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Abstract - Closedness is a basic concept for the study and

the investigation in the general topological spaces. (Fukutake,

Nasef and El- Maghrabi, 2003) introduced a new weakly form

of generalized closed sets,yg—closed set, which is weaker than Keywords - ~y—closed set,
both of gs—closed sets (Arya and Nour, 1990), gp—closed sets yg—closed set.

(Noiri, Maki and Umehara, 1998) and stronger than gsp—closed

sets (Dontchev,1995). In this paper, we introduce more study of

vg—closed sets in a general topological space.

1 Introduction and preliminaries

The importance of general topological spaces rapidly increases in many fields of ap-
plications such as data mining [1]. Information systems are basic tools for producing
knowledge from data in any real-life field. Topological structures on the collection of
data are suitable mathematical models for mathematizing not only quantitive data but
also qualitive ones.

Closedness is a basic concept for the study and the investigation in the general
topological spaces. This concept has been generalized and studied by many authors
[2, 3, 4, 5] from different points of views.
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Let (X, 7) be a topological space and A be a subset of X. The closure of A and the
interior of A are denoted by cl(A) and int(A), respectively.
We recall the following definitions:

Definition 1.1. Let (X, 7) be a topological space. A subset A C X is called:
(1) a—closed [6] if cl(int(cl(A))) C A
(2) semi-closed [7] if int(cl(A)) C A,
(3) preclosed [8] if cl(int(A)) C A,
(4) ~y-closed [9] or b—closed [10)] or sp—-closed [10] if int(cl(A)) N cl(int(A)) C A,
(5) semi-preclosed [11] or S—closed [12] if int(cl(int(A))) C A.

The complement of an a—closed (resp. semi-closed, preclosed,y—closed, semi-
preclosed) set is called a—open (resp. semi-open, preopen, y—open, semi-preopen).
The smallest a—closed (resp. semi-closed, preclosed,y—closed, semi-preclosed) set con-
taining A C X is called the a—closure (resp. semi-closure, preclosure, y—closure, semi-
preclosure) of A and shall be denoted by cl,(A) (resp. scl(A), pcl(A), cl,(A), spcl(A)).

As in Corollary 2.6 of [13], it is easily established that the concept of a yg— closed
set [14] yields the only new type of sets that can be gained by utilizing the y—closure
(resp. the y—interior) in the concept of gr—closed sets [13, §]. Thus we give:

Definition 1.2. [1j] Let (X,7) be a topological space. A subset A C X is called
vg—-closed if cl,(A) C U whenever A C U and U is open. The complement of a
vg—closed set is called yvg—open.

Definition 1.3. A subset A of a space (X, 1) is said to be:

(1) generalized closed [15] (briefly, g-closed) if cl(A) C U whenever A C U and U is
open in X.

(2) generalized semi-closed [16] (briefly, gs-closed) if scl(A) C U whenever A C U
and U is open in X.

(3) generalized semi-preclosed [17] (briefly, gsp-closed) if spcl(A) C U whenever A C
U and U 1is open in X.

(4) a-generalized closed [18] (briefly, ag-closed) if acl(A) C U whenever A C U and
U s open in X.

(5) generalized preclosed [19] (briefly, gp-closed) if pcl(A) C U whenever A C U and
U is open in X.

(6) semi-generalized closed [20] (briefly, sg-closed) if scl(A) C U whenever A C U
and U 1is semi-open in X .
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(7) generalized a-closed [21)] (briefly, ga-closed) if acl(A) C U whenever A C U and
U is a-open in X.

We also consider the following classes of topological spaces:
Definition 1.4. A topological space (X, T) is called:
(1) extremally disconnected [22] , if the closure of each open subset of (X, T) is open,
(2) resolvable if (X, T) is the union of two disjoint dense subsets,
(3) sg—submazimal [23] if every dense subset of (X, T) is sg—closed,
(4) Tys [24] if every gs—closed subset of (X, T) is sg—closed.
Definition 1.5. [14] A mapping [ : (X,7) — (Y, 0) is called:

(1) v-generalized continuous (briefly vg-continuous) if the inverse image f~1(F) is
~vg-closed in (X, 1) for every closed set F' of (Y, o).

(2) ~-generalized irresolute (briefly yg- irresolute) if the inverse image f~(F) is vg-
closed in (X, T) for every vg-closed set F' of (Y, o).

2 ~yg—closed sets and their relationships

In this section, we shall consider the relationships between yg—closed sets and other
generalized closed sets.

Lemma 2.1. [1/)]
(1) If B is a yg—closed set, then cl,(B)\B does not contain nonempty closed set,

(2) For each x € X, a singleton {x} is closed or its complement X\{x} is yg—-closed
in (X,7).

Theorem 2.1. (1) Every sg—closed set in a topological space (X, T) is y—-closed,

(2) If A is open and yg—closed in a topological space (X, T), then A is y—closed.
Proof.

(1) Let A C X be sg—closed and let x € cl,(A). Since singletons are either preopen
or nowhere dense (see [25]) we distinguish two cases:
Case 1, If {x} is preopen, then it is also y—open and hence {x} N A #£ 0, i.e.
r e A
Case 2, If{x} is nowwhere dense, then X\{z} is semi-open. Suppose that x ¢ A.
Then A C X\{z} and since A is sg—closed, we have cl,(A) C scl(A) C X\{z}.
Hence x ¢ cl,(A), and this is a contradiction. Therefore cl,(A) C A, and so A is
vy—closed.
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(2) Since A is open and yg—closed, then cl,(A) C A, but always A C cl,(A), Then
A =cl,(A). Thus A is y—closed. O

Proposition 2.1. Every ag—-closed set is vg-closed and every yg-closed is gsp-closed.

None of the implications in the proposition above is reversible as the following
example shows.

Example 2.1. (i) Let X = {a,b,c,d,e} and T = {0,{a}, {b}, {a,b},{b,c,d}, {a,b,c,d}, X}.
Set A = {b,c}. Note that cl,(A) = {b,c,d,e}. Since A C {b,c,d} € 7, then A is
not yg-closed. However it is easily checked that A is gsp-closed

(i1) Let X = {a,b,c,d,e} and 7 = {0,{a},{b,c},{a,b,c},{b,c,d}, {a,b,c,d}, X}. Set
B ={c,d}. Observe that acl(B) = {b,c,d,e}. Clearly, B is not ag-closed, Since
B C{b,c,d} € 7. On the other hand, one can easily verify that Bis yg-closed.

By Definition 1.2 and Remark 3.2 of [14], we obtain the following relationships be-
tween the class of yg—closed sets and the classes of generalized closed sets defined above
in the following figure.

The following remark enables us to realize that none of the above implications is
reversible:

Remark 2.1. We have the following relationships:
(1) gs—closed set does not imply cg—closed set ([14], Example 3.3),
(2) gp—closed set does not imply ag—closed set ([14], Example 3.4),(]26], Example
2.8 (iit)),
(3) gsp—closed set does not imply vg—closed set ([14)], Example 3.5),
(4) gsp—closed set does not imply semi-preclosed set ([17], Example 3.4),
(5) gsp—closed set does not imply gs-closed set ([17], Example 3.3),
(6) gsp—closed set does not imply gp-closed set ([26], Example 2.3(i)),
(7) A semi-closed set need not be sg-closed set ([27], Example 2.5),
(8) A preclosed set need not be ga-closed set ([27], Example 2.5),
(9) vg—-closed set does not imply gp-closed set ([13], Example 3.3),
(10) ~vg—closed set does not imply gs-closed set ([14], Example 3.4),
We now address the question of when the above implications can be reversed.

Proposition 2.2. Let (X, 1) be a topological space. Then
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a-closed set < closed set
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Figure 1:

(1) Each yg—closed set is gp—closed if and only if (X, ) is extremally disconnected.

(2) Each semi-preclosed set is y—closed if and only if cl(A) is open for every open
resolvable subspace A of (X, ).

Proof.
(1) This is an immediate consequence of Definitions 1.2, 1.8 and 1.4.
(2) See [28]. O

Theorem 2.2. Let (X, 7) be a topological space. Then the following statements are
equivalent:

(1) Each v—closed set is sqg—closed,
(2) Each y—closed set is gs— closed,

(8) Each yg—-closed set is gs—-closed,
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(4) (X, 1) is sg—submazximal.

Proof. We will show (1) < (4): The other equivalences can be proved in a similar

manner using the standard methods that can be found in [13]. First recall that a space
(X, 1) is sg—submazimal if and only if every preclosed set is sg—closed (see [25]). If
every y—closed set is sg—closed, then every preclosed set is sg—closed, i.e. (X, T) is
sg—submazximal.
Conversely, suppose that (X, T) is sg—submazimal and let A be y—closed. Then A is
the intersection of a semi-closed and a preclosed set (see [29]). Since every semi-closed
set is sg—closed, by hypothesis, A is the intersection of two sg—closed sets. Since the
arbitrary intersection of sg— closed sets is always sg— closed (see [30]), we conclude that
A is sg—closed. [

Theorem 2.3. Let (X, 7) be a topological space. Then the following statements are
equivalent:

(1) Each gs—-closed set is y—closed,
(2) Each vg—-closed set is y—closed,
(8) Each vg—-closed set is semi-preclosed,
(4) (X, 7) is a T,s—space.
Proof. The proof is similar to that of Theorem 2.9. and of Theorem 3.6 of [31]. O

Theorem 2.4. Let (X, 1) be a topological space. Then the following statements are
equivalent:

(1) Each gsp-closed set is ~yg-closed,
(2) Each semi-preclosed set is yg-closed.

Proof. The necessity is clear, so we only have to show the sufficiency. Let A be
a gsp—-closed set and U be an open subset of X such that A C U. Since A is gsp-
closed, we have spcl(A) C U. Now, spcl(A) is semi-preclosed and hence yg—closed by
hypothesis. Therefore, cl,(A) C cl,(spcl(A)) C U and thus our claim is proved. O

Remark 2.2. If A C X, then the largest y—open subset of A is called the y—interior of
A and is denoted by int.(A). It is well known that int.(A) = (cl(int(A)))Uint(cl(A))NA
(seef9]). Consequently, a subset A is yg—-closed if and only if for every closed subset F
satisfying FF C A we have F C cl(int(A)) Uint(cl(A)).

Now, we present one of our major results.

Theorem 2.5. Let (X, 7) be a topological space. Then the following statements are
equivalent:
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(1) Each semi-preclosed set is y—closed,
(2) Each semi-preclosed set is yg—closed,
(3) cl(G) is open for every open resolvable subspace G of (X, T).

Proof. It is obvious that (1) = (2). Furthermore, it has been shown in [28] that
(3) < (1), so we only have to prove that (2) = (3). Let G be a nonempty open resolvable
subspace and let Dy and Dy be disjoint dense subsets of (G, 7|G). Suppose that there
exists a point x € cl(G)\int(cl(G)). Let S = Dy Ucl({z}). It is easily checked that
int(S) =0, c(S) = cl(G) and that S is semi-preopen. By hypothesis, S is yg—open
and so, since cl({x}) C S, we conclude that {x} C cl({z}) C int(cl(S)) = int(cl(Q)).
This is a contradiction to our assumption and so cl(G) has to be open. OJ

Theorem 2.6. Let (X, 1) be a topological space. Then the following statements are
equivalent:

(1) Each vg—closed set of (X, 1) is y—closed,
(2) For each x € X, the singleton {z} is closed or v—open in (X, T).

Proof. (1) = (2): Suppose that, for x € X, {x} is not closed. By Lemma 1.1,
X\{z} is yg—closed set. Therefore, X\{x} is y—closed by using assumption and hence
{z} is y—open.

(2) = (1): Let B be a yg—closed set and x € cl,(B). Then the singleton {x} is closed
or y—open by assumption.

Case 1. Suppose that {x} is closed. It follows from Lemma 1.1 that cl.(B)\B does
not contain {x}. Since x € cl(B), we obtain x € B and hence B is y—closed.

Case 2. Suppose that {x} is y—open, we have {x} N B # () and hence x € B.
Therefore, this shows that cl,(B) C B, but B C cl,(B) and so cl,(B) = B and hence
B is y—closed. O

3 7yg-compactness and yg-connectedness

Definition 3.1. A collection {A, : o € V} of yg-open sets in a topological space X is
called a vg-open cover of a subset B of X if B C |J{As : a € V} holds.

Definition 3.2. A topological space X is vy-generalized-compact (or vg- compact) if
every yg-open cover of X has a finite subcover.

Definition 3.3. A subset B of a topological space X is said to be yg-compact relative
to X if, for every collection {A, : a € V} of vg-open subsets of X such that B C
U{As : a € V}, there exists a finite subset Vo of V such that B C |J{As : @ € V}.

Definition 3.4. A subset B of a topological space X is said to be yg-compact if B is
yg-compact as a subspace of X.
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Theorem 3.1. Every sg-closed subset of a vg-compact space X is yg-compact relative
to X. Proof. Let A be a yg-closed subset of X. Then A€ is yg-open in X. Let
M ={G,:a €V} be a cover of A by yg-open subsets in X. Then M* = M U A° is a
~vg-open cover of X, i.e., X = (| J{Gqo : @ € V})|JAC. By hypothesis, X is yg-compact,
hence M* is reducible to a finite cover of X, say X = Go, UGy, U ... UG, U A,
Gar € M. But A and A° are disjoint, hence A C Go, U Goy... UG, ,Gor, € M. We
have just shown that any vyg-open cover M of A contains a finite subcover, i.e., A is
vyg-compact relative to X. O

Theorem 3.2. Let (X, 7) be a topological space.
(i) A ~g-continuous image of a yg-compact space is compact.

(ii) If a map f: X — Y is yg-irresolute and a subset B of X is yg-compact relative
to X, then the image f(B) is vg-compact relative to Y .

Proof.

(i) Let f : X — Y be a vyg-continuous map from a yg-compact space X onto a
topological space Y. Let {A, : a € V} be an open cover of Y. Then {f~1(A,) :
a € V} is a yg-open cover of X. Since X is yg-compact, it has a finite subcover,
say {f7H(A1), ..., fTH(An)}. Since f is onto {A;, ..., A} is a cover of Y and so

Y is compact.

(i1) Let {A, : o € V} be any collection of vg-open subsets of Y such that f(B) C
U{Aa : @ € V}. Then B C |J{f ' (A.) : @ € Vo} holds. By hypothesis there
exists a finite subset Vo of V such that B C |J{f ' (4s) : « € Vo} . Therefore
we have f(B) C |J{Aa : @ € Vo} which shows that f(B) is yg-compact relative
toY. O

Definition 3.5. A topological space X is said to be yg-connected if X can not be written
as a disjoint union of two non-empty vg-open sets. A subset of X is yg-connected if it
15 yg-connected as a subspace.

In view of the Definition 4.5, we can give a characterization of yg-connected spaces.
Theorem 3.3. For a topological space X, the following are equivalent.
(i) X is yg-connected.
(1)) X and () are the only subsets of X which are both vg-open and ~g-closed.

(i1i) Each vg-continuous map of X into a discrete space Y with at least two points is
a constant map.
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Proof. (i) = (ii): Let Q be a ~yg-open and ~yg-closed subset of X. Then Q° is both
vg-open and yg-closed. Since X is the disjoint union of the ~vg-open sets Q) and Q°,
one of these must be empty, that is Q =0 or Q = 0.

(ii) = (i): Suppose that X = AU B where A and B are disjoint non-empty yg-open
subsets of X. Then A is both yg-open and ~yg-closed. By assumption, A = 0 or X.
Therefore X s yg-connected.

(ii) = (i) Let f : X — Y be a yg-continuous map then X is covered by vg-open and
vg-closed covering {f~'(y) : y € Y}. By assumption f~*(y) =0 or X for eachy €Y .
If 7Y y) =0 for ally € Y , then [ fails to be map. Then, there exists only one point
y €Y such that f~(y) # 0 and hence f~'(y) = X. This shows that f is a constant
map.

(iit) = (ii): Let Q be both yg-open and vg-closed in X. Suppose Q # (. Let f : X —
Y be a vg-continuous map defined by f(Q) = {y} and f(Q°) = {w} for some distinct
points y and w in Y. By assumption f is constant. Therefore we have @ = X. O

It is obvious that every yg-connected space is connected. The following example
shows that the converse is not true.

Example 3.1. Let X = {a,b,c,d} and 7 ={0,{a}, {b},{a,b}, X}. Then the topologi-
cal space (X, T) is connected. However, since {a} is both vg-open and vg-closed, X is
not yg-connected by Theorem 3.3.

As a direct consequence of Theorem 3.3, we have:

Corollary 3.1. In a topological space (X, T) with at least two points, if yO(X,T) =
~C(X, 1), X is not yg-connected.

Proof. Using the hypothesis and Theorem 5 due to in [20] there is a proper non-empty
subset of X which is both ~vg-open and vg-closed in X. By Theorem 3.3, X is not
yg-connected. O

Finally, we proved ~yg-connectedness is preserved under yg-irresolute surjections.

Theorem 3.4. (i) f: X — Y is a~yg-continuous surjection and X is yg-connected,
then Y is connected.

(ii) f: X — Y is a~yg-irresolute surjection and X is yg-connected, then Y is vg-
connected.
Proof.

(i) Suppose that Y is not connected. Let Y = AU B where A and B are disjoint
non-empty open set in'Y . Since f is yg-continuous and onto, X = f~1(A) U
f~YB) where f~1(A) and f~Y(B) are disjoint non-empty and vg-open in X . This
contradicts the fact that X is yg-connected. Hence Y is connected.

(i) The argument is a minor modification of the proof (i). O
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4

Conclusion

Generalizations of closed sets in point-set topology will give some new topological
properties (for example,separation axioms, compactness, connectedness and continu-
ity) which has been found to be very useful in the study of certain objects of digital
topology. Thus we may stress once more the importance of yg-closed sets as a branch
of them and the possible application in computer graphics [32] 33] and physics [34].
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