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Abstract - In this study, we define new paranormed se-
quence spaces c0(u, v; p, Ĝ) and c(u, v; p, Ĝ) by combining a gen-
eralized weighted mean and a generalized difference operator
B̂ = B(r, s, t). Furthermore, we compute the α− and β− duals
and obtain bases for these sequence spaces. Finally, we charac-
terize the classes of matrix mappings from the new paranormed
sequence spaces to the spaces µ(q) for µ ∈ {c, `, `∞}.
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1 Introduction

By ω, we shall denote the space of all real valued sequences. Any vector subspace
of ω is called as a sequence space. We shall write `∞, c and c0 for the spaces of all
bounded, convergent and null sequences, respectively. Also by bs, cs, `1 and `p ; we
denote the spaces of all bounded, convergent, absolutely and p− absolutely convergent
series, respectively; 1 < p < ∞.

A linear topological space X over the real field R is said to be a paranormed space if
there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x) and scalar
multiplication is continuous, i.e., |αn−α| → 0 and g(xn−x) → 0 imply g(αnxn−αx) → 0
for all α′s in R and all x’s in X, where θ is the zero vector in the linear space X.

Assume here and after that (pk) be a bounded sequences of strictly positive real
numbers with sup pk = H and M = max{1, H}. Then, the linear spaces c(p), c0(p)
`∞(p) and `(p) were defined by Maddox [36, 37] (see also Simons [39] and Nakano [38])
as follows:
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c(p) =
{

x = (xk) ∈ ω : lim
k→∞

|xk − l|pk = 0 for some l ∈ C
}

,

c0(p) =
{

x = (xk) ∈ ω : lim
k→∞

|xk|pk = 0
}

,

`∞(p) =

{
x = (xk) ∈ ω : sup

k∈N
|xk|pk < ∞

}

which are the complete spaces paranormed by

g1(x) = sup
k∈N

|xk|pk/M iff inf
k∈N

pk > 0,

and the space

`(p) =

{
x = (xk) ∈ ω :

∑

k

|xk|pk < ∞
}

is the complete paranormed by

g2(x) =

( ∑

k

|xk|pk

)1/M

.

We shall assume throughout that p−1
k + (p

′
k)
−1 = 1 provided 1 < inf pk < H < ∞

and use the convention that any term with negative subscript is equal to zero. For
simplicity in notation, here and in what follows, the summation without limits runs
from 0 to ∞. By F and Nk, we shall denote the collection of all finite subsets of N and
the set of all n ∈ N such that n ≥ k, respectively.

Let (X, h) be a paranormed space. A sequence (bk) of the elements of X is called a
basis for X if and only if, for each x ∈ X, there exists a unique sequence (αk) of scalars
such that

h

(
x−

n∑

k=0

αkbk

)
→ 0 as n →∞.

The series
∑

αkbk which has the sum x is then called the expansion of x with respect
to (bn) and written as x =

∑
αkbk.

Let X, Y be any two sequence spaces and A = (ank) be an infinite matrix of real
numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping from X
into Y , and we denote it by writing A : X → Y , if for every sequence x = (xk) ∈ X
the sequence Ax = ((Ax)n), the A-transform of x, is in Y , where

(Ax)n =
∑

k

ankxk, (n ∈ N). (1)

For a sequence space X, the matrix domain XA of an infinite matrix A is defined
by

XA = {x = (xk) ∈ ω : Ax ∈ X}. (2)

By (X : Y ), we denote the class of all matrices A such that A : X → Y . Thus,
A ∈ (X : Y ) if and only if the series on the right-hand side of (1) converges for each
n ∈ N and every x ∈ X, and we have Ax = {(Ax)n}n∈N ∈ Y for all x ∈ X. A sequence
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x is said to be A- summable to α if Ax converges to α which is called as the A- limit
of x.

Let r, s and t be non-zero real numbers, and define the generalized difference matrix
B̂ = B(r, s, t) = {bnk(r, s, t)} by

bnk(r, s, t) =





r, (k = n)
s, (k = n− 1)
t, (k = n− 2)
0, (0 ≤ k < n− 1 or k > n)

(3)

for all n, k ∈ N.
We write by U for the set of all sequences u = (un) such that un 6= 0 for all n ∈ N.

For u ∈ U , let 1/u = (1/un). Let u, v ∈ U and let us define the matrix G(u, v) = (gnk)
and ∆ = (δnk) as follows:

gnk =

{
unvk, (0 ≤ k ≤ n),
0, (k > n),

δnk =

{
(−1)n−k, (n− 1 ≤ k ≤ n),
0, (0 ≤ k < n− 1 or k > n),

for all n, k ∈ N, where un depends only on n and vk only on k. The matrix G(u, v),
defined above, is called as generalized weighted mean or factorable matrix.

The main purpose of this study is to introduce the sequence spaces c0(u, v; p, Ĝ)

and c(u, v; p, Ĝ) which is the set of all sequences whose G(u, v; B̂)-transforms are in the

spaces c0(p) and c(p), respectively, where G(u, v; B̂) denotes the matrix G(u, v; B̂) =

G(u, v)B̂ = Ĝ = (ĝnk) defined by

ĝnk =





unvkr + unvk+1s + unvk+2t, (k < n− 1)
unvn−1r + unvns, (k = n− 1)
unvnr, (k = n)
0, (otherwise)

(4)

for all k, n ∈ N. Also, we have investigated some topological structures, which have
completeness, the α− and β− duals, and the basis of these sequence spaces. Finally,
we characterize some matrix mappings on these spaces.

2 The Paranormed Sequence Spaces c0(u, v; p, Ĝ) and

c(u, v; p, Ĝ)

In this section, we define the new sequence spaces c0(u, v; p, Ĝ) and c(u, v; p, Ĝ) derived
by using the generalized weighted mean and generalized difference operator, and prove
that these sequence spaces is the complete paranormed linear metric spaces and compute
their α− and β− duals. Also, we give the basis for these spaces.

Let r and s be non-zero real numbers, and define the double-band matrix B(r, s) =
{bnk(r, s)} by

bnk(r, s) =





r, (k = n),
s, (k = n− 1),
0, (0 ≤ k < n− 1 or k > n),

for all k, n ∈ N.
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Altay and Başar [6] have examined topological properties of the space `(u, v; p)
which is defined by

`(u, v, p) = {x = (xk) ∈ ω : y =

( k∑
j=0

ukvjxj

)
∈ `(p)}.

Başarır and Kara have recently defined the sequence space `(u, v; p, B̂) in [26], which
consists of all sequences such that GB-transforms are in `(p), where G = G(u, v) is the
weighted mean transform and B = B(r, s) is the generalized difference transform.

Following Altay and Başar [6] and Başarır and Kara [26] we define the sequence

spaces λ(u, v; p, B̂) by

λ(u, v; p, Ĝ) =

{
x = (xk) ∈ ω :

( k∑
i=0

ukvi(rxi + sxi−1 + txi−2)

)
∈ λ(p)

}

for λ ∈ {c0, c}. We may redefine the spaces c0(u, v; p, Ĝ) and c(u, v; p, Ĝ) using the
notation (2) as follows:

c0(u, v; p, Ĝ) = {c0(p)} bG and c(u, v; p, Ĝ) = {c(p)} bG.

If pk and r, s, t are selected as suitable, this definition includes the special cases in
the articles [6, 7, 8, 15, 16, 24, 26, 30, 31].

Now, we define the sequence y = (yk) as the Ĝ-transform of a sequence x = (xk),
i.e.

yk = uk

k−2∑
i=0

(rvi + svi+1 + tvi+2)xi + uk(rvk−1 + svk)xk−1 + ukvkrxk (5)

for all k ∈ N.

Theorem 2.1. The sequence spaces c0(u, v; p, Ĝ) and c(u, v; p, Ĝ) are the complete lin-
ear metric spaces paranormed by g, defined by

g(x) = sup
k∈N

∣∣∣∣
k∑

j=0

ukvj(rxj + sxj−1 + txj−2)

∣∣∣∣
pk/M

.

Proof: The proof of this theorem follows from the similar arguments as in the
Theorem3.1 in [26]. So we omit the detail.

Theorem 2.2. The sequence spaces c(u, v; p, Ĝ) and c0(u, v; p, Ĝ) are linearly isomor-
phic to the spaces c(p) and c0(p) , respectively, where 0 < pk ≤ H < ∞.

Proof: We establish this for the space c(u, v; p, Ĝ). To prove the theorem, we

should show the existence of a linear bijection between the spaces c(u, v; p, Ĝ) and c(p)
for 0 < pk ≤ H < ∞. With the notation of (5), define the transformations T from

c(u, v; p, Ĝ) to c(p) by x 7→ y = Tx. The linearity of T is trivial. Further, it is obvious
that x = θ whenever Tx = θ and hence T is injective.
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Let y = (yk) ∈ c(p) and define the sequence x = (xk) by

xk =
k∑

j=0

dkj

j∑
i=j−1

(−1)j−i 1

vjui

yi (6)

for k ∈ N where dnk = 0 for k > n and

dnk =
1

r

n−k∑
v=0

(−s +
√

s2 − 4tr

2r

)n−k−v(−s−√s2 − 4tr

2r

)v

(7)

for 0 ≤ k ≤ n. Then, we get that

g(x) = sup
k∈N

∣∣∣∣uk

k−2∑
i=0

(rvi + svi+1 + tvi+2)xi + uk(rvk−1 + svk)xk−1 + ukvkrxk

∣∣∣∣
pk/M

= sup
k∈N

|yk|pk/M = g1(y) < ∞.

Thus, we deduce that x ∈ c(u, v; p, Ĝ) and consequently T is surjective and is paranorm

preserving. Hence, T is a linear bijection and this says us that the spaces c(u, v; p, Ĝ)
and c(p) are linearly isomorphic, as desired.

Let λ ∈ {c0, c}. Because of the isomorphism T between the sequence spaces

λ(u, v; p, Ĝ) and λ(p) is onto, the inverse image of the basis of the space λ(p) is the basis

of the space λ(u, v; p, Ĝ) . Therefore, we may give a corollary with respect to Schauder

basis of the new sequence spaces λ(u, v; p, Ĝ):

Corollary 2.3. Let αk = Ĝk(x) for all k ∈ N and limk→∞ Ĝk(x) = l. Define the

sequence b(k) = {b(k)
n }n∈N for every fixed k ∈ N by

b(k)
n =





dnk

ukvk

− dn,k+1

ukvk+1

, (n > k)

1

rukvk

, (n = k)

0, (n < k).

(8)

Then, the following statements hold:

(i) The sequence {b(k)}k∈N is a basis for the space c0(u, v; p, Ĝ) and any x ∈ c0(u, v; p, Ĝ)
has a unique representation of the form x =

∑
k αkb

(k).

(ii) The sequence {b, b(0), b(1), b(2), ...} is a basis for the space c(u, v; p, Ĝ), where

b = (bk) =

( ∑k
j=0 dkj

)
, and any x ∈ c(u, v; p, Ĝ) has a unique representation of the

form

x = lb +
∑

k

[αk − l]b(k).
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3 The α− and β− Dual of The Spaces c(u, v; p, Ĝ) and

c0(u, v; p, Ĝ)

For the sequence spaces X and Y , define the set S(X, Y ) by

S(X, Y ) = {z = (zk) : xz = (xkzk) ∈ Y for all x ∈ X}. (9)

With the notation of (9), the α− and β− duals of a sequence space X, which are
respectively denoted by Xα and Xβ are defined by

Xα = S(X, `1) and Xβ = S(X, cs)

We shall quote some lemmas which are needed in proving our theorems.

Lemma 3.1. [33, Theorem 5.1.1 with q = 1] A ∈ (c0(p) : `1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣
∑

k∈K

ankB
−1/pk

∣∣∣∣∣ < ∞, (∃B ∈ N2). (10)

Lemma 3.2. [34, Corollary 2] A ∈ (c0(p) : c) if and only if

sup
n∈N

∑

k

|ank|B−1/pk < ∞, (∃B ∈ N2), (11)

lim
n→∞

ank = αk exists for every fixed k. (12)

Theorem 3.3. Let K∗ = {k ∈ N : 0 ≤ k ≤ n} ∩K for K ∈ F and B ∈ N2. Define the
sets G1(p), G2(p), G3(p), G4(p), G5(p) and G6(p) as follows:

G1(p) =
⋃
B>1

{
a = (ak) ∈ ω : sup

K∈F

∑
n

∣∣∣∣
∑

k∈K∗
cnkB

−1/pk

∣∣∣∣ < ∞
}

,

G2(p) =

{
a = (ak) ∈ ω :

∑
n

∣∣∣∣
∑

k

cnk

∣∣∣∣ < ∞
}

,

G3(p) =
⋃
B>1

{
a = (ak) ∈ ω : sup

n∈N

∑

k

|ĝk(n)|B−1/pk < ∞
}

,

G4(p) =
⋃
B>1

{
a = (ak) ∈ ω :

{
ak

rukvk

B−1/pk

}
∈ `∞

}
,

G5(p) =

{
a = (ak) ∈ ω : lim

n→∞
ĝk(n) = αk, exists for every fixed k

}
,

G6(p) =

{
a = (ak) ∈ w : sup

k∈N

∣∣∣∣
1

r

ak

ukvk

∣∣∣∣ < ∞ and
∞∑

j=k

djkaj exists for each k ∈ N
}

Then,
{c0(u, v; p, Ĝ)}α = G1(p), {c(u, v; p, Ĝ)}α = G1(p) ∩G2(p),

{c0(u, v; p, Ĝ)}β =
6⋂

i=3

Gi(p), {c(u, v; p, Ĝ)}β = {c0(u, v; p, Ĝ)}β ∩ cs,
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Proof: We give the proof for the space c0(u, v; p, Ĝ). Let us take any a = (an) ∈ ω
and define the matrix C = (cnk) via the sequence a = (an) by

cnk =





dnkan

ukvk

− dn,k+1an

ukvk+1

, (k < n)

an

runvn

, (k = n)

0, (k > n)

where n, k ∈ N. Bearing in mind (5) we immediately derive that

anxn =
n∑

k=0

dnk

k∑

j=k−1

(−1)k−j 1

vkuj

anyj

=
n−1∑

k=0

(
dnk

vk

− dn,k+1

vk+1

)
an

uk

yk +
an

runvn

yn

= Cn(y) (13)

for all n ∈ N. We therefore observe by (13) that ax = (anxn) ∈ `1 whenever x ∈
c0(u, v; p, Ĝ) if and only if Cy ∈ `1 whenever y ∈ c0(p). This means that a = (an) ∈
{c0(u, v; p, Ĝ)}α whenever x = (xn) ∈ c0(u, v; p, Ĝ) if and only if C ∈ (c0(p) : `1). Then,
we derive by Lemma 3.1 that

{c0(u, v; p, Ĝ)}α = G1(p).

We show that now β−dual of the space {c0(u, v; p, Ĝ)}β. For this purpose we use
the following equation;

n∑

k=0

akxk =
n∑

k=0

[ k∑
j=0

dkj

i∑
i=j−1

(−1)j−i 1

vjui

yi

]
ak

=
n∑

k=0

(
yk

uk

− yk−1

uk−1

)(
1

vk

n∑

j=k

djkaj

)

=
n−1∑

k=0

1

uk

[∑n
j=k djkaj

vk

−
∑n

j=k+1 dj,k+1aj

vk+1

]
yk +

1

r

an

unvn

yn

=
n−1∑

k=0

ĝk(n)yk +
1

r

an

unvn

yn

= En(y); (n ∈ N) (14)

where E = (enk) is defined by

enk =





ĝk(n), (k < n)
an

runvn

, (k = n)

0, (k > n)

for all k, n ∈ N. Thus, we deduce from Lemma 3.2 with (14) that ax = (akxk) ∈ cs

whenever x = (xk) ∈ c0(u, v; p, Ĝ) if and only if Ey ∈ c whenever y = (yk) ∈ c0(p).
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This means that a = (an) ∈ {c0(u, v; p, Ĝ)}β whenever x = (xn) ∈ c0(u, v; p, Ĝ) if and
only if E ∈ (c0(p) : c). Therefore we derive from Lemma 3.2 and (14) that

{c0(u, v; p, Ĝ)}β =
6⋂

i=3

Gi(p).

4 Some Matrix Mappings on the Sequence Spaces

c0(u, v; p, Ĝ) and c(u, v; p, Ĝ)

In this final section, we state some results which characterize various matrix mappings
on the spaces c0(u, v; p, Ĝ) and c(u, v; p, Ĝ). We shall write throughout for brevity that

ânk(m) =
1

uk

[∑m
j=k djkaj,k

vk

−
∑m

j=k+1 dj,k+1aj,k+1

vk+1

]
for k < m

and

ânk =
1

uk

[∑∞
j=k djkaj,k

vk

−
∑∞

j=k+1 dj,k+1aj,k+1

vk+1

]

for all k, m, n ∈ N provided the series on the right hand to be convergent.

Theorem 4.1. Let λ be any given sequence space and µ ∈ {c0, c}. Then, A = (ank) ∈
(µ(u, v; p, Ĝ) : λ) if and only if B ∈ (µ : λ) and

B(n) ∈ (µ : c) (15)

for every fixed n ∈ N, where bnk = ânk and B(n) = (b
(n)
mk)

b
(n)
mk =





ânk(m), (k < n)
anm

rumvm

, (k = n)

0, (k > n)

for all k, m ∈ N.

Proof: This result can be proved similarly as the proof of Theorem 3.1 in [8].

Now, we may quote our corollaries on the characterization of some matrix classes
concerning with the sequence spaces c0(u, v; p, Ĝ) and c(u, v; p, Ĝ). Prior to giving the
corollaries, let us suppose that (qn) is a non-decreasing bounded sequence of positive
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real numbers and consider the following conditions:

sup
n∈N

[∑

k

|ank|B−1/pk

]qn

< ∞, (∃B ∈ N), (16)

sup
n∈N

∣∣∣∣∣
∑

k

ank

∣∣∣∣∣

qn

< ∞, (17)

sup
K∈F

∑
n

∣∣∣∣∣
∑

k∈K

ankB
−1/pk

∣∣∣∣∣

qn

< ∞, (∃B ∈ N), (18)

∑
n

∣∣∣∣∣
∑

k

ank

∣∣∣∣∣

qn

< ∞, (19)

∃α ∈ R 3 lim
n→∞

∣∣∣∣∣
∑

k

ank − α

∣∣∣∣∣

qn

= 0, (20)

∃(αk) ⊂ R 3 lim
n→∞

|ank − αk|qn = 0, (∀k ∈ N), (21)

∃(αk) ⊂ R 3 sup
n∈N

K1/qn
∑

k

|ank − αk|B−1/pk < ∞, (∀K, ∃B ∈ N) (22)

sup
n∈N

∑

k

|ank|B−1/pk < ∞, (∃B ∈ N) (23)

Now, we can give the corollaries:

Corollary 4.2. A = (ank) be any infinite matrix. Then the following statements hold:

(i) A = (ank) ∈ (c0(u, v; p, Ĝ) : `(q) if and only if (18) holds with ânk instead of ank

and (15) also holds with λ = c0.

(ii) A = (ank) ∈ (c0(u, v; p, Ĝ) : c(q)) if and only if (21), (22) and (23) hold with ânk

instead of ank and (15) also holds with λ = c0.

(iii) A = (ank) ∈ (c0(u, v; p, Ĝ) : `∞(q)) if and only if (16) and (17) hold with ânk

instead of ank and (15) also holds λ = c0.

Corollary 4.3. A = (ank) be any infinite matrix. Then the following statements hold:

(i) A = (ank) ∈ (c(u, v; p, Ĝ) : `(q)) if and only if (18) and (19) hold with ânk instead
of ank and (15) also holds with λ = c.

(ii) A = (ank) ∈ (c(u, v; p, Ĝ) : c(q)) if and only if (20)-(23) hold with ânk instead of
ank and (15) also holds λ = c.

(iii) A = (ank) ∈ (c(u, v; p, Ĝ) : `∞(q)) if and only if (16) and (17) hold with ânk

instead of ank and (15) also holds λ = c.
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