

Received: 01.06.2014 Accepted: 26.06.2014 Editors-in-Chief: Naim Çağman Area Editor: Oktay Muhtaroğlu

On Some New Paranormed Sequence Spaces and Their Topological Properties

Osman Duyar (osman-duyar@hotmail.com)

Anatolian High School, 60200 Tokat, Turkey

Abstract - In this study, we define new paranormed sequence spaces $c_0(u, v; p, \hat{G})$ and $c(u, v; p, \hat{G})$ by combining a generalized weighted mean and a generalized difference operator $\hat{B} = B(r, s, t)$. Furthermore, we compute the α - and β - duals and obtain bases for these sequence spaces. Finally, we characterize the classes of matrix mappings from the new paranormed sequence spaces to the spaces $\mu(q)$ for $\mu \in \{c, \ell, \ell_{\infty}\}$.

Keywords - Matrix domain of a sequence space, paranormed sequence spaces, weighted mean matrix, Matrix transformations, Schauder basis, α - and β - duals.

1 Introduction

By ω , we shall denote the space of all real valued sequences. Any vector subspace of ω is called as a *sequence space*. We shall write ℓ_{∞}, c and c_0 for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, ℓ_1 and ℓ_p ; we denote the spaces of all bounded, convergent, absolutely and p- absolutely convergent series, respectively; 1 .

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \to \mathbb{R}$ such that $g(\theta) = 0, g(x) = g(-x)$ and scalar multiplication is continuous, i.e., $|\alpha_n - \alpha| \to 0$ and $g(x_n - x) \to 0$ imply $g(\alpha_n x_n - \alpha x) \to 0$ for all α 's in \mathbb{R} and all x's in X, where θ is the zero vector in the linear space X.

Assume here and after that (p_k) be a bounded sequences of strictly positive real numbers with $\sup p_k = H$ and $M = \max\{1, H\}$. Then, the linear spaces $c(p), c_0(p)$ $\ell_{\infty}(p)$ and $\ell(p)$ were defined by Maddox [36, 37] (see also Simons [39] and Nakano [38]) as follows:

$$c(p) = \left\{ x = (x_k) \in \omega : \lim_{k \to \infty} |x_k - l|^{p_k} = 0 \text{ for some } l \in \mathbb{C} \right\}$$

$$c_0(p) = \left\{ x = (x_k) \in \omega : \lim_{k \to \infty} |x_k|^{p_k} = 0 \right\},$$

$$\ell_{\infty}(p) = \left\{ x = (x_k) \in \omega : \sup_{k \in \mathbb{N}} |x_k|^{p_k} < \infty \right\}$$

which are the complete spaces paranormed by

$$g_1(x) = \sup_{k \in \mathbb{N}} |x_k|^{p_k/M} \text{ iff } \inf_{k \in \mathbb{N}} p_k > 0,$$

and the space

$$\ell(p) = \left\{ x = (x_k) \in \omega : \sum_k |x_k|^{p_k} < \infty \right\}$$

is the complete paranormed by

$$g_2(x) = \left(\sum_k |x_k|^{p_k}\right)^{1/M}$$

We shall assume throughout that $p_k^{-1} + (p'_k)^{-1} = 1$ provided $1 < \inf p_k < H < \infty$ and use the convention that any term with negative subscript is equal to zero. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . By \mathcal{F} and \mathbb{N}_k , we shall denote the collection of all finite subsets of \mathbb{N} and the set of all $n \in \mathbb{N}$ such that $n \geq k$, respectively.

Let (X, h) be a paranormed space. A sequence (b_k) of the elements of X is called a basis for X if and only if, for each $x \in X$, there exists a unique sequence (α_k) of scalars such that

$$h\left(x-\sum_{k=0}^{n}\alpha_{k}b_{k}\right)\to 0 \ as \ n\to\infty.$$

The series $\sum \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) and written as $x = \sum \alpha_k b_k$.

Let X, Y be any two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from X into Y, and we denote it by writing $A : X \to Y$, if for every sequence $x = (x_k) \in X$ the sequence $Ax = ((Ax)_n)$, the A-transform of x, is in Y, where

$$(Ax)_n = \sum_k a_{nk} x_k, \quad (n \in \mathbb{N}).$$
(1)

For a sequence space X, the matrix domain X_A of an infinite matrix A is defined by

$$X_A = \{ x = (x_k) \in \omega : Ax \in X \}.$$
(2)

By (X : Y), we denote the class of all matrices A such that $A : X \to Y$. Thus, $A \in (X : Y)$ if and only if the series on the right-hand side of (1) converges for each $n \in \mathbb{N}$ and every $x \in X$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in Y$ for all $x \in X$. A sequence x is said to be A- summable to α if Ax converges to α which is called as the A- limit of x.

Let r, s and t be non-zero real numbers, and define the generalized difference matrix $\widehat{B} = B(r, s, t) = \{b_{nk}(r, s, t)\}$ by

$$b_{nk}(r,s,t) = \begin{cases} r, & (k=n) \\ s, & (k=n-1) \\ t, & (k=n-2) \\ 0, & (0 \le k < n-1 \text{ or } k > n) \end{cases}$$
(3)

for all $n, k \in \mathbb{N}$.

We write by \mathcal{U} for the set of all sequences $u = (u_n)$ such that $u_n \neq 0$ for all $n \in \mathbb{N}$. For $u \in \mathcal{U}$, let $1/u = (1/u_n)$. Let $u, v \in \mathcal{U}$ and let us define the matrix $G(u, v) = (g_{nk})$ and $\Delta = (\delta_{nk})$ as follows:

$$g_{nk} = \begin{cases} u_n v_k, & (0 \le k \le n), \\ 0, & (k > n), \end{cases} \qquad \delta_{nk} = \begin{cases} (-1)^{n-k}, & (n-1 \le k \le n), \\ 0, & (0 \le k < n-1 \text{ or } k > n), \end{cases}$$

for all $n, k \in \mathbb{N}$, where u_n depends only on n and v_k only on k. The matrix G(u, v), defined above, is called as generalized weighted mean or factorable matrix.

The main purpose of this study is to introduce the sequence spaces $c_0(u, v; p, \widehat{G})$ and $c(u, v; p, \widehat{G})$ which is the set of all sequences whose $G(u, v; \widehat{B})$ -transforms are in the spaces $c_0(p)$ and c(p), respectively, where $G(u, v; \widehat{B})$ denotes the matrix $G(u, v; \widehat{B}) =$ $G(u, v)\widehat{B} = \widehat{G} = (\widehat{g}_{nk})$ defined by

$$\widehat{g}_{nk} = \begin{cases}
 u_n v_k r + u_n v_{k+1} s + u_n v_{k+2} t, & (k < n - 1) \\
 u_n v_{n-1} r + u_n v_n s, & (k = n - 1) \\
 u_n v_n r, & (k = n) \\
 0, & (\text{otherwise})
 \end{cases}$$
(4)

for all $k, n \in \mathbb{N}$. Also, we have investigated some topological structures, which have completeness, the α - and β - duals, and the basis of these sequence spaces. Finally, we characterize some matrix mappings on these spaces.

2 The Paranormed Sequence Spaces $c_0(u, v; p, \widehat{G})$ and $c(u, v; p, \widehat{G})$

In this section, we define the new sequence spaces $c_0(u, v; p, \hat{G})$ and $c(u, v; p, \hat{G})$ derived by using the generalized weighted mean and generalized difference operator, and prove that these sequence spaces is the complete paranormed linear metric spaces and compute their α - and β - duals. Also, we give the basis for these spaces.

Let r and s be non-zero real numbers, and define the double-band matrix $B(r,s) = \{b_{nk}(r,s)\}$ by

$$b_{nk}(r,s) = \begin{cases} r, & (k=n), \\ s, & (k=n-1), \\ 0, & (0 \le k < n-1 \text{ or } k > n), \end{cases}$$

for all $k, n \in \mathbb{N}$.

35

Altay and Başar [6] have examined topological properties of the space $\ell(u, v; p)$ which is defined by

$$\ell(u, v, p) = \{x = (x_k) \in \omega : y = \left(\sum_{j=0}^k u_k v_j x_j\right) \in \ell(p)\}.$$

Başarır and Kara have recently defined the sequence space $\ell(u, v; p, \hat{B})$ in [26], which consists of all sequences such that GB-transforms are in $\ell(p)$, where G = G(u, v) is the weighted mean transform and B = B(r, s) is the generalized difference transform.

Following Altay and Başar [6] and Başarır and Kara [26] we define the sequence spaces $\lambda(u, v; p, \widehat{B})$ by

$$\lambda(u,v;p,\widehat{G}) = \left\{ x = (x_k) \in \omega : \left(\sum_{i=0}^k u_k v_i (rx_i + sx_{i-1} + tx_{i-2}) \right) \in \lambda(p) \right\}$$

for $\lambda \in \{c_0, c\}$. We may redefine the spaces $c_0(u, v; p, \widehat{G})$ and $c(u, v; p, \widehat{G})$ using the notation (2) as follows:

$$c_0(u, v; p, \widehat{G}) = \{c_0(p)\}_{\widehat{G}} \text{ and } c(u, v; p, \widehat{G}) = \{c(p)\}_{\widehat{G}}$$

If p_k and r, s, t are selected as suitable, this definition includes the special cases in the articles [6, 7, 8, 15, 16, 24, 26, 30, 31].

Now, we define the sequence $y = (y_k)$ as the \widehat{G} -transform of a sequence $x = (x_k)$, i.e.

$$y_k = u_k \sum_{i=0}^{k-2} (rv_i + sv_{i+1} + tv_{i+2})x_i + u_k (rv_{k-1} + sv_k)x_{k-1} + u_k v_k rx_k$$
(5)

for all $k \in \mathbb{N}$.

Theorem 2.1. The sequence spaces $c_0(u, v; p, \widehat{G})$ and $c(u, v; p, \widehat{G})$ are the complete linear metric spaces paranormed by g, defined by

$$g(x) = \sup_{k \in \mathbb{N}} \left| \sum_{j=0}^{k} u_k v_j (rx_j + sx_{j-1} + tx_{j-2}) \right|^{p_k/M}$$

Proof: The proof of this theorem follows from the similar arguments as in the Theorem 3.1 in [26]. So we omit the detail.

Theorem 2.2. The sequence spaces $c(u, v; p, \widehat{G})$ and $c_0(u, v; p, \widehat{G})$ are linearly isomorphic to the spaces c(p) and $c_0(p)$, respectively, where $0 < p_k \leq H < \infty$.

Proof: We establish this for the space $c(u, v; p, \hat{G})$. To prove the theorem, we should show the existence of a linear bijection between the spaces $c(u, v; p, \hat{G})$ and c(p) for $0 < p_k \leq H < \infty$. With the notation of (5), define the transformations T from $c(u, v; p, \hat{G})$ to c(p) by $x \mapsto y = Tx$. The linearity of T is trivial. Further, it is obvious that $x = \theta$ whenever $Tx = \theta$ and hence T is injective.

Journal of New Results in Science 6 (2014) 32-43

Let $y = (y_k) \in c(p)$ and define the sequence $x = (x_k)$ by

$$x_k = \sum_{j=0}^k d_{kj} \sum_{i=j-1}^j (-1)^{j-i} \frac{1}{v_j u_i} y_i$$
(6)

for $k \in \mathbb{N}$ where $d_{nk} = 0$ for k > n and

$$d_{nk} = \frac{1}{r} \sum_{v=0}^{n-k} \left(\frac{-s + \sqrt{s^2 - 4tr}}{2r} \right)^{n-k-v} \left(\frac{-s - \sqrt{s^2 - 4tr}}{2r} \right)^v \tag{7}$$

for $0 \le k \le n$. Then, we get that

$$g(x) = \sup_{k \in \mathbb{N}} \left| u_k \sum_{i=0}^{k-2} (rv_i + sv_{i+1} + tv_{i+2}) x_i + u_k (rv_{k-1} + sv_k) x_{k-1} + u_k v_k r x_k \right|^{p_k/M}$$

=
$$\sup_{k \in \mathbb{N}} |y_k|^{p_k/M} = g_1(y) < \infty.$$

Thus, we deduce that $x \in c(u, v; p, \widehat{G})$ and consequently T is surjective and is paranorm preserving. Hence, T is a linear bijection and this says us that the spaces $c(u, v; p, \widehat{G})$ and c(p) are linearly isomorphic, as desired.

Let $\lambda \in \{c_0, c\}$. Because of the isomorphism T between the sequence spaces $\lambda(u, v; p, \hat{G})$ and $\lambda(p)$ is onto, the inverse image of the basis of the space $\lambda(p)$ is the basis of the space $\lambda(u, v; p, \hat{G})$. Therefore, we may give a corollary with respect to Schauder basis of the new sequence spaces $\lambda(u, v; p, \hat{G})$:

Corollary 2.3. Let $\alpha_k = \widehat{G}_k(x)$ for all $k \in \mathbb{N}$ and $\lim_{k\to\infty} \widehat{G}_k(x) = l$. Define the sequence $b^{(k)} = \{b_n^{(k)}\}_{n\in\mathbb{N}}$ for every fixed $k \in \mathbb{N}$ by

$$b_n^{(k)} = \begin{cases} \frac{d_{nk}}{u_k v_k} - \frac{d_{n,k+1}}{u_k v_{k+1}}, & (n > k) \\ \frac{1}{r u_k v_k}, & (n = k) \\ 0, & (n < k). \end{cases}$$
(8)

Then, the following statements hold:

(i) The sequence $\{b^{(k)}\}_{k\in\mathbb{N}}$ is a basis for the space $c_0(u, v; p, \widehat{G})$ and any $x \in c_0(u, v; p, \widehat{G})$ has a unique representation of the form $x = \sum_k \alpha_k b^{(k)}$.

(ii) The sequence $\{b, b^{(0)}, b^{(1)}, b^{(2)}, ...\}$ is a basis for the space $c(u, v; p, \widehat{G})$, where $b = (b_k) = \left(\sum_{j=0}^k d_{kj}\right)$, and any $x \in c(u, v; p, \widehat{G})$ has a unique representation of the form

$$x = lb + \sum_{k} [\alpha_k - l]b^{(k)}.$$

3 The α - and β - Dual of The Spaces $c(u, v; p, \widehat{G})$ and $c_0(u, v; p, \widehat{G})$

For the sequence spaces X and Y, define the set S(X, Y) by

$$S(X,Y) = \{ z = (z_k) : xz = (x_k z_k) \in Y \text{ for all } x \in X \}.$$
(9)

With the notation of (9), the α - and β - duals of a sequence space X, which are respectively denoted by X^{α} and X^{β} are defined by

$$X^{\alpha} = S(X, \ell_1)$$
 and $X^{\beta} = S(X, cs)$

We shall quote some lemmas which are needed in proving our theorems.

Lemma 3.1. [33, Theorem 5.1.1 with q = 1] $A \in (c_0(p) : \ell_1)$ if and only if

$$\sup_{K \in \mathcal{F}} \sum_{n} \left| \sum_{k \in K} a_{nk} B^{-1/p_k} \right| < \infty, \quad (\exists B \in \mathbb{N}_2).$$
(10)

Lemma 3.2. [34, Corollary 2] $A \in (c_0(p) : c)$ if and only if

$$\sup_{n\in\mathbb{N}}\sum_{k}|a_{nk}|B^{-1/p_{k}}<\infty,\quad (\exists B\in\mathbb{N}_{2}),$$
(11)

$$\lim_{n \to \infty} a_{nk} = \alpha_k \quad \text{exists for every fixed } k.$$
(12)

Theorem 3.3. Let $K^* = \{k \in \mathbb{N} : 0 \le k \le n\} \cap K$ for $K \in \mathcal{F}$ and $B \in \mathbb{N}_2$. Define the sets $G_1(p), G_2(p), G_3(p), G_4(p), G_5(p)$ and $G_6(p)$ as follows:

$$\begin{split} G_{1}(p) &= \bigcup_{B>1} \left\{ a = (a_{k}) \in \omega : \sup_{K \in \mathcal{F}} \sum_{n} \left| \sum_{k \in K^{*}} c_{nk} B^{-1/p_{k}} \right| < \infty \right\}, \\ G_{2}(p) &= \left\{ a = (a_{k}) \in \omega : \sum_{n} \left| \sum_{k} c_{nk} \right| < \infty \right\}, \\ G_{3}(p) &= \bigcup_{B>1} \left\{ a = (a_{k}) \in \omega : \sup_{n \in \mathbb{N}} \sum_{k} |\widehat{g}_{k}(n)| B^{-1/p_{k}} < \infty \right\}, \\ G_{4}(p) &= \bigcup_{B>1} \left\{ a = (a_{k}) \in \omega : \left\{ \frac{a_{k}}{ru_{k}v_{k}} B^{-1/p_{k}} \right\} \in \ell_{\infty} \right\}, \\ G_{5}(p) &= \left\{ a = (a_{k}) \in \omega : \lim_{n \to \infty} \widehat{g}_{k}(n) = \alpha_{k}, \quad exists \ for \ every \ fixed \ k \right\}, \\ G_{6}(p) &= \left\{ a = (a_{k}) \in w : \sup_{k \in \mathbb{N}} \left| \frac{1}{r} \frac{a_{k}}{u_{k}v_{k}} \right| < \infty \ and \ \sum_{j=k}^{\infty} d_{jk}a_{j} \ exists \ for \ each \ k \in \mathbb{N} \right\} \end{split}$$

Then,

$$\{c_0(u,v;p,G)\}^{\alpha} = G_1(p), \ \{c(u,v;p,G)\}^{\alpha} = G_1(p) \cap G_2(p), \\ \{c_0(u,v;p,\widehat{G})\}^{\beta} = \bigcap_{i=3}^6 G_i(p), \ \{c(u,v;p,\widehat{G})\}^{\beta} = \{c_0(u,v;p,\widehat{G})\}^{\beta} \cap cs,$$

Journal of New Results in Science 6 (2014) 32-43

Proof: We give the proof for the space $c_0(u, v; p, \widehat{G})$. Let us take any $a = (a_n) \in \omega$ and define the matrix $C = (c_{nk})$ via the sequence $a = (a_n)$ by

$$c_{nk} = \begin{cases} \frac{d_{nk}a_n}{u_k v_k} - \frac{d_{n,k+1}a_n}{u_k v_{k+1}}, & (k < n) \\ \frac{a_n}{r u_n v_n}, & (k = n) \\ 0, & (k > n) \end{cases}$$

where $n, k \in \mathbb{N}$. Bearing in mind (5) we immediately derive that

$$a_{n}x_{n} = \sum_{k=0}^{n} d_{nk} \sum_{j=k-1}^{k} (-1)^{k-j} \frac{1}{v_{k}u_{j}} a_{n}y_{j}$$

$$= \sum_{k=0}^{n-1} \left(\frac{d_{nk}}{v_{k}} - \frac{d_{n,k+1}}{v_{k+1}}\right) \frac{a_{n}}{u_{k}}y_{k} + \frac{a_{n}}{ru_{n}v_{n}}y_{n}$$

$$= C_{n}(y)$$
(13)

for all $n \in \mathbb{N}$. We therefore observe by (13) that $ax = (a_n x_n) \in \ell_1$ whenever $x \in c_0(u, v; p, \widehat{G})$ if and only if $Cy \in \ell_1$ whenever $y \in c_0(p)$. This means that $a = (a_n) \in \{c_0(u, v; p, \widehat{G})\}^{\alpha}$ whenever $x = (x_n) \in c_0(u, v; p, \widehat{G})$ if and only if $C \in (c_0(p) : \ell_1)$. Then, we derive by Lemma 3.1 that

$$\{c_0(u,v;p,\widehat{G})\}^{\alpha} = G_1(p).$$

We show that now β -dual of the space $\{c_0(u, v; p, \widehat{G})\}^{\beta}$. For this purpose we use the following equation;

$$\sum_{k=0}^{n} a_{k} x_{k} = \sum_{k=0}^{n} \left[\sum_{j=0}^{k} d_{kj} \sum_{i=j-1}^{i} (-1)^{j-i} \frac{1}{v_{j} u_{i}} y_{i} \right] a_{k}$$

$$= \sum_{k=0}^{n} \left(\frac{y_{k}}{u_{k}} - \frac{y_{k-1}}{u_{k-1}} \right) \left(\frac{1}{v_{k}} \sum_{j=k}^{n} d_{jk} a_{j} \right)$$

$$= \sum_{k=0}^{n-1} \frac{1}{u_{k}} \left[\frac{\sum_{j=k}^{n} d_{jk} a_{j}}{v_{k}} - \frac{\sum_{j=k+1}^{n} d_{j,k+1} a_{j}}{v_{k+1}} \right] y_{k} + \frac{1}{r} \frac{a_{n}}{u_{n} v_{n}} y_{n}$$

$$= \sum_{k=0}^{n-1} \widehat{g}_{k}(n) y_{k} + \frac{1}{r} \frac{a_{n}}{u_{n} v_{n}} y_{n}$$

$$= E_{n}(y); \quad (n \in \mathbb{N}) \qquad (14)$$

where $E = (e_{nk})$ is defined by

$$e_{nk} = \begin{cases} \hat{g}_k(n), & (k < n) \\ \frac{a_n}{ru_n v_n}, & (k = n) \\ 0, & (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$. Thus, we deduce from Lemma 3.2 with (14) that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in c_0(u, v; p, \widehat{G})$ if and only if $Ey \in c$ whenever $y = (y_k) \in c_0(p)$. This means that $a = (a_n) \in \{c_0(u, v; p, \widehat{G})\}^{\beta}$ whenever $x = (x_n) \in c_0(u, v; p, \widehat{G})$ if and only if $E \in (c_0(p) : c)$. Therefore we derive from Lemma 3.2 and (14) that

$$\{c_0(u,v;p,\widehat{G})\}^{\beta} = \bigcap_{i=3}^6 G_i(p)$$

4 Some Matrix Mappings on the Sequence Spaces $c_0(u, v; p, \widehat{G})$ and $c(u, v; p, \widehat{G})$

In this final section, we state some results which characterize various matrix mappings on the spaces $c_0(u, v; p, \hat{G})$ and $c(u, v; p, \hat{G})$. We shall write throughout for brevity that

$$\widehat{a}_{nk}(m) = \frac{1}{u_k} \left[\frac{\sum_{j=k}^m d_{jk} a_{j,k}}{v_k} - \frac{\sum_{j=k+1}^m d_{j,k+1} a_{j,k+1}}{v_{k+1}} \right] \quad \text{for } k < m$$

and

$$\widehat{a}_{nk} = \frac{1}{u_k} \left[\frac{\sum_{j=k}^{\infty} d_{jk} a_{j,k}}{v_k} - \frac{\sum_{j=k+1}^{\infty} d_{j,k+1} a_{j,k+1}}{v_{k+1}} \right]$$

for all $k, m, n \in \mathbb{N}$ provided the series on the right hand to be convergent.

Theorem 4.1. Let λ be any given sequence space and $\mu \in \{c_0, c\}$. Then, $A = (a_{nk}) \in (\mu(u, v; p, \widehat{G}) : \lambda)$ if and only if $B \in (\mu : \lambda)$ and

$$B^{(n)} \in (\mu:c) \tag{15}$$

for every fixed $n \in \mathbb{N}$, where $b_{nk} = \hat{a}_{nk}$ and $B^{(n)} = (b_{mk}^{(n)})$

$$b_{mk}^{(n)} = \begin{cases} \hat{a}_{nk}(m), & (k < n) \\ \frac{a_{nm}}{ru_m v_m}, & (k = n) \\ 0, & (k > n) \end{cases}$$

for all $k, m \in \mathbb{N}$.

Proof: This result can be proved similarly as the proof of Theorem 3.1 in [8].

Now, we may quote our corollaries on the characterization of some matrix classes concerning with the sequence spaces $c_0(u, v; p, \hat{G})$ and $c(u, v; p, \hat{G})$. Prior to giving the corollaries, let us suppose that (q_n) is a non-decreasing bounded sequence of positive real numbers and consider the following conditions:

$$\sup_{n \in \mathbb{N}} \left[\sum_{k} |a_{nk}| B^{-1/p_k} \right]^{q_n} < \infty, \quad (\exists B \in \mathbb{N}),$$
(16)

$$\sup_{n\in\mathbb{N}}\left|\sum_{k}a_{nk}\right|^{q_n}<\infty,\tag{17}$$

$$\sup_{K\in\mathcal{F}}\sum_{n}\left|\sum_{k\in K}a_{nk}B^{-1/p_{k}}\right|^{q_{n}} < \infty, \quad (\exists B\in\mathbb{N}),$$
(18)

$$\sum_{n} \left| \sum_{k} a_{nk} \right|^{q_n} < \infty, \tag{19}$$

$$\exists \alpha \in \mathbb{R} \ni \lim_{n \to \infty} \left| \sum_{k} a_{nk} - \alpha \right|^{q_n} = 0, \tag{20}$$

$$\exists (\alpha_k) \subset \mathbb{R} \ni \lim_{n \to \infty} |a_{nk} - \alpha_k|^{q_n} = 0, \quad (\forall k \in \mathbb{N}),$$
(21)

$$\exists (\alpha_k) \subset \mathbb{R} \ni \sup_{n \in \mathbb{N}} K^{1/q_n} \sum_k |a_{nk} - \alpha_k| B^{-1/p_k} < \infty, \quad (\forall K, \exists B \in \mathbb{N})$$
(22)

$$\sup_{n \in \mathbb{N}} \sum_{k} |a_{nk}| B^{-1/p_k} < \infty, \quad (\exists B \in \mathbb{N})$$
(23)

Now, we can give the corollaries:

Corollary 4.2. $A = (a_{nk})$ be any infinite matrix. Then the following statements hold: (i) $A = (a_{nk}) \in (c_0(u, v; p, \widehat{G}) : \ell(q) \text{ if and only if (18) holds with } \widehat{a}_{nk} \text{ instead of } a_{nk}$ and (15) also holds with $\lambda = c_0$.

(ii) $A = (a_{nk}) \in (c_0(u, v; p, G) : c(q))$ if and only if (21), (22) and (23) hold with \widehat{a}_{nk} instead of a_{nk} and (15) also holds with $\lambda = c_0$.

(iii) $A = (a_{nk}) \in (c_0(u, v; p, \widehat{G}) : \ell_{\infty}(q))$ if and only if (16) and (17) hold with \widehat{a}_{nk} instead of a_{nk} and (15) also holds $\lambda = c_0$.

Corollary 4.3. $A = (a_{nk})$ be any infinite matrix. Then the following statements hold: (i) $A = (a_{nk}) \in (c(u, v; p, \widehat{G}) : \ell(q))$ if and only if (18) and (19) hold with \widehat{a}_{nk} instead of a_{nk} and (15) also holds with $\lambda = c$.

(ii) $A = (a_{nk}) \in (c(u, v; p, \widehat{G}) : c(q))$ if and only if (20)-(23) hold with \widehat{a}_{nk} instead of a_{nk} and (15) also holds $\lambda = c$.

(iii) $A = (a_{nk}) \in (c(u, v; p, \widehat{G}) : \ell_{\infty}(q))$ if and only if (16) and (17) hold with \widehat{a}_{nk} instead of a_{nk} and (15) also holds $\lambda = c$.

References

- [1] C.-S. Wang, On Nörlund sequence spaces, Tamkang J. Math. 9(1978) 269-274.
- P.-N. Ng, P.-Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. (Prace Mat.) 20(2)(1978) 429-433.
- [3] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997) 187-196.
- [4] A. M. Jarrah and E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat 17(2003), 59-78
- [5] B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57(1)(2005) 1-17.
- [6] B. Altay, F. Başar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl. 319 (2006), 494-508.
- [7] H. Polat, V. Karakaya and N. Şimşek, Difference sequence spaces derived by generalized weighted mean, Appl. Math. Lett. 24(2011), no.5, 608-614.
- [8] B. Altay, F. Başar, Generalization of the space $\ell(p)$ derived by weighted mean , J. Math. Anal. Appl 330 (2007) 174-185.
- [9] E. Malkowsky, E. Savaş, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput. 147(2004) 333-345.
- [10] M. Başarır, On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math. 26(10) (1995) 1003-1010.
- [11] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bv_p of p-bounded variation sequences, Nonlinear Anal. 68(2)(2008) 273-287.
- [12] B. Altay, On the space of p- summable difference sequences of order m, $(1 \le p < \infty)$, Studia Sci. Math. Hungar. 43(4)(2006) 387-402.
- [13] E. Malkowsky, M. Mursaleen, S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sin. Eng. Ser. 23(3)(2007) 521-532.
- [14] Demiriz, S., Çakan, C., On some new paranormed Euler sequence spaces and Euler core, Acta Math. Sin. Eng. Ser. 26(7)(2010), 1207-1222.
- [15] Demiriz, S., Ozdemir O., Duyar O., On some new generalized difference sequence spaces of non-absolute type, arXiv:1309.3903, 2013.
- [16] Duyar O., Demiriz, S., On some new generalized difference sequence spaces and their topological properties, Journal of New Result in Science, 6(2014) 1-14.
- [17] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1)(2007) 632-645.

- [18] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2)(1981) 169-176.
- [19] C. Aydın, F. Başar, Some new sequence spaces which include the spaces ℓ_p and ℓ_{∞} , Demonstratio Math. 38(3)(2005) 641-656.
- [20] C. Aydın, F. Başar, Some generalizations of the sequence space a_p^r , Iran. J. Sci. Technol. A Sci. 30(No. A2)(2006) 175-190.
- [21] F. Başar, B. Altay, On the space of sequences of p- bounded variation and related matrix mappings, Ukrainian Math. J. 55(1) (2003) 136-147.
- [22] E. Malkowsky, M. Mursaleen, Some matrix transformations between the difference sequence spaces $\Delta c_0(p)$, $\Delta c(p)$ and $\Delta \ell_{\infty}(p)$, Filomat, 15(2001) 353-363.
- [23] Z. U. Ahmad, M. Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Belgrad) 42(1987) 57-61.
- [24] A. Sönmez, F. Başar, Generalized difference spaces of non-absolute type of convergent and null sequences, Abstract and Applied Analysis Volume 2012, Article ID 435076, (2012) 20 pages.
- [25] M. Başarır, E. E. Kara, On the mth order difference sequence space of generalized weighted mean and compact operators, Acta Mathematica Scientia, 33(B3)(2013), 1-18.
- [26] M. Başarır, E. E. Kara, On the B- difference sequence space derived by generalized weighted mean and compact operators, Journal of Mathematical Analysis and Applications, 391(2012), 67-81.
- [27] E. E. Kara, Some topological and geometrical properties of new Banach sequence space, Journal of Inequalities and Applications, 2013(38) (2013), 15 pages.
- [28] M. Başarır, E. E. Kara, On some difference sequence space of weighted means and compact operators, Annals of Functional Analysis, 2(2)(2011), 116-131.
- [29] E. E. Kara, M. Başarır, On compact operators and some Euler $B^{(m)}$ difference sequence spaces, Journal of Mathematical Analysis and Applications, 379(2011), 499-511.
- [30] M. Mursaleen, A.K. Noman, On the spaces of λ -convergent and bounded sequences, Thai Journal of Mahematics, 8(2) (2010), 311-329.
- [31] M. Mursaleen, Abdullah K. Noman, On some new sequence spaces of non-absolute type related to the spaces ℓ_p and ℓ_{∞} I, Filomat 25:2 (2011), 33-51.
- [32] A. Sönmez, Some new sequence spaces derived by the domain of the triple band matrix, Comput. Math. Appl., 62 (2011) 641-650.
- [33] K.-G.Grosse-Erdmann, Matrix transformations between the sequence spaves of Maddox, J. Math. Anal. Appl. 180(1993), 223-238.

- [34] C. G. Lascarides, I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68(1970), 99-104.
- [35] I.J. Maddox, Elements of Functional Analysis, second ed., The Cambridge University Press, Cambridge, 1988.
- [36] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phios. Soc. 64(1968), 335-340.
- [37] I.J.Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18(2)(1967), 345-355.
- [38] H. Nakano, Modulared sequence spaces, Proc. Jpn. Acad. **27**(2)(1951), 508-512.
- [39] S. Simons, The sequence spaces $\ell(p_v)$ and $m(p_v)$, Proc. London Math. Soc. **15**(3)(1965), 422-436.
- [40] F. Başar, Summability Theory and Its Appliactions, Bentham Science Publishers, ISBN:978-1-60805-252-3, 2011.
- [41] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, Amsterdam, 85 1984.