On Some New Paranormed Sequence Spaces and Their Topological Properties

Osman Duyar (osman-duyar@hotmail.com)
Anatolian High School, 60200 Tokat, Turkey

Abstract

In this study, we define new paranormed sequence spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$ by combining a generalized weighted mean and a generalized difference operator $\widehat{B}=B(r, s, t)$. Furthermore, we compute the $\alpha-$ and $\beta-$ duals and obtain bases for these sequence spaces. Finally, we characterize the classes of matrix mappings from the new paranormed sequence spaces to the spaces $\mu(q)$ for $\mu \in\left\{c, \ell, \ell_{\infty}\right\}$.

Abstract

Keywords - Matrix domain of a sequence space, paranormed sequence spaces, weighted mean matrix, Matrix transformations, Schauder basis, $\alpha-$ and $\beta-d u$ als.

1 Introduction

By ω, we shall denote the space of all real valued sequences. Any vector subspace of ω is called as a sequence space. We shall write ℓ_{∞}, c and c_{0} for the spaces of all bounded, convergent and null sequences, respectively. Also by $b s, c s, \ell_{1}$ and ℓ_{p}; we denote the spaces of all bounded, convergent, absolutely and p - absolutely convergent series, respectively; $1<p<\infty$.

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \rightarrow \mathbb{R}$ such that $g(\theta)=0, g(x)=g(-x)$ and scalar multiplication is continuous, i.e., $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow 0$ imply $g\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$ for all α 's in \mathbb{R} and all x 's in X, where θ is the zero vector in the linear space X.

Assume here and after that $\left(p_{k}\right)$ be a bounded sequences of strictly positive real numbers with $\sup p_{k}=H$ and $M=\max \{1, H\}$. Then, the linear spaces $c(p), c_{0}(p)$ $\ell_{\infty}(p)$ and $\ell(p)$ were defined by Maddox [36, 37] (see also Simons [39] and Nakano [38]) as follows:

$$
\begin{aligned}
c(p) & =\left\{x=\left(x_{k}\right) \in \omega: \lim _{k \rightarrow \infty}\left|x_{k}-l\right|^{p_{k}}=0 \text { for some } l \in \mathbb{C}\right\} \\
c_{0}(p) & =\left\{x=\left(x_{k}\right) \in \omega: \lim _{k \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=0\right\} \\
\ell_{\infty}(p) & =\left\{x=\left(x_{k}\right) \in \omega: \sup _{k \in \mathbb{N}}\left|x_{k}\right|^{p_{k}}<\infty\right\}
\end{aligned}
$$

which are the complete spaces paranormed by

$$
g_{1}(x)=\sup _{k \in \mathbb{N}}\left|x_{k}\right|^{p_{k} / M} \text { iff } \inf _{k \in \mathbb{N}} p_{k}>0
$$

and the space

$$
\ell(p)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}
$$

is the complete paranormed by

$$
g_{2}(x)=\left(\sum_{k}\left|x_{k}\right|^{p_{k}}\right)^{1 / M}
$$

We shall assume throughout that $p_{k}^{-1}+\left(p_{k}^{\prime}\right)^{-1}=1$ provided $1<\inf p_{k}<H<\infty$ and use the convention that any term with negative subscript is equal to zero. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By \mathcal{F} and \mathbb{N}_{k}, we shall denote the collection of all finite subsets of \mathbb{N} and the set of all $n \in \mathbb{N}$ such that $n \geq k$, respectively.

Let (X, h) be a paranormed space. A sequence $\left(b_{k}\right)$ of the elements of X is called a basis for X if and only if, for each $x \in X$, there exists a unique sequence $\left(\alpha_{k}\right)$ of scalars such that

$$
h\left(x-\sum_{k=0}^{n} \alpha_{k} b_{k}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

The series $\sum \alpha_{k} b_{k}$ which has the sum x is then called the expansion of x with respect to $\left(b_{n}\right)$ and written as $x=\sum \alpha_{k} b_{k}$.

Let X, Y be any two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from X into Y, and we denote it by writing $A: X \rightarrow Y$, if for every sequence $x=\left(x_{k}\right) \in X$ the sequence $A x=\left((A x)_{n}\right)$, the A-transform of x, is in Y, where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k}, \quad(n \in \mathbb{N}) \tag{1}
\end{equation*}
$$

For a sequence space X, the matrix domain X_{A} of an infinite matrix A is defined by

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in \omega: \quad A x \in X\right\} \tag{2}
\end{equation*}
$$

By $(X: Y)$, we denote the class of all matrices A such that $A: X \rightarrow Y$. Thus, $A \in(X: Y)$ if and only if the series on the right-hand side of (1) converges for each $n \in \mathbb{N}$ and every $x \in X$, and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in Y$ for all $x \in X$. A sequence
x is said to be A - summable to α if $A x$ converges to α which is called as the A - limit of x.

Let r, s and t be non-zero real numbers, and define the generalized difference matrix $\widehat{B}=B(r, s, t)=\left\{b_{n k}(r, s, t)\right\}$ by

$$
b_{n k}(r, s, t)= \begin{cases}r, & (k=n) \tag{3}\\ s, & (k=n-1) \\ t, & (k=n-2) \\ 0, & (0 \leq k<n-1 \text { or } k>n)\end{cases}
$$

for all $n, k \in \mathbb{N}$.
We write by \mathcal{U} for the set of all sequences $u=\left(u_{n}\right)$ such that $u_{n} \neq 0$ for all $n \in \mathbb{N}$. For $u \in \mathcal{U}$, let $1 / u=\left(1 / u_{n}\right)$. Let $u, v \in \mathcal{U}$ and let us define the matrix $G(u, v)=\left(g_{n k}\right)$ and $\Delta=\left(\delta_{n k}\right)$ as follows:

$$
g_{n k}=\left\{\begin{array}{ll}
u_{n} v_{k}, & (0 \leq k \leq n), \\
0, & (k>n),
\end{array} \quad \delta_{n k}= \begin{cases}(-1)^{n-k}, & (n-1 \leq k \leq n), \\
0, & (0 \leq k<n-1 \text { or } k>n),\end{cases}\right.
$$

for all $n, k \in \mathbb{N}$, where u_{n} depends only on n and v_{k} only on k. The matrix $G(u, v)$, defined above, is called as generalized weighted mean or factorable matrix.

The main purpose of this study is to introduce the sequence spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$ which is the set of all sequences whose $G(u, v ; \widehat{B})$-transforms are in the spaces $c_{0}(p)$ and $c(p)$, respectively, where $G(u, v ; \widehat{B})$ denotes the matrix $G(u, v ; \widehat{B})=$ $G(u, v) \widehat{B}=\widehat{G}=\left(\widehat{g}_{n k}\right)$ defined by

$$
\widehat{g}_{n k}= \begin{cases}u_{n} v_{k} r+u_{n} v_{k+1} s+u_{n} v_{k+2} t, & (k<n-1) \tag{4}\\ u_{n} v_{n-1} r+u_{n} v_{n} s, & (k=n-1) \\ u_{n} v_{n} r, & (k=n) \\ 0, & (\text { otherwise })\end{cases}
$$

for all $k, n \in \mathbb{N}$. Also, we have investigated some topological structures, which have completeness, the $\alpha-$ and β - duals, and the basis of these sequence spaces. Finally, we characterize some matrix mappings on these spaces.

2 The Paranormed Sequence Spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$

In this section, we define the new sequence spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$ derived by using the generalized weighted mean and generalized difference operator, and prove that these sequence spaces is the complete paranormed linear metric spaces and compute their α - and β - duals. Also, we give the basis for these spaces.

Let r and s be non-zero real numbers, and define the double-band matrix $B(r, s)=$ $\left\{b_{n k}(r, s)\right\}$ by

$$
b_{n k}(r, s)= \begin{cases}r, & (k=n) \\ s, & (k=n-1) \\ 0, & (0 \leq k<n-1 \text { or } k>n)\end{cases}
$$

for all $k, n \in \mathbb{N}$.

Altay and Başar [6] have examined topological properties of the space $\ell(u, v ; p)$ which is defined by

$$
\ell(u, v, p)=\left\{x=\left(x_{k}\right) \in \omega: y=\left(\sum_{j=0}^{k} u_{k} v_{j} x_{j}\right) \in \ell(p)\right\} .
$$

Başarır and Kara have recently defined the sequence space $\ell(u, v ; p, \widehat{B})$ in [26], which consists of all sequences such that $G B$-transforms are in $\ell(p)$, where $G=G(u, v)$ is the weighted mean transform and $B=B(r, s)$ is the generalized difference transform.

Following Altay and Başar [6] and Başarır and Kara [26] we define the sequence spaces $\lambda(u, v ; p, \widehat{B})$ by

$$
\lambda(u, v ; p, \widehat{G})=\left\{x=\left(x_{k}\right) \in \omega:\left(\sum_{i=0}^{k} u_{k} v_{i}\left(r x_{i}+s x_{i-1}+t x_{i-2}\right)\right) \in \lambda(p)\right\}
$$

for $\lambda \in\left\{c_{0}, c\right\}$. We may redefine the spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$ using the notation (2) as follows:

$$
c_{0}(u, v ; p, \widehat{G})=\left\{c_{0}(p)\right\}_{\widehat{G}} \quad \text { and } \quad c(u, v ; p, \widehat{G})=\{c(p)\}_{\widehat{G}}
$$

If p_{k} and r, s, t are selected as suitable, this definition includes the special cases in the articles $[6,7,8,15,16,24,26,30,31]$.

Now, we define the sequence $y=\left(y_{k}\right)$ as the \widehat{G}-transform of a sequence $x=\left(x_{k}\right)$, i.e.

$$
\begin{equation*}
y_{k}=u_{k} \sum_{i=0}^{k-2}\left(r v_{i}+s v_{i+1}+t v_{i+2}\right) x_{i}+u_{k}\left(r v_{k-1}+s v_{k}\right) x_{k-1}+u_{k} v_{k} r x_{k} \tag{5}
\end{equation*}
$$

for all $k \in \mathbb{N}$.
Theorem 2.1. The sequence spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$ are the complete linear metric spaces paranormed by g, defined by

$$
g(x)=\sup _{k \in \mathbb{N}}\left|\sum_{j=0}^{k} u_{k} v_{j}\left(r x_{j}+s x_{j-1}+t x_{j-2}\right)\right|^{p_{k} / M}
$$

Proof: The proof of this theorem follows from the similar arguments as in the Theorem3.1 in [26]. So we omit the detail.

Theorem 2.2. The sequence spaces $c(u, v ; p, \widehat{G})$ and $c_{0}(u, v ; p, \widehat{G})$ are linearly isomorphic to the spaces $c(p)$ and $c_{0}(p)$, respectively, where $0<p_{k} \leq H<\infty$.

Proof: We establish this for the space $c(u, v ; p, \widehat{G})$. To prove the theorem, we should show the existence of a linear bijection between the spaces $c(u, v ; p, \widehat{G})$ and $c(p)$ for $0<p_{k} \leq H<\infty$. With the notation of (5), define the transformations T from $c(u, v ; p, \widehat{G})$ to $c(p)$ by $x \mapsto y=T x$. The linearity of T is trivial. Further, it is obvious that $x=\theta$ whenever $T x=\theta$ and hence T is injective.

Let $y=\left(y_{k}\right) \in c(p)$ and define the sequence $x=\left(x_{k}\right)$ by

$$
\begin{equation*}
x_{k}=\sum_{j=0}^{k} d_{k j} \sum_{i=j-1}^{j}(-1)^{j-i} \frac{1}{v_{j} u_{i}} y_{i} \tag{6}
\end{equation*}
$$

for $k \in \mathbb{N}$ where $d_{n k}=0$ for $k>n$ and

$$
\begin{equation*}
d_{n k}=\frac{1}{r} \sum_{v=0}^{n-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{n-k-v}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{v} \tag{7}
\end{equation*}
$$

for $0 \leq k \leq n$. Then, we get that

$$
\begin{aligned}
g(x) & =\sup _{k \in \mathbb{N}}\left|u_{k} \sum_{i=0}^{k-2}\left(r v_{i}+s v_{i+1}+t v_{i+2}\right) x_{i}+u_{k}\left(r v_{k-1}+s v_{k}\right) x_{k-1}+u_{k} v_{k} r x_{k}\right|^{p_{k} / M} \\
& =\sup _{k \in \mathbb{N}}\left|y_{k}\right|^{p_{k} / M}=g_{1}(y)<\infty .
\end{aligned}
$$

Thus, we deduce that $x \in c(u, v ; p, \widehat{G})$ and consequently T is surjective and is paranorm preserving. Hence, T is a linear bijection and this says us that the spaces $c(u, v ; p, \widehat{G})$ and $c(p)$ are linearly isomorphic, as desired.

Let $\lambda \in\left\{c_{0}, c\right\}$. Because of the isomorphism T between the sequence spaces $\lambda(u, v ; p, \widehat{G})$ and $\lambda(p)$ is onto, the inverse image of the basis of the space $\lambda(p)$ is the basis of the space $\lambda(u, v ; p, \widehat{G})$. Therefore, we may give a corollary with respect to Schauder basis of the new sequence spaces $\lambda(u, v ; p, \widehat{G})$:

Corollary 2.3. Let $\alpha_{k}=\widehat{G}_{k}(x)$ for all $k \in \mathbb{N}$ and $\lim _{k \rightarrow \infty} \widehat{G}_{k}(x)=l$. Define the sequence $b^{(k)}=\left\{b_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ for every fixed $k \in \mathbb{N}$ by

$$
b_{n}^{(k)}= \begin{cases}\frac{d_{n k}}{u_{k} v_{k}}-\frac{d_{n, k+1}}{u_{k} v_{k+1}}, & (n>k) \tag{8}\\ \frac{1}{r u_{k} v_{k}}, & (n=k) \\ 0, & (n<k) .\end{cases}
$$

Then, the following statements hold:
(i) The sequence $\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ is a basis for the space $c_{0}(u, v ; p, \widehat{G})$ and any $x \in c_{0}(u, v ; p, \widehat{G})$ has a unique representation of the form $x=\sum_{k} \alpha_{k} b^{(k)}$.
(ii) The sequence $\left\{b, b^{(0)}, b^{(1)}, b^{(2)}, \ldots\right\}$ is a basis for the space $c(u, v ; p, \widehat{G})$, where $b=\left(b_{k}\right)=\left(\sum_{j=0}^{k} d_{k j}\right)$, and any $x \in c(u, v ; p, \widehat{G})$ has a unique representation of the form

$$
x=l b+\sum_{k}\left[\alpha_{k}-l\right] b^{(k)} .
$$

3 The α - and β - Dual of The Spaces $c(u, v ; p, \widehat{G})$ and $c_{0}(u, v ; p, \widehat{G})$

For the sequence spaces X and Y, define the set $S(X, Y)$ by

$$
\begin{equation*}
S(X, Y)=\left\{z=\left(z_{k}\right): x z=\left(x_{k} z_{k}\right) \in Y \text { for all } x \in X\right\} . \tag{9}
\end{equation*}
$$

With the notation of (9), the α - and β - duals of a sequence space X, which are respectively denoted by X^{α} and X^{β} are defined by

$$
X^{\alpha}=S\left(X, \ell_{1}\right) \text { and } X^{\beta}=S(X, c s)
$$

We shall quote some lemmas which are needed in proving our theorems.
Lemma 3.1. [33, Theorem 5.1.1 with $q=1] A \in\left(c_{0}(p): \ell_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} a_{n k} B^{-1 / p_{k}}\right|<\infty, \quad\left(\exists B \in \mathbb{N}_{2}\right) \tag{10}
\end{equation*}
$$

Lemma 3.2. [34, Corollary 2] $A \in\left(c_{0}(p): c\right)$ if and only if

$$
\begin{align*}
& \sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right| B^{-1 / p_{k}}<\infty, \quad\left(\exists B \in \mathbb{N}_{2}\right), \tag{11}\\
& \lim _{n \rightarrow \infty} a_{n k}=\alpha_{k} \quad \text { exists for every fixed } k . \tag{12}
\end{align*}
$$

Theorem 3.3. Let $K^{*}=\{k \in \mathbb{N}: 0 \leq k \leq n\} \cap K$ for $K \in \mathcal{F}$ and $B \in \mathbb{N}_{2}$. Define the sets $G_{1}(p), G_{2}(p), G_{3}(p), G_{4}(p), G_{5}(p)$ and $G_{6}(p)$ as follows:

$$
\begin{aligned}
& G_{1}(p)=\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \omega: \sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K^{*}} c_{n k} B^{-1 / p_{k}}\right|<\infty\right\} \\
& G_{2}(p)=\left\{a=\left(a_{k}\right) \in \omega: \sum_{n}\left|\sum_{k} c_{n k}\right|<\infty\right\}, \\
& G_{3}(p)=\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \omega: \sup _{n \in \mathbb{N}} \sum_{k}\left|\widehat{g}_{k}(n)\right| B^{-1 / p_{k}}<\infty\right\}, \\
& G_{4}(p)=\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \omega:\left\{\frac{a_{k}}{r u_{k} v_{k}} B^{-1 / p_{k}}\right\} \in \ell_{\infty}\right\}, \\
& G_{5}(p)=\left\{a=\left(a_{k}\right) \in \omega: \lim _{n \rightarrow \infty} \widehat{g}_{k}(n)=\alpha_{k}, \text { exists for every fixed } k\right\}, \\
& G_{6}(p)=\left\{a=\left(a_{k}\right) \in w: \sup _{k \in \mathbb{N}}\left|\frac{1}{r} \frac{a_{k}}{r}\right|<\infty \text { and } \sum_{j=k}^{\infty} d_{j k} a_{j} \text { exists for each } k \in \mathbb{N}\right\}
\end{aligned}
$$

Then,

$$
\begin{gathered}
\left\{c_{0}(u, v ; p, \widehat{G})\right\}^{\alpha}=G_{1}(p), \quad\{c(u, v ; p, \widehat{G})\}^{\alpha}=G_{1}(p) \cap G_{2}(p), \\
\left\{c_{0}(u, v ; p, \widehat{G})\right\}^{\beta}=\bigcap_{i=3}^{6} G_{i}(p),\{c(u, v ; p, \widehat{G})\}^{\beta}=\left\{c_{0}(u, v ; p, \widehat{G})\right\}^{\beta} \cap c s,
\end{gathered}
$$

Proof: We give the proof for the space $c_{0}(u, v ; p, \widehat{G})$. Let us take any $a=\left(a_{n}\right) \in \omega$ and define the matrix $C=\left(c_{n k}\right)$ via the sequence $a=\left(a_{n}\right)$ by

$$
c_{n k}= \begin{cases}\frac{d_{n k} a_{n}}{u_{k} v_{k}}-\frac{d_{n, k+1} a_{n}}{u_{k} v_{k+1}}, & (k<n) \\ \frac{a_{n}}{r u_{n} v_{n}}, & (k=n) \\ 0, & (k>n)\end{cases}
$$

where $n, k \in \mathbb{N}$. Bearing in mind (5) we immediately derive that

$$
\begin{align*}
a_{n} x_{n} & =\sum_{k=0}^{n} d_{n k} \sum_{j=k-1}^{k}(-1)^{k-j} \frac{1}{v_{k} u_{j}} a_{n} y_{j} \\
& =\sum_{k=0}^{n-1}\left(\frac{d_{n k}}{v_{k}}-\frac{d_{n, k+1}}{v_{k+1}}\right) \frac{a_{n}}{u_{k}} y_{k}+\frac{a_{n}}{r u_{n} v_{n}} y_{n} \\
& =C_{n}(y) \tag{13}
\end{align*}
$$

for all $n \in \mathbb{N}$. We therefore observe by (13) that $a x=\left(a_{n} x_{n}\right) \in \ell_{1}$ whenever $x \in$ $c_{0}(u, v ; p, \widehat{G})$ if and only if $C y \in \ell_{1}$ whenever $y \in c_{0}(p)$. This means that $a=\left(a_{n}\right) \in$ $\left\{c_{0}(u, v ; p, \widehat{G})\right\}^{\alpha}$ whenever $x=\left(x_{n}\right) \in c_{0}(u, v ; p, \widehat{G})$ if and only if $C \in\left(c_{0}(p): \ell_{1}\right)$. Then, we derive by Lemma 3.1 that

$$
\left\{c_{0}(u, v ; p, \widehat{G})\right\}^{\alpha}=G_{1}(p)
$$

We show that now β-dual of the space $\left\{c_{0}(u, v ; p, \widehat{G})\right\}^{\beta}$. For this purpose we use the following equation;

$$
\begin{align*}
\sum_{k=0}^{n} a_{k} x_{k} & =\sum_{k=0}^{n}\left[\sum_{j=0}^{k} d_{k j} \sum_{i=j-1}^{i}(-1)^{j-i} \frac{1}{v_{j} u_{i}} y_{i}\right] a_{k} \\
& =\sum_{k=0}^{n}\left(\frac{y_{k}}{u_{k}}-\frac{y_{k-1}}{u_{k-1}}\right)\left(\frac{1}{v_{k}} \sum_{j=k}^{n} d_{j k} a_{j}\right) \\
& =\sum_{k=0}^{n-1} \frac{1}{u_{k}}\left[\frac{\sum_{j=k}^{n} d_{j k} a_{j}}{v_{k}}-\frac{\sum_{j=k+1}^{n} d_{j, k+1} a_{j}}{v_{k+1}}\right] y_{k}+\frac{1}{r} \frac{a_{n}}{u_{n} v_{n}} y_{n} \\
& =\sum_{k=0}^{n-1} \widehat{g}_{k}(n) y_{k}+\frac{1}{r} \frac{a_{n}}{u_{n} v_{n}} y_{n} \\
& =E_{n}(y) ; \quad(n \in \mathbb{N}) \tag{14}
\end{align*}
$$

where $E=\left(e_{n k}\right)$ is defined by

$$
e_{n k}= \begin{cases}\widehat{g}_{k}(n), & (k<n) \\ \frac{a_{n}}{r u_{n} v_{n}}, & (k=n) \\ 0, & (k>n)\end{cases}
$$

for all $k, n \in \mathbb{N}$. Thus, we deduce from Lemma 3.2 with (14) that $a x=\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in c_{0}(u, v ; p, \widehat{G})$ if and only if $E y \in c$ whenever $y=\left(y_{k}\right) \in c_{0}(p)$.

This means that $a=\left(a_{n}\right) \in\left\{c_{0}(u, v ; p, \widehat{G})\right\}^{\beta}$ whenever $x=\left(x_{n}\right) \in c_{0}(u, v ; p, \widehat{G})$ if and only if $E \in\left(c_{0}(p): c\right)$. Therefore we derive from Lemma 3.2 and (14) that

$$
\left\{c_{0}(u, v ; p, \widehat{G})\right\}^{\beta}=\bigcap_{i=3}^{6} G_{i}(p) .
$$

4 Some Matrix Mappings on the Sequence Spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$

In this final section, we state some results which characterize various matrix mappings on the spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$. We shall write throughout for brevity that

$$
\widehat{a}_{n k}(m)=\frac{1}{u_{k}}\left[\frac{\sum_{j=k}^{m} d_{j k} a_{j, k}}{v_{k}}-\frac{\sum_{j=k+1}^{m} d_{j, k+1} a_{j, k+1}}{v_{k+1}}\right] \quad \text { for } k<m
$$

and

$$
\widehat{a}_{n k}=\frac{1}{u_{k}}\left[\frac{\sum_{j=k}^{\infty} d_{j k} a_{j, k}}{v_{k}}-\frac{\sum_{j=k+1}^{\infty} d_{j, k+1} a_{j, k+1}}{v_{k+1}}\right]
$$

for all $k, m, n \in \mathbb{N}$ provided the series on the right hand to be convergent.
Theorem 4.1. Let λ be any given sequence space and $\mu \in\left\{c_{0}, c\right\}$. Then, $A=\left(a_{n k}\right) \in$ $(\mu(u, v ; p, \widehat{G}): \lambda)$ if and only if $B \in(\mu: \lambda)$ and

$$
\begin{equation*}
B^{(n)} \in(\mu: c) \tag{15}
\end{equation*}
$$

for every fixed $n \in \mathbb{N}$, where $b_{n k}=\widehat{a}_{n k}$ and $B^{(n)}=\left(b_{m k}^{(n)}\right)$

$$
b_{m k}^{(n)}= \begin{cases}\frac{\widehat{a}_{n k}(m),}{} & (k<n) \\ \frac{a_{n m}}{r u_{m} v_{m}}, & (k=n) \\ 0, & (k>n)\end{cases}
$$

for all $k, m \in \mathbb{N}$.
Proof: This result can be proved similarly as the proof of Theorem 3.1 in [8].
Now, we may quote our corollaries on the characterization of some matrix classes concerning with the sequence spaces $c_{0}(u, v ; p, \widehat{G})$ and $c(u, v ; p, \widehat{G})$. Prior to giving the corollaries, let us suppose that $\left(q_{n}\right)$ is a non-decreasing bounded sequence of positive
real numbers and consider the following conditions:

$$
\begin{align*}
& \sup _{n \in \mathbb{N}}\left[\sum_{k}\left|a_{n k}\right|^{-1 / p_{k}}\right]^{q_{n}}<\infty, \quad(\exists B \in \mathbb{N}), \tag{16}\\
& \sup _{n \in \mathbb{N}}\left|\sum_{k} a_{n k}\right|^{q_{n}}<\infty, \tag{17}\\
& \sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} a_{n k} B^{-1 / p_{k}}\right|^{q_{n}}<\infty, \quad(\exists B \in \mathbb{N}), \tag{18}\\
& \sum_{n}\left|\sum_{k} a_{n k}\right|^{q_{n}}<\infty, \tag{19}\\
& \exists \alpha \in \mathbb{R} \ni \lim _{n \rightarrow \infty}\left|\sum_{k} a_{n k}-\alpha\right|^{q_{n}}=0, \tag{20}\\
& \exists\left(\alpha_{k}\right) \subset \mathbb{R} \ni \lim _{n \rightarrow \infty}\left|a_{n k}-\alpha_{k}\right|^{q_{n}}=0, \quad(\forall k \in \mathbb{N}), \tag{21}\\
& \exists\left(\alpha_{k}\right) \subset \mathbb{R} \ni \sup _{n \in \mathbb{N}} K^{1 / q_{n}} \sum_{k}\left|a_{n k}-\alpha_{k}\right| B^{-1 / p_{k}}<\infty, \quad(\forall K, \exists B \in \mathbb{N}) \tag{22}\\
& \sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|^{-1 / p_{k}}<\infty, \quad(\exists B \in \mathbb{N}) \tag{23}
\end{align*}
$$

Now, we can give the corollaries:
Corollary 4.2. $A=\left(a_{n k}\right)$ be any infinite matrix. Then the following statements hold: (i) $A=\left(a_{n k}\right) \in\left(c_{0}(u, v ; p, \widehat{G}): \ell(q)\right.$ if and only if (18) holds with $\widehat{a}_{n k}$ instead of $a_{n k}$ and (15) also holds with $\lambda=c_{0}$.
(ii) $A=\left(a_{n k}\right) \in\left(c_{0}(u, v ; p, \widehat{G}): c(q)\right)$ if and only if (21), (22) and (23) hold with $\widehat{a}_{n k}$ instead of $a_{n k}$ and (15) also holds with $\lambda=c_{0}$.
(iii) $A=\left(a_{n k}\right) \in\left(c_{0}(u, v ; p, \widehat{G}): \ell_{\infty}(q)\right)$ if and only if (16) and (17) hold with $\widehat{a}_{n k}$ instead of $a_{n k}$ and (15) also holds $\lambda=c_{0}$.

Corollary 4.3. $A=\left(a_{n k}\right)$ be any infinite matrix. Then the following statements hold: (i) $A=\left(a_{n k}\right) \in(c(u, v ; p, \widehat{G}): \ell(q))$ if and only if (18) and (19) hold with $\widehat{a}_{n k}$ instead of $a_{n k}$ and (15) also holds with $\lambda=c$.
(ii) $A=\left(a_{n k}\right) \in(c(u, v ; p, \widehat{G}): c(q))$ if and only if (20)-(23) hold with $\widehat{a}_{n k}$ instead of $a_{n k}$ and (15) also holds $\lambda=c$.
(iii) $A=\left(a_{n k}\right) \in\left(c(u, v ; p, \widehat{G}): \ell_{\infty}(q)\right)$ if and only if (16) and (17) hold with $\widehat{a}_{n k}$ instead of $a_{n k}$ and (15) also holds $\lambda=c$.

References

[1] C.-S. Wang, On Nörlund sequence spaces, Tamkang J. Math. 9(1978) 269-274.
[2] P.-N. Ng, P.-Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. (Prace Mat.) 20(2)(1978) 429-433.
[3] E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997) 187-196.
[4] A. M. Jarrah and E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations,Filomat 17(2003), 59-78
[5] B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J. 57(1)(2005) 1-17.
[6] B. Altay, F. Başar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl. 319 (2006), 494-508.
[7] H. Polat, V. Karakaya and N. Şimşek, Difference sequence spaces derived by generalized weighted mean, Appl. Math. Lett. 24(2011), no.5, 608-614.
[8] B. Altay, F. Başar, Generalization of the space $\ell(p)$ derived by weighted mean, J. Math. Anal. Appl 330 (2007) 174-185.
[9] E. Malkowsky, E. Savaş, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput. 147(2004) 333-345.
[10] M. Başarır, On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math. 26(10) (1995) 1003-1010.
[11] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space $b v_{p}$ of $p-$ bounded variation sequences, Nonlinear Anal. 68(2)(2008) 273-287.
[12] B. Altay, On the space of $p-$ summable difference sequences of order $m,(1 \leq p<$ $\infty)$, Studia Sci. Math. Hungar. 43(4)(2006) 387-402.
[13] E. Malkowsky, M. Mursaleen, S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sin. Eng. Ser. 23(3)(2007) 521-532.
[14] Demiriz, S., Çakan, C., On some new paranormed Euler sequence spaces and Euler core , Acta Math. Sin. Eng. Ser. 26(7)(2010), 1207-1222.
[15] Demiriz, S., Özdemir O., Duyar O., On some new generalized difference sequence spaces of non-absolute type, arXiv:1309.3903, 2013.
[16] Duyar O., Demiriz, S., On some new generalized difference sequence spaces and their topological properties, Journal of New Result in Science, 6(2014) 1-14.
[17] B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1)(2007) 632645.
[18] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2)(1981) 169-176.
[19] C. Aydın, F. Başar, Some new sequence spaces which include the spaces ℓ_{p} and ℓ_{∞}, Demonstratio Math. 38(3)(2005) 641-656.
[20] C. Aydın, F. Başar, Some generalizations of the sequence space a_{p}^{r}, Iran. J. Sci. Technol. A Sci. 30(No. A2)(2006) 175-190.
[21] F. Başar, B. Altay, On the space of sequences of $p-$ bounded variation and related matrix mappings, Ukrainian Math. J. 55(1) (2003) 136-147.
[22] E. Malkowsky, M. Mursaleen, Some matrix transformations between the difference sequence spaces $\Delta c_{0}(p), \Delta c(p)$ and $\Delta \ell_{\infty}(p)$, Filomat, 15(2001) 353-363.
[23] Z. U. Ahmad, M. Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Belgrad) 42(1987) 57-61.
[24] A. Sönmez, F. Başar, Generalized difference spaces of non-absolute type of convergent and null sequences, Abstract and Applied Analysis Volume 2012, Article ID 435076, (2012) 20 pages.
[25] M. Başarır, E. E. Kara, On the $m^{\text {th }}$ order difference sequence space of generalized weighted mean and compact operators, Acta Mathematica Scientia, 33(B3)(2013), 1-18.
[26] M. Başarır, E. E. Kara, On the B - difference sequence space derived by generalized weighted mean and compact operators, Journal of Mathematical Analysis and Applications, 391(2012), 67-81.
[27] E. E. Kara, Some topological and geometrical properties of new Banach sequence space, Journal of Inequalities and Applications, 2013(38) (2013), 15 pages.
[28] M. Başarır, E. E. Kara, On some difference sequence space of weighted means and compact operators, Annals of Functional Analysis, 2(2)(2011), 116-131.
[29] E. E. Kara, M. Başarır, On compact operators and some Euler $B^{(m)}$ - difference sequence spaces, Journal of Mathematical Analysis and Applications, 379(2011), 499-511.
[30] M. Mursaleen, A.K. Noman, On the spaces of λ-convergent and bounded sequences, Thai Journal of Mahematics, 8(2) (2010), 311-329.
[31] M. Mursaleen, Abdullah K. Noman, On some new sequence spaces of non-absolute type related to the spaces ℓ_{p} and ℓ_{∞} I, Filomat 25:2 (2011), 33-51.
[32] A. Sönmez, Some new sequence spaces derived by the domain of the triple band matrix, Comput. Math. Appl., 62 (2011) 641-650.
[33] K.-G.Grosse-Erdmann, Matrix transformations between the sequence spaves of Maddox, J. Math. Anal. Appl. 180(1993), 223-238.
[34] C. G. Lascarides, I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68(1970), 99-104.
[35] I.J. Maddox, Elements of Functional Analysis, second ed., The Cambridge University Press, Cambridge, 1988.
[36] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phios. Soc. 64(1968), 335-340.
[37] I.J.Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18(2)(1967), 345-355.
[38] H. Nakano, Modulared sequence spaces, Proc. Jpn. Acad. 27(2)(1951), 508-512.
[39] S. Simons, The sequence spaces $\ell\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc. 15(3)(1965), 422-436.
[40] F. Başar, Summability Theory and Its Appliactions, Bentham Science Publishers, ISBN:978-1-60805-252-3, 2011.
[41] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, Amsterdam, 851984.

