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Abstract: A graph G is said to be 4-ordered if for any ordered set of four distinct vertices of G, there exists
a cycle in G that contains all of the four vertices in the designated order. Furthermore, if we can
find such a cycle as a Hamiltonian cycle, G is said to be 4-ordered Hamiltonian. It was shown
that every 4-connected planar triangulation is (i) Hamiltonian (by Whitney) and (ii) 4-ordered (by
Goddard). Therefore, it is natural to ask whether every 4-connected planar triangulation is 4-ordered
Hamiltonian. In this paper, we give a partial solution to the problem, by showing that every 5-
connected planar triangulation is 4-ordered Hamiltonian.
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1. Introduction

A graph G is said to be k-ordered for an integer 3 ≤ k ≤ |V (G)|, if for any ordered set of k

distinct vertices of G, there exists a cycle in G that contains all the k vertices in the designated order.
Furthermore, if we can find such a cycle as a Hamiltonian cycle, G is said to be k-ordered Hamiltonian.
These topics have been extensively studied; see the survey [2].

In this paper, we focus on 4-connected planar triangulations. In fact, it is known that such graphs
have good properties;

Theorem 1.1. Let G be a 4-connected planar triangulation. Then

(i) G is Hamiltonian. (Whitney [12])
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5-connected planar triangulation

(ii) G is 4-ordered. (Goddard [3])

Note that Theorem 1.1 (i) was improved to 4-connected planar graphs (by Tutte [11]) and 4-connected
projective planar graphs (by Thomas and Yu [8]). However, we cannot lower the assumption on 4-
connectedness to 3-connectedness, since there exist infinitely many 3-connected planar triangulations that
are not Hamiltonian (see [4]). On the other hand, by using ideas of Goddard [3], we can construct infinitely
many 3-connected planar triangulations that are not 4-ordered, and infinitely many 5-connected planar
graphs that are not 4-ordered. Therefore, both of the assumptions “4-connected” and “triangulation” are
needed for the property of being “4-ordered”.

Recall that 4-ordered Hamiltonian graphs are definitely Hamiltonian and 4-ordered. It follows from
Theorems 1.1 (i) and (ii) that every 4-connected planar triangulation satisfies both properties, and hence
it is natural to pose the following conjecture (Conjecture 1.2). The main purpose of this paper is to show
Theorem 1.3, which is a partial solution to it.

Conjecture 1.2. Every 4-connected planar triangulation is 4-ordered Hamiltonian.

Theorem 1.3. Every 5-connected planar triangulation is 4-ordered Hamiltonian.

This paper is organized as follows; in the next section, we will give terminologies and a known result,
used in the proof of Theorem 1.3 in Section 3. In the last section, we will give a conclusion of this paper,
together with some open problems.

2. Preliminaries

For a graph G, the order of G is denoted by |G|. Let H1 and H2 be two subgraphs of a graph
G. Then H1 ∪ H1 denotes the subgraph of G with V

(

H1 ∪H2

)

= V (H1) ∪ V (H2) and E
(

H1 ∪ H2

)

=

E(H1) ∪ E(H2), and H1 ∩ H1 denotes the subgraph of G with V
(

H1 ∩ H2

)

= V (H1) ∩ V (H2) and

E
(

H1 ∩H2

)

= E(H1) ∩ E(H2). We use a similar notation also for a vertex subset U or an edge subset

P of G; so, H1 ∪ U is the subgraph of G with V
(

H1 ∪ U
)

= V (H1) ∪ U and E
(

H1 ∪ U
)

= E(H1), and

H1 ∪ P is the subgraph of G with V
(

H1 ∪ P
)

= V (H1) ∪ V (P ) and E
(

H1 ∪ P
)

= E(H1) ∪ P , where
V (P ) is the set of vertices that are end vertices of some edges in P . A pair (H1, H2) is a separation of G
if H1 ∪H2 = G and E(H1) ∩ E(H2) = ∅.

For a path P and two vertices x, y ∈ V (P ), P [x, y] denotes the subpath of P between x and y.
Furthermore, let P (x, y] = P [x, y]− {x}, P [x, y) = P [x, y]− {y}, and P (x, y) = P [x, y]− {x, y}.

Let G be a connected plane graph. A facial walk in G is the boundary walk of some face of G.
Furthermore, if it is a cycle, then we call it a facial cycle in G.

Let T be a subgraph of a graph G. A T -bridge of G is either (i) an edge of G − E(T ) with both
ends on T or (ii) a subgraph of G induced by the edges in a component of G− V (T ) and all edges from
that component to T . A T -bridge satisfying (i) is said to be trivial ; otherwise it is non-trivial. For a
T -bridge B of G, the vertices in B ∩ T are the attachments of B (on T ), and any vertex of B that is not
an attachment is a non-attachment. We say that T is a Tutte subgraph in G if every T -bridge of G has
at most three attachments on T . For another subgraph C of G, T is a C-Tutte subgraph in G if T is a
Tutte subgraph in G and every T -bridge of G containing an edge of C has at most two attachments on
T . When T is a path or a cycle, we call T a C-Tutte path or a C-Tutte cycle, respectively.

Note that if G is 4-connected and T is a Tutte subgraph in G with |T | ≥ 4, then T must contain
all vertices in G; otherwise, there exists a T -bridge in G whose attachments form a cut set in G of
order at most three, contradicting that G is 4-connected. Indeed, the concept of “Tutte subgraphs”
was first introduced by Tutte [11] in order to prove his seminal result; every 4-connected planar graph is
Hamiltonian. Since then it has been extended by several researchers, see [6–9, 13]. The following theorem
is a main tool to prove Theorem 1.3. See also the paper [9] by Thomassen.

112



K. Ozeki

Theorem 2.1 (Sanders [7]). Let G be a connected plane graph, let C be a facial walk in G, let x, y ∈ V (G)
with x 6= y, and let e ∈ E(C). Assume that G contains a path from x to y through e. Then G has a
C-Tutte path from x to y through e.

Note that originally Sanders [7] showed only the 2-connected case, but we can easily show Theorem
2.1 using a block decomposition. Hence, we omit the proof of Theorem 2.1.

3. Proof of Theorem 1.3

Let G be a 5-connected planar triangulation, and let v1, v2, v3 and v4 be four distinct vertices in G.
We will show that G has a Hamiltonian cycle passing through v1, v2, v3 and v4 in this order. It follows
from Theorem 1.1 (ii) that G has a cycle passing through those vertices in that order. This implies the
following; G− v4 has a path P from v1 to v3 through v2 such that

(P1) G− V
(

P (v1, v3)
)

contains a path from v3 to v1 through v4.

In addition, by taking a path satisfying property (P1) as short as possible, we can also consider the
following condition. Here a chord of P is an edge e not in P such that both of end vertices of e are
contained in P .

(P2) For any chord of P , one end vertex of it is contained in P [v1, v2) and the other is contained in
P (v2, v3].

Indeed, if there exists a chord xy of P such that both end vertices are contained in P [v1, v2] or in P [v2, v3],
then we can detour P by xy instead of P [x, y]. It is easy to see that the new path also satisfies condition
(P1) and is shorter than P . Therefore, a path that is as short as possible, subject to (P1), also satisfies
condition (P2).

Let G1 = G − V
(

P (v1, v3)
)

, and let C1 be the unique facial walk of G1 that is not facial in G.

Note that v1, v3 ∈ V (C1). Now we consider a separation (H1, H2) of G1 such that |H1 ∩ H2| ≤ 2,
v1, v3 ∈ V (H1), and v4 ∈ V (H2) − V (H1). When H ′

1 consists of only the two vertices v1 and v3 and no
edges and H ′

2
= G1, a pair (H ′

1
, H ′

2
) is a separation of G1 satisfying all of the above conditions. Therefore,

such a separation (H1, H2) of G1 must exist. Take such a separation (H1, H2) of G1 so that |H2| is as
small as possible. If H2 does not contain any edge in C1, then H1 ∩ H2 forms a cut set in G of order
at most 2, contradicting that G is 5-connected. Hence H2 contains an edge in C1. Then it follows from
condition (P1) that |H1 ∩H2| = 2 and there exists an edge e1 in H2 ∩ C1 such that G1 has a path from
v3 to v1 through e1. (In fact, take an edge in H2 ∩C1 such that it is incident with a vertex in H1 ∩H2.)

It follows from Theorem 2.1 that G1 has a C1-Tutte path T 1 from v3 to v1 through e1. Note that
by the choice of e1, T 1 passes through both of the two vertices in H1 ∩H2. In addition, it satisfies the
following property.

Claim 3.1. T 1 contains v4, but does not contain v2.

Proof. Since v2 6∈ V (G1), the second statement is trivial. So we only show the first one.

Suppose not, and let B be a T 1-bridge of G1 such that B contains v4 as a non-attachment. Let SB

be the set of attachments of B on T 1. If B has no neighbors in P (v1, v3), then SB would be a cut set of G
such that SB separates B−SB from other vertices and |SB| ≤ 3, which contradicts that G is 5-connected.
Therefore, B has neighbors in P (v1, v3). This implies that B contains an edge in C1. Then since T 1 is
a C1-Tutte path in G1, we have |SB| ≤ 2. Let B = G1 − V

(

B − SB

)

. Then (B,B) is a separation of

G1 such that |B ∩ B| = |SB| ≤ 2, v1, v3 ∈ V (B) and v4 ∈ V (B) − V (B). Furthermore, since T 1 passes
through e1 and B is a T 1-bridge of G1, we have e1 ∈ E(B), which implies that V (H2)−V (B) 6= ∅. Since
T 1 passes through both of the two vertices in H1 ∩ H2, we see that V (B) ⊂ V (H2), which contradicts
the choice of (H1, H2). This completes the proof of Claim 3.1.
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Let G2 = G − V
(

T 1(v3, v1)
)

, and let C2 be the unique facial walk of G2 that is not facial in G.

Note that v1, v3 ∈ V (C2). Then we consider a separation (R1, R2) of G2 such that |R1 ∩ R2| ≤ 2,
v1, v3 ∈ V (R1), and v2 ∈ V (R2) − V (R1). When R′

1
consists of only the two vertices v1 and v3 and no

edges and R′

2 = G2, a pair (R′

1, R
′

2) is a separation of G2 satisfying all of the above conditions. Therefore,
such a separation (R1, R2) of G2 must exist. Take such a separation (R1, R2) so that |R2| is as small as
possible. Since G is 5-connected, R2 contains an edge in C2. Note that P is contained in G2, and hence
G2 has a path from v1 to v3 through v2. This implies |R1∩R2| = 2 and there exists an edge e2 in R2∩C2

such that G2 has a path from v1 to v3 through e2.

It follows from Theorem 2.1 that G2 has a C2-Tutte path T 2 from v1 to v3 through e2. Note that
by the choice of e2, T 2 passes through both of the two vertices in R1 ∩R2. Notice also that T 1 ∪ T 2 is a
cycle in G, and it satisfies the following, which is crucial in the proof of Theorem 1.3.

Claim 3.2. There exist no non-trivial
(

T 1 ∪ T 2
)

-bridges in G. In particular, T 1 ∪ T 2 is a Hamiltonian
cycle in G.

Proof. Suppose that there exists a non-trivial
(

T 1 ∪ T 2
)

-bridge D in G. Let SD be the set of attach-

ments of D on T 1 ∪ T 2.

Suppose first that SD∩V
(

T 1(v3, v1)
)

= ∅. This condition implies that D is a T 2-bridge of G2. Since

T 2 is a C2-Tutte path in G2, we have |SD| ≤ 3, which implies that SD is a cut set in G of order at most
three, contradicting that G is 5-connected. Therefore, we may assume that SD ∩ V

(

T 1(v3, v1)
)

6= ∅. By

the same argument, we also see that SD ∩ V
(

T 2(v1, v3)
)

6= ∅.

These conditions, together with the planarity, imply that D contains an edge in C1 and an edge in
C2. Then since D − V

(

T 1(v3, v1)
)

is a T 2-bridge of G2 containing an edge in C2, we have

|SD ∩ V (T 2)| ≤ 2. (1)

Suppose that D contains no vertices in P as non-attachments. See Figure 1. This condition implies
that there exists a

(

T 1 ∪ P
)

-bridge, say BD, such that D ⊆ BD. Note that BD − V
(

P (v1, v3)
)

is

connected and a T 1-bridge of G1 containing an edge in C1, and hence BD − V
(

P (v1, v3)
)

has at most

two attachments on T 1. Since any vertex in SD ∩ V
(

T 1(v3, v1)
)

is an attachment of BD − V
(

P (v1, v3)
)

on T 1, we have

|SD ∩ V
(

T 1(v3, v1)
)

| ≤
∣

∣

∣

(

BD − V
(

P (v1, v3)
)

)

∩ V (T 1)
∣

∣

∣
≤ 2.

Then it follows from inequality (1) that |SD| ≤ 4, which contradicts that G is 5-connected.

Therefore, we may assume that D contains vertices in P as non-attachments. See Figure 2. Since P is
a path in G2 from v1 to v3 and v1, v3 ∈ V (T 2), D has at least two attachments on P . Then it follows from
inequality (1) that SD∩V (T 2) ⊆ V (P ) and |SD∩V (T 2)| = 2. Let {x, y} = SD∩V (T 2). Note that P [x, y]
is contained in D. Consider the region bounded by P [x, y] ∪ T 2[x, y]. Since SD ∩ V (T 2) = SD ∩ V (P ) is
the set of attachments of D on T 2, there are no edges between vertices in P (x, y) and those in T 2(x, y).
Thus, since G is a triangulation, there exists an edge in G connecting x and y. Note that xy is a chord
of P . It follows from condition (P2) and symmetry that we may assume that x is contained in P [v1, v2)
and y is contained in P (v2, v3]. Then (D,D) is a separation of G2, where D = G2 − V

(

D − SD

)

, such

that |D∩D| = |SD| = 2, v1, v3 ∈ V (D), and v2 ∈ V (D). Furthermore, since T 2 passes through e2 and D

is a
(

T 1 ∪ T 2
)

-bridge of G, we have e2 ∈ E(D), which implies that V (R2)− V (D) 6= ∅. Since T 2 passes
through both of the two vertices in R1 ∩R2, we see that V (D) ⊂ V (R2), which contradicts the choice of
(R1, R2).

Therefore, there exist no non-trivial
(

T 1 ∪ T 2
)

-bridges in G, which easily implies that T 1 ∪ T 2 is a
Hamiltonian cycle in G. This completes the proof of Claim 3.2.

By Claim 3.1, v2 appears in T 2 and v4 appears in T 1, which implies that T 1 ∪ T 2 contains v1, v2, v3
and v4 in this order. By Claim 3.2, T 1 ∪ T 2 is a Hamiltonian cycle in G. These complete the proof of
Theorem 1.3.
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T 1

T 2

P

D

BD

Figure 1. The case when D contains no vertices in P as non-attachments.

T 1

T 2

P

D

x y

v2

Figure 2. The case when D contains vertices in P as non-attachments.

4. Conclusion

In this paper, we have focused on the property of being 4-ordered Hamiltonian. In fact, considering
known results (Theorem 1.1) on 4-connected planar triangulations, it is natural to pose Conjecture 1.2.
We gave a partial solution to it, by showing that every 5-connected planar triangulation is 4-ordered
Hamiltonian.

In the rest, we would like to put some problems related to k-ordered Hamiltonian. The first one is
Conjecture 1.2, which already appeared in Section 1.

The second problem is the property of being 4-ordered Hamiltonian of graphs on non-spherical
surfaces. In fact, there are some results that are the counterparts of Theorem 1.1. Recall that for a graph
G on a non-spherical surface F 2, the edge-width of G is the length of a shortest non-contractible cycle in
G.

Theorem 4.1 (Mukae and Ozeki [5]). Let G be a 4-connected triangulation on a surface. Then G is
4-ordered.

Theorem 4.2 (Yu [13]). For any surface F 2, there exists an integer N = N(F 2) satisfying the following;
for any 5-connected triangulation G of F 2, if the edge-width of G is at least N , then G is Hamiltonian.

Note that the assumptions on 5-connectedness and edge-width in Theorem 4.2 are both best possible,
in some sense. In fact, Theorem 4.2 cannot be improved to 4-connected graphs (see [10]) and to the
statement without the edge-width assumption (see [1]).

Considering these two theorems, the following seems also a natural conjecture. Because of the
facts mentioned above, the assumptions on the edge-width and 5-connectedness are best possible, if the
conjecture is true. We leave it to readers as an open problem.

Problem 4.3. For any surface F 2, there exists an integer N = N(F 2) satisfying the following; for any
5-connected triangulation G of F 2, if the edge-width of G is at least N , then G is 4-ordered Hamiltonian.

Goddard [3] also mentioned about the property of being 5-ordered; no planar graph can be 5-ordered.
However, his idea cannot work for graphs on non-spherical surfaces, and hence the following might also
hold. Those are the last problems in this paper.
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v1

v3v4

Figure 3. Two adjacent vertices of degree 4.

Problem 4.4. Any 5-connected triangulation of a non-spherical surface F 2 is 5-ordered.

Problem 4.5. For any surface F 2, there exists an integer N = N(F 2) satisfying the following; for any
5-connected triangulation G of F 2, if the edge-width of G is at least N , then G is 5-ordered Hamiltonian.

Note that if a 4-connected triangulation G of a surface has two adjacent vertices of degree 4, then
G cannot be 5-ordered. In fact, if v1, v3 and v4 are specified as in Figure 3 and v2 and v5 are specified
as vertices outside of the structure, then the graph cannot have a cycle containing v1, v2, v3, v4 and v5
in this order. Hence the assumption on 5-connectedness in Problems 4.4 and 4.5 are best possible, in a
sense.
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