Response to cobalt toxicity in lichen *Pseudevernia furfuracea*; uptake, photosynthetic quantum yield, membrane integrity and deoxyribonucleic acid fragmentation

Pseudevernia furfuracea’da kobalt toksisitesine yanıt; alım, fotosentetik kuantum verimi, membran bütünlüğü ve deoksiribonükleik asit asit fragmantasyonu

Gürkan Yiğittürk,¹ Dilek Ünal-Özakça,² Türker Çavuşoğlu,¹,³ Kubilay Doğan Kılıç,¹ Yiğit Uyanıkgil,¹,³ Atakan Sukatar ¹

¹Department of Histology and Embryology, Medical Faculty of Ege University, İzmir, Turkey
²Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, Faculty of Science and Art, Bilecik, Turkey
³Ege University, Cord blood, Cell-Tissue Research and Application Center, İzmir, Turkey
⁴Department of Biology, Ege University, Faculty of Applied Science, İzmir, Turkey

ABSTRACT

Objectives: This study aims to examine the toxic potential of Cobalt (Co) on photosystem II photosynthetic quantum yield, membrane integrity, and deoxyribonucleic acid (DNA) fragmentation formation.

Materials and methods: Oligonucleosomal DNA fragmentation was detected by terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay. Lipid peroxidation was determined with malondialdehyde analyzing.

Results: The Fv/Fm ratio decreased in *Pseudevernia furfuracea* following exposure to various concentrations of Co (NO₃)₂ (5, 15 and 30 mM) for one, three and 24 hours. Co²⁺-treatment caused the accumulation of Co in lichen, induced severe oxidative stress by the generation of hydrogen peroxide, impaired the membrane integrity, and induced lipid peroxidation as measured by malondialdehyde. Samples treated with 15 mM and 30 mM of Co (NO₃)₂ had higher percentage of cell death than 5 mM-treated group.

Conclusion: To our knowledge, this is the first study detecting a high rate of DNA fragmentation *in situ* in phycobiont layer of *Pseudevernia furfuracea*; while it reveals that mycobiont layer has a lower rate of TUNEL-positive cells. It has been concluded that Co exposure results in impaired photosynthesis accompanied by oxidative stress and DNA fragmentation in *Pseudevernia furfuracea*; all these effects were concentration-dependent.

Keywords: Cobalt; deoxyribonucleic acid fragmentation; lichen; oxidative stress; *Pseudevernia furfuracea*; TUNEL.
Cobalt (Co) is an element that occurs naturally in many different chemical forms in the environment. It is an essential element for the synthesis of vitamin B, which is required for human and animal nutrition.\cite{1} However, high concentrations of Co are inhibitory for growth, chlorophyll synthesis and induce changes in photosynthetic activity.\cite{2,3,4} Toxicity symptoms due to excess Co are chlorosis, necrosis, and root tip damage in higher plants.

Lichens are potentially useful in the monitoring of heavy metal pollution. Their reaction to pollution is a consequence of the fact that, comparing to plant species, they do not have an outer covering tissue which facilitates direct penetration of gases, dusts and solutions inside the thalli. Some lichen species can accumulate large quantities of metals.\cite{5} However, high concentrations of heavy metals may cause damage to the lichen thalli. Cobalt bioaccumulation and biosorption has been recently studied; however, there are no data available on the effect of Co on the cellular processes in lichens. This study aimed to investigate the potential toxic effect of Co on photosynthesis, oxidative stress, and DNA fragmentation.\cite{6,7}

MATERIALS AND METHODS

Pseudevernia furfuracea (L.) Zopf samples were collected from bark of Pinus in Karagöl, Izmir-Turkey (38°33' N 27°13' E, 840 m). Lichens transferred to the laboratory were rinsed three times (10 s each) to minimize dust contamination and divided into groups. Experiments were conducted within 3-4 days of collection. The test solutions were prepared just before the experiments. Samples were incubated for 1 h in solutions of Co(NO$_3$)$_2$ dissolved in bidistilled water (5 mM, 15 mM and 30 mM); control samples were soaked in distilled water. After incubation, lichen thalli were kept for 24 h under laboratory conditions.

For the determination of Co content, the three-stage microwave-assisted digestion procedure was applied using a microwave oven (Berghof, speedwave) under a pressure of 8 atm. In the first stage, lichen sample (0.5 g) was washed three times with distilled water and decomposed with 5 mL of HNO$_3$ for 10 min. The sample was cooled, vented to remove NO$_2$ and CO$_2$ and 1 mL of H$_2$O$_2$ was added. The vessel was capped and subjected to microwave attack for 10 min (second stage). In the third stage, 1 mL of hydrogen fluoride was added and the sample was processed for 10 min. After cooling, the sample was transferred to a polytetrafluoroethylene (PTFE) evaporating dish and evaporated to dryness. The residue was then processed as described above. Co concentration was measured by inductively coupled plasma optical emission spectrometer (ICP-OES). Each treatment was comprised of three replicates.

For the detection of photosynthetic capacity of lichen, chlorophyll a fluorescence of samples was measured with a plant efficiency analyzer (Handy PEA, Hansatech). Before measurement of chlorophyll fluorescence, the thalli were dark-adapted for 15 min. The Fv/Fm parameter was calculated by the instrument from fluorescence induction curves of 5 s duration recorded at an irradiance of 1800 µmol m$^{-2}$s$^{-1}$ from light emitting diodes. The Fv/Fm parameter defines the maximum quantum yield efficiency of photosystem II (PSII) and was used as a stress indicator. Time-dependency of the effect of Co on PSII was also tested in thalli samples exposed to 5 mM, 15 mM and 30 mM Co(NO$_3$)$_2$ for 1, 3 and 24 h.

Electrical conductivity (EC) as an index of cellular membrane integrity was measured. Batches of lichen thalli were divided into subsamples of 1 g and immersed in 100 mL of double-distilled water for 60 min. Electrical conductivity of the water was measured by an EC meter (WTW Cond 340i) and is used as a measure of electrolyte leakage to the incubation solution.

Formation of malondialdehyde (MDA) was evaluated as an indicator of lipid peroxidation. Determination of MDA was performed by the thiobarbituric acid reactive substances method.\cite{8} The absorbance differences between 532 and 600 nm was used to calculate MDA formation as a by-product of lipid peroxidation. Each treatment was comprised of three replicates.

Hydrogen peroxide (H$_2$O$_2$) levels were determined according to Sergiev et al.\cite{9} Leaf tissues of 0.5 g were homogenized in ice bath with 5 mL 0.1% (w/v) trichloroacetic acid. The homogenate was centrifuged at 12,000 g for 15 min and 0.5 mL of supernatant was added to
0.5 mL of 10 mM potassium phosphate buffer (pH 7.0) and 1 mL 1 M potassium iodide. The absorbance of supernatant was read at 390 nm. The content of H2O2 was calculated based on a standard curve.

For DNA fragmentation assay, the thallus was cut into the small pieces and then fixed with FAA solution (50% ethanol, 5% glacial acetic acid, 3.7% formaldehyde, freshly prepared) and incubated in this solution overnight. Fixed samples were dehydrated through an ethanol series (50%, 70%, 80%, 95%, 100% for 15 min each concentration), immersed in ethanol-xylene (1:1) for 10 min and then in 100% xylene for 10 min. The samples were embedded in paraffin, and cut to 5 µm sections in Leica RM 2145 microtome (Leica Microsystems, RM2145, Glattbrugg, Switzerland).

Immunohistochemical expression was analyzed in the lichen thallus tissue using peroxidase as described in details below. Paraffin sections were immersed in xylene overnight and immunohistochemical terminal deoxynucleotidyl transferase dUVT nick end labeling (TUNEL) staining was performed as follows: sections were incubated for 20 min in methanol containing 1% H2O2 to reduce endogenous peroxidase activity and then exposed to microwave in sodium citrate solution for five minute 90 watt - 15 minute 360 watt. After washing in 0.2 M Tris-HCl including 0.5% Triton X, the sections were exposed to the TUNEL (Promega TUNEL Systems Cat. # G7130-G7360). Finally, sections were reacted with 0.05% diaminobenzidine (Zymed Histostain Plus Ref/Cat No: 859643 San Francisco California, USA) and H2O2 (0.01%). Immunoreaction was assessed by light microscopy (Olympus BX-51 light microscope, Olympus Co., Tokyo, Japan) at a magnification of X100. TUNEL (+) cells were counted in the lichen thallus using image software (Image-Pro Express 4.5, Media-Cybernetics Inc., Rockville, MD, USA). Cell density (cells µm²) was calculated for lichen and the average TUNEL (+) cell density was obtained in each group.

Statistical analysis

Data were expressed as the mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was performed for the statistical analysis of Fv/Fm ratios and nonparametric Kruskal Wallis test for independent samples was performed for the rest of the analysis. P<0.05 was accepted significant; when a P value below 0.05 was determined, Bonferroni test or Mann Whitney U test was carried out in post hoc analysis for the comparison of groups where appropriate SPSS for Windows version 11.0 version software (SPSS Inc., Chicago, IL, USA).

RESULTS

ICP-OES data showed that the concentration of Co in the untreated thallus of P. furfuracea soaked in bidistilled water was 3.49±0.04 µg/g dry weight. On the other hand, treatment of thalli with 5 mM, 15 mM, and 30 mM Co(NO3)2 for 1 h resulted in a significant dose-dependent increase in the Co content of thallus (64.12±11.37, 108.63±0.58 and 216.17±3.62 µg/g dry weight, respectively; p<0.05 when compared to control group and when compared to exposure groups with each other).

For the estimation of the effect of Co on photosynthesis capacity of the thallus, photoinhibition was measured with permanent reduction in maximal PSII efficiency (Fv/Fm). There was a gradual, time- and dose-dependent decrease in the Fv/Fm values in Co2+-exposure
groups, indicating a significant photodestructive effect on PSII (Figure 1).

Cellular membrane integrity was assessed by the measurement of EC in the incubation solution. It was noticed that Co²⁺ exposure of thalli for 24 h increased the EC at 15 and 30 mM concentrations significantly when compared to the control group (P<0.05, Table 1) and this effect was concentration-dependent; indicating a marked impairment in the membranal integrity of the thalli.

Table 1 shows the MDA and H₂O₂ content of thalli after exposure to Co²⁺ for 24 h. Co²⁺ exposure significantly increased the MDA content of thalli at 15 mM and 30 mM, but not at 5 mM, concentrations (p<0.05), while it increased H₂O₂ content at all concentrations. The increase in MDA level, as an index of lipid peroxidation, and H₂O₂ level was in a concentration-dependent manner.

Tissue sections of thallus from *P. furfuracea* were examined for TUNEL-positive nuclei, which

Table 1. Electrical conductivity and malondialdehyde and hydrogen peroxide content of *P. furfuracea* thalli incubated in bidistilled water (control) or in different concentrations of Co(NO₃)₂ for 24 hours

<table>
<thead>
<tr>
<th></th>
<th>Electrical conductivity (µS cm⁻¹) Mean±SEM</th>
<th>Malondialdehyde (µM) Mean±SEM</th>
<th>H₂O₂ (µM) Mean±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.53±0.26</td>
<td>1.72±0.54</td>
<td>1.66±0.12</td>
</tr>
<tr>
<td>5 mM Co(NO₃)₂</td>
<td>3.33±0.60</td>
<td>2.43±0.01</td>
<td>6.23±0.10*</td>
</tr>
<tr>
<td>15 mM Co(NO₃)₂</td>
<td>9.40±0.56*‡</td>
<td>7.51±0.67*‡</td>
<td>11.79±0.20*‡</td>
</tr>
<tr>
<td>30 mM Co(NO₃)₂</td>
<td>18.77±0.59*‡,¶</td>
<td>14.38±0.26*‡,¶</td>
<td>51.53±2.07*‡,¶</td>
</tr>
</tbody>
</table>

SEM: Standard error of the mean; H₂O₂: Hydrogen peroxide; * P<0.05, when compared to control; ‡ P<0.05, when compared to 5 mM group; ¶ P<0.05, when compared to 15 mM group.

Figure 2. TUNEL staining of the sections of lichen incubated in (a) bidistilled water (control group), (b) 5 mM Co(NO₃)₂, (c) 15 mM Co(NO₃)₂ or (d) 30 mM Co(NO₃)₂. Original magnification x 40. Scale bar= 125 µm. Dark nuclei are TUNEL (+) cells.
were noticed as dark brown spots (Figure 2). In mycobiont layer, TUNEL-positive nuclei were less frequently scattered in Co\(^{2+}\) exposure groups comparing to the intensity of TUNEL-positive nuclei in the phycobiont layer of thallus (Figure 2). In total, exposure of thalli to Co\(^{2+}\) resulted in a significant increase in the number of TUNEL-positive cells in a concentration-dependent manner (p<0.001, Figure 3). When the distribution of TUNEL-positive cells among the two layers of lichen was statistically examined; it was noticed that the percentage of TUNEL-positive cells in the photobiont was higher than the mycobiont both in the control group (p<0.05) and in the Co\(^{2+}\) exposure groups (p<0.01 in 5 and 30 mM groups and p<0.001 15 mM group) (Table 2).

DISCUSSION

Lichens do not shed plant parts as readily as vascular plants.\(^{[5,10]}\) The lack of a waxy cuticle and stomata allows them to adsorb many contaminants through the whole lichen surface.\(^{[5]}\) Lichens are capable of accumulating various elements to concentrations that vastly exceed their physiological requirements and therefore, deposition patterns are distinguishable from normal element loadings.\(^{[5]}\) Data obtained in lichen samples incubated in Co(NO\(_3\))\(_2\) in our study show that Co content rapidly increases in *P. furfuracea* with the increasing Co concentration in the incubation solution. Exposure to Co(NO\(_3\))\(_2\) produced an accumulation of Co in *P. furfuracea* thallus at a considerably high level (i.e. 216.73 µg/g dry weight at exposure to 30 mM Co\(^{2+}\)) that had a capacity to inhibit photosynthesis significantly.

Maximal PSII efficiency is frequently used to monitor stress in photosynthetic organisms. Under non-stressed conditions, lichens typically possess a Fv/Fm ratio in the range of 0.45-0.65.\(^{[11]}\) The decrease of Fv/Fm ratio in the lichen *P. furfuracea* is in accordance with studies on the impact of Co\(^{2+}\) stress on algae.\(^{[12]}\) Plekhanov and Chemeris\(^{[12]}\) showed that the Fv/Fm ratio in Chlorella pyrenoidosa treated with 0.1, 1, and 10 mM Co\(^{2+}\), rapidly decreased to 0.45, 0.25, and 0.15, respectively. In the present study, 24-hour exposure to Co\(^{2+}\) resulted in Fv/Fm values of 0.47 and 0.1 at 15 mM and 30 mM concentrations; suggesting that particularly at 30 mM, Co\(^{2+}\) decreases the photosynthesis capacity of lichen below the non-stressed levels and induces significant photo-destructive effects on PSII, respectively.

Oxidative stress caused lipid peroxidation and thereby destruction of cell membranes.\(^{[13]}\) Although the toxicity of Co is quite low compared to many other metals in soil, the toxic action of Co was found to be altering membrane permeability.\(^{[14,15]}\) Turton et al.\(^{[16]}\) suggested that the presence of MDA in biological systems can be related to the peroxidation of unsaturated fatty acids constituting cellular membranes. The consequences of the changes in lipid and protein structure are the loss of membrane integrity and selective permeability. Thus, the increase in MDA levels suggests that higher concentration...
of Co$^{2+}$ has a damaging effect on the cellular membranes of P. furfuracea. In present study, the concentration-dependent increase in MDA levels shows a positive correlation with the EC values in such a manner that the higher MDA levels in lichen, the higher EC in the incubation solution. Electrical conductivity is considered to indicate injury to cell membranes and has been previously used for the assessment of electrolyte leakage in lichen.[17,18] Although 5 mM Co$^{2+}$ exposure did not significantly change EC in thalli, marked higher EC values were observed in thalli treated with 5 mM and 30 mM concentration of Co$^{2+}$; indicating the leakage of electrolytes through the damaged membranes of the lichen.

H$_2$O$_2$ is toxic for most animal cells at levels of about 10-102 µM.[19] Experiments with plant material have demonstrated that plant tissues can tolerate high concentrations of H$_2$O$_2$ in the range of 102-2x105 µM.[20] H$_2$O$_2$ increase has been reported in Arabidopsis thaliana and tomato plants after treatment with copper, cadmium and mercury.[21-23] Photosynthetic efficiency data in our study has shown that thallus of P. furfuracea can tolerate concentrations of H$_2$O$_2$ at an approximate range of 6-52 µM (see Table 1). de Pinto et al.[24] showed that only simultaneous increase of H$_2$O$_2$ in tobacco cells induced cell death that had typical cytological and biochemical features of DNA fragmentation. Similarly, our results have shown that increasing production of H$_2$O$_2$ induces a marked increase in the density of TUNEL-positive cells in P. furfuracea thalli. TUNEL-positive nuclei were examined less frequently in mycobiont layer compared to the photobiont layer, suggesting the photobiont layer is more sensitive to Co-induced toxicity than mycobiont layer.

In conclusion, our data have clearly indicated that exposure to Co$^{2+}$ increases the Co content of the lichen and consequently results in decreased photosynthetic quantum yield. This functional Co toxicity is accompanied by lipid peroxidation and consecutive damage to cellular membrane integrity and oxidative stress-induced formation of DNA fragmentation especially in the photobiont layer. Results of the present study, however, do not clearly identify that the feature of DNA fragmentation is directly related to apoptotic-like formation or necrosis. Further focused research is required to investigate the characteristics of the formation of DNA fragmentation related to necrosis or apoptosis in lichen under heavy metal stress conditions.

Acknowledgments
The authors of the current study would like to thank Dr. Şenol Sert for helping the ICP-OES analysis.

Declaration of conflicting interests
The authors declared no conflicts of interest with respect to the authorship and/or publication of this article.

Funding
The authors received no financial support for the research and/or authorship of this article.

REFERENCES
Response to cobalt toxicity in lichen Pseudevernia furfuracea

18. Backor M, Fahselt D, Davidson RD, Wu CT. Effects of copper on wild and tolerant strains of the lichen photobiont Trebouxia erici (Chlorophyta) and possible tolerance mechanisms. Arch Environ Contam Toxicol 2003;45:159-67.