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Abstract – Peristaltic transport of an incompressible micropolar fluid in an 

inclined two dimensional channel with the influence of wall properties has been 

studied. The equations governing the flow have been linearised under long wave 

length approximation and a perturbation method of solution has been obtained in 

terms of wall slope parameter, under dynamic boundary conditions. Analytical 

expression has been derived for the time average velocity and the effects of 

pertinent parameters on time average velocity have been studied. It has been 

observed that time average velocity increases with rigidity and stiffness in the 

wall. Further, the time average velocity increases with the inclination .   
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1    Introduction 
 

Peristaltic motion is a mechanism for fluid transport which is achieved when progressive 

waves of area contraction or expansion propagate along the walls of a distensible channel 

(or tube) containing the fluid.  Peristalsis is known to be the main mechanism for fluid 

transport in many physiological situations such as transport of urine through ureter, food 

mixing and chyme movement in the intestines, blood flow in cardiac chambers etc. 

Mechanical devices like finger pumps and roller pumps also operate on this principle. 

Peristaltic pumping is used in biomedical devices like heart lung machine to pump blood. 

 

Since the first investigation of Latham [1], several researchers [2, 3, 4, 5, 6, 7] have studied 

the peristaltic transport of Newtonian and non Newtonian fluids in different situations 

using analytical, numerical and experimental methods. 
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The theory of micropolar fluids and the application of some technical flows of these fluids 

have been presented in the works by Eringen [8] and Ariman et al. [9]. In the micropolar 

fluid theory, apart from the classical velocity field, the microrotation vector g


 and the 

gyration parameter J  are introduced to investigate the kinematics of micro rotations and 

provide a good mathematical model for the non-Newtonian behavior observed in certain 

man made liquids such as polymeric fluids and in naturally occurring liquids such as 

animal blood.   

 

Hence, the peristaltic transport of micropolar fluid has received some attention in last few 

decades. Several attempts [10, 11, 12, 13] have been made to understand the peristaltic 

motion of a micropolar fluid under various conditions.   

 

However, the interaction of the wall properties with fluid flow in peristaltic transport has 

not received much attention. Mittra and Prasad [14] studied peristaltic transport in a two-

dimensional channel considering the elasticity of the walls. They solved this problem under 

the approximation of small amplitude ratio with dynamic boundary conditions. Muthu et al. 

[15] extended the analysis of Mittra and Prasad [14] to micropolar fluids. 

 

But, it is known that many ducts in physiological systems are not horizontal but have some 

inclinations with the axis. However, the effect of inclination on fluid flows has not received 

much attention. Hence, Vajravelu et al. [16] studied the peristaltic transport of a Herschel-

Bulkley fluid in an inclined tube. Srinivas and Pushparaj [17] analyzed non-linear 

peristaltic transport in an inclined asymmetric channel.  Nadeem and Akbar [18] considered 

the influence of heat transfer on peristaltic transport of Herschel-Bulkley fluid in a non-

uniform inclined tube. Rami Reddy et al. [19] studied peristaltic transport of conducting 

fluid in an inclined asymmetric channel. However, no attempt has been made to study the 

influence of wall properties on peristaltic transport of a micropolar fluid in an inclined 

channel. 

 

In view of this, the peristaltic transport of a micropolar fluid in an inclined channel with 

dynamic boundary conditions has been studied. A perturbation method of solution has been 

obtained in terms of wall slope parameter assuming that the wave length of peristaltic wave 

is large in comparison to the mean half width of the channel. Expressions for the stream 

function and average velocity have been derived. The effects of various parameters on time 

average velocity have been studied. 

  

 

2    Formulation of the Problem 

 
Consider the flow of an unsteady incompressible micropolar fluid in an inclined two 

dimensional channel with flexible walls. It is assumed that traveling sinusoidal waves with 

speed c, amplitude a and wave length   are imposed on the walls of the channel. The 

channel is inclined at an angle α with the horizontal line (Fig.1). Cartesian coordinate 

system (x, y) is chosen with the x-axis aligned with the central line of the channel and in the 

direction of propagation of waves. The wall deformation due to the propagation of an 

infinite train of peristaltic waves is given by 
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where d is the mean half width of the channel. 

 The governing equation of motion of the flexible wall may be expressed as 

 

                                    0)( ppL        (2) 

 

where L is an operator, which is used to represent the motion of stretched membrane with 

damping forces such that 
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Here, T  is the tension in the membrane, m  is the mass per unit area and C  is the 

coefficient of viscous damping force. 

 

 

                                 
Figure 1: Geometry of two dimensional peristaltic transport in an inclined tube 

  

 

The equations governing the flow of an incompressible micropolar fluid in cartesian form 

for the present problem are given by  
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where u  and v are the velocity components in the x and y directions respectively, g is the 

microrotation component,   is the density, p is the pressure, J  is the micro inertia 

constant, *g is acceleration due to gravity,   is the coefficient of viscosity and   and   

are the viscosity coefficients for the micropolar fluid and 
2

2

2

2
2

yx 







 . 

 

It is assumed that 00 p  and the channel walls are inextensible so that only their lateral 

motions normal to the undeformed positions occur. The horizontal displacement thus is 

assumed to be zero. 

  

Thus the no-slip boundary conditions for the velocity and microrotation are 

 

            ,0u 0g   at    ),( txy                                                                         (8) 

 

The equation of motion of the flexible walls, following Mittra and Prasad [14], is 
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Defining the stream function   by 
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and eliminating the pressure between (5) and (6), equations (5) - (7), become 
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Introducing the following non-dimensional quantities 
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equations (11), (12), (8) and (9), after dropping the primes, can be written as 
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The boundary conditions are 
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The non-dimensional quantities 1E , 2E and 3E  are related to the wall motion through the 

dynamic boundary condition given in equation (17). The parameters 1E  and 2E  

respectively represent the rigidity and stiffness of the wall. The viscous damping force in 

the wall is represented by 3E . In particular, 03 E  implies that the walls move up and 

down with no damping force on them and hence indicates the case of elastic walls (i.e. 

03 E ).  Note that lR  is modified Reynolds number, which involves the square of a length 

of typical microstructure J , and it is reasonable to assume that lR is much less than unity.  

 

The micropolar parameter 1 denotes the ratio of the viscosity coefficient for the 

micropolar fluids and classical viscosity coefficient, which characterizes the coupling of 

(14) and (15). Another micropolar parameter M can be thought of as a fluid property 

depending upon the size of microstructure. It can be seen that when    and   are zero, that 

is, when 1  becomes zero and M  tends to infinity, (14) and (15) reduce to the classical 

Navier-Stokes equations.   

 

   

3    Method of Solution 
 

We seek perturbation solution in terms of wall slope parameter  ( 1 ) as follows: 
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where S represents any flow variable. 

 

Substituting (18) in (14) to (17) and collecting the coefficients of various powers of , we 

get the following sets of equations: 
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Boundary Conditions: 
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First order: 
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Boundary Conditions: 
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Solving equations (19), (20), (23) and (24) under the boundary conditions (21), (22), (25) 

and (26), we finally get 
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Using (10), (27) and (29), we get the expressions for velocity as    
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                                                                                                                                         (32)   

(The expressions for 3B  and 4B  are not given for the sake of brevity).  

                        

The average velocityu , over one period of the motion, is defined by 

 

              1

1

0

0 uuudtu  ---                                                                                       (33) 

 

Using (31) and (32) in (33), the expression for average velocity can be obtained. 
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4    Results and Discussion 

 
In order to observe the effects of various parameters M, 1 , 1E , 2E , 3E and   on the flow 

variables, the time average velocity u  has been calculated for various values of these 

parameters. Mathematica software has been used for the numerical evaluation of the 

analytical results and some important results are graphically presented in Figs. 2-14. 

 

It may be noted that when the micropolar parameter M is large, the viscous effects are 

dominant than the couple stress effects and hence M  indicates the case of pure 

viscous fluid effect. It can be seen from Figs. (2) and (3) that the time average velocity u  

decreases with micropolar parameter M i.e., when the viscous effects are dominant, the 

average velocity decreases. Further, the time average velocity increases with inclination . 

 

The effect of cross viscosity parameter 1  on the time average velocity u  is shown in Figs. 

(4) and (5). The time average velocity u  decreases with cross viscosity parameter 1  i.e., as 

micropolar effects increase, the average velocity decreases. Further, as in the earlier case, 

the average velocity increases with inclination . 

 

 

      

        ( 1=0.02,Re=10.0,=0.2,E1=1.0,E2=4.0,E3=0.06,Rl=0.1,=0.2,   ( 1=0.02,Re=10.0,=0.2,E1=1.0,E2=4.0,E3=0.06,Rl=0.1,=0.2, 

           F=0.1,=/4)                                                                                    F=0.1,=/3)  

                                      Figures 2 & 3: Effect of M on time average velocity u  

 

 

  

       (M=20, Re=10.0,=0.2,E1=1.0,E2=4.0,E3=0.06,Rl=0.1,=0.2 ,          (M=20, Re=10.0,=0.2,E1=1.0,E2=4.0,E3=0.06,Rl=0.1,=0.2, 

       F=0.1,=/4)                                                                                        F=0.1,=/3)                                                                                    

                                          Figures 4 & 5: Effect of  1  on time average velocity u  
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           (M=30,1=0.02,Re=10.0,=0.2,E2=0.0,E3=0.0,Rl=0.1,=0.2,       (M=30,1=0.02,Re=10.0,=0.2,E2=4.0,E3=0.0,Rl=0.1,=0.2, 

F=0.1,=/4)                                                                            F=0.1,=/4) 

 

 

                                

                                                        (M=30,1=0.02,Re=10.0,=0.2,E2=0.0,E3=0.0,Rl=0.1,=0.2,F=0.1,=/3) 

          

Figures 6, 7 & 8: Effect of  E1 on time average velocity u  

 

 

Figs. (6) - (8) show that the time average velocity u  decreases with the rigidity of the 

membrane ( 1E ) in absence of dissipative effects ( 3E =0) and with stiffness ( 2E ≠0) and 

without stiffness ( 2E =0) in the wall.  

 

 

 

   (M=30,1=0.02,Re=10.0,=0.2,E1=10.0,E3=0.06,Rl=0.1,         (M=30,1=0.02,Re=10.0,=0.2,E1=10.0,E3=0.06,Rl=0.1, 

                      =0.2, F=0.1,=/4)                                                                  =0.2,F=0.1,=/3) 

                                         Figures 9 & 10: Effect of  E2  on time average velocity u  
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 It can be observed that the time average velocity u  decreases with the stiffness in 

the wall ( 2E ) (Figs. 9 and 10) and viscous damping force ( 3E ) (Figs. 11 and 12). 

 

 

 

(M=20,1=0.02,Re=10.0,=0.2,E1=10.0,E2=4.0,Rl=0.1,            ( M=20,1=0.02,Re=10.0,=0.2,E1=10.0,E2=4.0,Rl=0.1, 

 =0.2, F=0.1,=/4)                                                                    =0.2, F=0.1,=/3)    

                                   Figures 11 & 12: Effect of  E3  on time average velocity u  

  

 

The time average velocity u  increases with the inclination  (Figs. 13 and 14). 

 

 

 

 

              (M=20,1=0.02,Re=10.0,=0.2,E1=5.0,E2=4.0, E3=0.06,         (M=20,1=0.06,Re=10.0,=0.2,E1=5.0,E2=4.0, E3=0.06,  

               Rl=0.1, =0.2,F=0.1)                                                                 Rl=0.1,=0.2,F=0.1) 

                     Figures 13 & 14: Effect of    on time average velocity u  

 

5    Conclusion 

 
Peristaltic transport of a micropolar fluid in an inclined channel with wall properties is 

investigated under the assumption of long wavelength approximation. Analytical 

expressions for stream function and time average velocity are obtained. The effects of 

various relevant parameters on time average velocity u  have been studied. The following 

are some of the important observations. 

 

 It is found that time average velocity increases with micropolar parameter, cross 

viscosity parameter and inclination of the channel. 

 

 The time average velocity decreases with viscous damping force in the channel wall. 
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