -open, by Lemma 2.20, X-B \subset int*(V) and so X-int*(V) \subset B. Again, U \cap V= \emptyset implies that U \cap int*(V)= \emptyset and so cl*(U) \subset X-int*(V) \subset B. Hence U is the required \mathcal{I}_{rg} -open set such that A \subset U \subset cl*(U) \subset B.

 $(5)\Rightarrow(6)$. Let A be a regular closed set and V be a regular open set containing A. Then there exists an \mathcal{I}_{rg} -open set G of X such that $A \subset G \subset cl^*(G) \subset V$. By Lemma 2.20, $A \subset int^*(G)$. If $U = int^*(G)$, then U is an *-open set and $A \subset U \subset cl^*(U) \subset cl^*(G) \subset V$. Therefore, $A \subset U \subset cl^*(U) \subset V$.

 $(6) \Rightarrow (7)$. Let A and B be disjoint regular closed subsets of X. Then X-B is a regular open set containing A. By hypothesis, there exists an *-open set U of X such that $A \subset U \subset cl^*(U) \subset X-B$. If $V=X-cl^*(U)$, then U and V are disjoint *-open sets of X such that $A \subset U$ and $B \subset V$.

 $(7) \Rightarrow (1)$. Let A and B be disjoint regular closed sets of X. Then there exist disjoint *-open sets U and V such that $A \subset U$ and $B \subset V$. Since \mathcal{I} is completely codense, by Lemma 1.1, $\tau^* \subset \tau^{\alpha}$ and so U, $V \in \tau^{\alpha}$. Hence $A \subset U \subset int(cl(int(U))) = G$ and $B \subset V \subset int(cl(int(V))) = H$. G and H are the required disjoint open sets containing A and B respectively. This proves (1).

If $\mathcal{I}=N$, in the above Theorem 2.21, then \mathcal{I}_{rg} -closed sets coincide with r α g-closed sets and so we have the following Corollary 2.22.

Corollary 2.22. Let (X, τ) be a space. Then the following are equivalent.

- 1. X is mildly normal.
- 2. For disjoint regular closed sets A and B, there exist disjoint $\alpha \hat{g}$ -open sets U and V such that $A \subset U$ and $B \subset V$.
- 3. For disjoint regular closed sets A and B, there exist disjoint αg -open sets U and V such that $A \subset U$ and $B \subset V$.
- 4. For disjoint regular closed sets A and B, there exist disjoint $r\alpha g$ -open sets U and V such that $A \subset U$ and $B \subset V$.
- 5. For a regular closed set A and a regular open set V containing A, there exists an $r\alpha g$ -open set U of X such that $A \subset U \subset cl_{\alpha}(U) \subset V$.

- 6. For a regular closed set A and a regular open set V containing A, there exists an α -open set U of X such that $A \subset U \subset cl_{\alpha}(U) \subset V$.
- 7. For disjoint regular closed sets A and B, there exist disjoint α -open sets U and V such that $A \subset U$ and $B \subset V$.

If $\mathcal{I} = \{\emptyset\}$ in the above Theorem 2.21, we get the following Corollary 2.23.

Corollary 2.23. Let (X, τ) be a space. Then the following are equivalent.

- 1. X is mildly normal.
- 2. For disjoint regular closed sets A and B, there exist disjoint *g-open sets U and V such that $A \subset U$ and $B \subset V$.
- 3. For disjoint regular closed sets A and B, there exist disjoint g-open sets U and V such that $A \subset U$ and $B \subset V$.
- 4. For disjoint regular closed sets A and B, there exist disjoint rg-open sets U and V such that $A \subset U$ and $B \subset V$.
- 5. For a regular closed set A and a regular open set V containing A, there exists an rg-open set U of X such that $A \subset U \subset cl(U) \subset V$.
- 6. For a regular closed set A and a regular open set V containing A, there exists an open set U of X such that $A \subset U \subset cl(U) \subset V$.
- 7. For disjoint regular closed sets A and B, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

3 \mathcal{I}_{*q} -regular Spaces

An ideal space (X, τ, \mathcal{I}) is said to be an \mathcal{I}_{*g} -regular space if for each pair consisting of a point x and a closed set B not containing x, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $x \in U$ and $B \subset V$. Every regular space is \mathcal{I}_{*g} -regular, since every open set is \mathcal{I}_{*g} -open. The following Example 3.1 shows that an \mathcal{I}_{*g} -regular space need not be regular. Theorem 3.2 gives a characterization of \mathcal{I}_{*g} -regular spaces.

Example 3.1. Consider the ideal space (X, τ, \mathcal{I}) of Example 2.1. Then $\emptyset^* = \emptyset$, $(\{b\})^* = \emptyset$, $(\{a, b\})^* = \{a\}$, $(\{b, c\})^* = \{c\}$ and $X^* = \{a, c\}$. Since every ω -open set is *-closed, every subset of X is \mathcal{I}_{*g} -closed and so every subset of X is \mathcal{I}_{*g} -open. This implies that (X, τ, \mathcal{I}) is \mathcal{I}_{*g} -regular. Now, $\{c\}$ is a closed set not containing $a \in X$, $\{c\}$ and a are not separated by disjoint open sets. So (X, τ, \mathcal{I}) is not regular.

Theorem 3.2. In an ideal space (X, τ, \mathcal{I}) , the following are equivalent.

- 1. X is \mathcal{I}_{*g} -regular.
- 2. For every closed set B not containing $x \in X$, there exist disjoint \mathcal{I}_{*g} -open sets U and V such that $x \in U$ and $B \subset V$.

3. For every open set V containing $x \in X$, there exists an \mathcal{I}_{*g} -open set U of X such that $x \subset U \subset cl^*(U) \subset V$.

Proof. (1) and (2) are equivalent by the definition.

 $(2)\Rightarrow(3)$. Let V be an open subset such that $x\in V$. Then X-V is a closed set not containing x. Therefore, there exist disjoint \mathcal{I}_{*g} -open sets U and W such that $x\in U$ and X-V \subset W. Now, X-V \subset W implies that X-V \subset int*(W) and so X-int*(W) \subset V. Again, U \cap W= \emptyset implies that U \cap int*(W)= \emptyset and so cl*(U) \subset X-int*(W). Therefore, $x\in U\subset cl^*(U)\subset V$. This proves (3).

 $(3) \Rightarrow (1)$. Let B be a closed set not containing x. By hypothesis, there exists an \mathcal{I}_{*g} -open set U such that $x \in U \subset cl^*(U) \subset X-B$. If $W=X-cl^*(U)$, then U and W are disjoint \mathcal{I}_{*g} -open sets such that $x \in U$ and $B \subset W$. This proves (1).

Theorem 3.3. If (X, τ, \mathcal{I}) is an \mathcal{I}_{*g} -regular, T_1 -space where \mathcal{I} is completely codense, then X is regular.

Proof. Let B be a closed set not containing $x \in X$. By Theorem 3.2, there exists an \mathcal{I}_{*g} -open set U of X such that $x \in U \subset cl^*(U) \subset X-B$. Since X is a T_1 -space, $\{x\}$ is ω -closed and so $\{x\} \subset int^*(U)$, by Lemma 1.5. Since \mathcal{I} is completely codense, $\tau^* \subset \tau^{\alpha}$ and so $int^*(U)$ and $X-cl^*(U)$ are τ^{α} -open sets. Now, $x \in int^*(U) \subset int(cl(int(int^*(U)))) = G$ and $B \subset X-cl^*(U) \subset int(cl(int(X-cl^*(U)))) = H$. Then G and H are disjoint open sets containing x and B respectively. Therefore, X is regular.

If $\mathcal{I}=N$ in Theorem 3.2, then we have the following Corollary 3.4 which gives characterizations of regular spaces, the proof of which follows from Theorem 3.3.

Corollary 3.4. If (X, τ) is a T_1 -space, then the following are equivalent.

- 1. X is regular.
- 2. For every closed set B not containing $x \in X$, there exist disjoint $\alpha \hat{g}$ -open sets U and V such that $x \in U$ and $B \subset V$.
- 3. For every open set V containing $x \in X$, there exists an $\alpha \hat{g}$ -open set U of X such that $x \in U \subset cl_{\alpha}(U) \subset V$.

If $\mathcal{I} = \{\emptyset\}$ in Theorem 3.2, then we have the following Corollary 3.5 which gives characterizations of regular spaces.

Corollary 3.5. If (X, τ) is a T_1 -space, then the following are equivalent.

- 1. X is regular.
- 2. For every closed set B not containing $x \in X$, there exist disjoint *g-open sets U and V such that $x \in U$ and $B \subset V$.
- 3. For every open set V containing $x \in X$, there exists a *g-open set U of X such that $x \in U \subset cl_{\alpha}(U) \subset V$.

Theorem 3.6. If every ω -open subset of an ideal space (X, τ, \mathcal{I}) is *-closed, then (X, τ, \mathcal{I}) is \mathcal{I}_{*q} -regular.

Proof. Suppose every ω -open subset of X is *-closed. Then by Lemma 1.6, every subset of X is \mathcal{I}_{*g} -closed and hence every subset of X is \mathcal{I}_{*g} -open. If B is a closed set not containing x, then {x} and B are the required disjoint \mathcal{I}_{*g} -open sets containing x and B respectively. Therefore, (X, τ, \mathcal{I}) is \mathcal{I}_{*g} -regular.

The following Example 3.7 shows that the reverse direction of the above Theorem 3.6 is not true.

Example 3.7. Consider the real line \mathcal{R} with the usual topology. Let $\mathcal{I} = \{\emptyset\}$. Then \mathcal{R} is regular and hence \mathcal{I}_{*g} -regular. But open sets are not closed and hence open sets are not *-closed. Thus ω -open sets are not *-closed.

Acknowledgement

The authors are grateful for the referees for their valuable comments.

References

- [1] M. E. Abd EL. Monsef, M. Lellis Thivagar and S. Rosemary, $\alpha \hat{g}$ -closed sets in topological spaces, Assiut Univ. J. of Math and Comp. sci., 36(1)(2007), 43-51.
- [2] J. Dontchev, M. Ganster and T. Noiri, Unified approach of generalized closed sets via topological ideals, Math. Japonica., 49(1999), 395-401.
- [3] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, Topology and its Applications, 93(1999), 1-16.
- [4] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [5] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990), no. 4, 295-310.
- [6] K. Kuratowski, Topology, Vol. I, Academic Press (New York, 1966).
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
- [9] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395-402.
- [10] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. III, 42(1993), 13-21.
- [11] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Math., 15(1994), 51-63.

- [12] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phy. Soc. Egypt, 53(1982), 47-53.
- [13] B. M. Munshi, Separation Axioms, Acta Ciencia Indica, 12(1986), 140-144.
- [14] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(2008), no. 4, 365-371.
- [15] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), no. 3, 961-970.
- [16] T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci. Kochi Univ. Math., 20(1999), 67-74.
- [17] T. Noiri, Almost α g-closed functions and separation axioms, Acta Math. Hungar., 82(1999), no.3, 193-205.
- [18] N. Palaniappan and K. Chandrasekra Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), no. 2, 211-219.
- [19] O. Ravi, S. Tharmar, M. Sangeetha and J. Antony Rex Rodrigo, *g-closed sets in ideal topological spaces, Jordan Journal of Mathematics and Statistics, 6(1)(2013), 1-13.
- [20] V. Renuka Devi, D. Sivaraj and T. Tamizh Chelvam, Codense and completely codense ideals, Acta Math. Hungar., 108(2005), no. 3, 197-205.
- [21] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph. D, Thesis, Bharathiar University, Coimbatore, (2002).
- [22] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1973), 27-31.
- [23] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company (1946).