Hedronometric Proportions for Rectangular Tetrahedra

Baki Karliga

Abstract

. The main aim of this paper is to obtain hedronometric proportions, which are three dimensional versions of trigonometric proportions for right triangle, as well as for dihedral and vertex angles of rectangular tetrahedron in terms of hypotenuse and perpendicular face area.

2010 AMS Classification: 51M04, 51M05, 51M20, 51M25, 52A38, 52A37, 52B10
Keywords: Tetrahedron, hedronometry, proportion, dihedral angle, vertex angle

1. INTRODUCTION

"9 Hedronometry" is an extension of trigonometry toward three dimensional Euclidean space, focusing on the relationships between the angles and the faces of a tetrahedron. Tetrahedra have more degrees of freedom than triangles, and consequently are not uniquely determined by the areas of their faces in the way that triangles are uniquely determined by the length of their edges. Yet there do exist a number of Hedronometric analogues to trigonometric formula that provide vaguely familiar relationships between the faces and angles.

Let T be a right triangle with right vertex A_{i} generated by the points A_{i}, A_{j}, A_{k}, and let $\phi_{i}=\frac{\pi}{2}, \phi_{j}, \phi_{k}$ be internal angles of T. Then it follows from the elementary geometry in that the trigonometric proportions for T is given by

$$
\begin{align*}
& \cos \phi_{p}=\frac{\left\|\overrightarrow{A_{i} A_{p}}\right\|}{\left\|\overrightarrow{A_{p} A_{m}}\right\|} \\
& \sin \phi_{p}=\frac{\left\|\overrightarrow{A_{i} A_{m}}\right\|}{\left\|\overrightarrow{A_{p} A_{m}}\right\|} \tag{1.1}
\end{align*}
$$

where (p, m) is a permutation $\{j, k\}$.
In this paper we give two new hedronometric analogues to trigonometric proportions for right triangles. That is, we derive three dimensional versions of formula

Figure 1. Right Triangle
(1.1) for dihedral and vertex angles of a rectangular tetrahedron in terms of the hypotenuse and perpendicular face areas [Theorem 2.2, Theorem 3.3].

A characterization which relates to vertex angles of a rectangular tetrahedron is also given [Corollary 3.2].

2. Dihedral Angles and Hedronometric Proportions

Let $A_{i}, A_{j}, A_{k}, A_{\ell}$ be independent points in a three dimensional Euclidean space R^{3}. A tetrahedron T is given by the convex hull of A_{i} and linear independent set $\left\{\overrightarrow{A_{i} A_{j}}, \overrightarrow{A_{i} A_{k}}, \overrightarrow{A_{i} A_{\ell}}\right\}$ ([1],[6],[2],[7]). If linear independent set is orthogonal then tetrahedron is called a rectangular tetrahedron with right vertex A_{i}.

Let S_{m} be a face of rectangular tetrahedron which is not containing A_{m}, and let $\left|S_{m}\right|$ be area of S_{m} for each $m \in\{i, j, k, l\}$. Then, S_{i} and $S_{m}(m \neq i)$ are called hypotenuse and perpendicular face of rectangular tetrahedron T.

If (p, q, m, n) is a permutation of $\{i, j, k, l\}$, then the dihedral angle $\theta_{m n}$ at common edge $S_{m} \cap S_{n}=a_{p q}$ is the angle formed at any normal plane to $a_{p q}$. We call $a_{i s}$ perpendicular edge of T for each $s \in\{j, k, l\}$, and also call perpendicular face S_{m} of T for each $m \in\{j, k, l\} . S_{p}$ and S_{m}, S_{n} are opposite perpendicular face and adjacent perpendicular face at edge $a_{i p}$ for each $p \in\{j, k, l\}$.

Lemma 2.1. Let T be a tetrahedron with vertices $A_{i}, A_{j}, A_{k}, A_{\ell}$. Let $S_{p}, p \in$ $\{i, j, k, \ell\}$ denotes a face of T. Then it follows

$$
\begin{equation*}
\left|S_{p}\right|=\left|S_{q}\right| \cos \theta_{p q}+\left|S_{m}\right| \cos \theta_{p m}+\left|S_{n}\right| \cos \theta_{p n} \tag{2.1}
\end{equation*}
$$

where (p, q, m, n) is a permutation of $\{i, j, k, \ell\}$.
Proof. By proof of Theorem 3 in [7] (or [3]), we know that

$$
\left|S_{p}\right| N_{p}+\left|S_{q}\right| N_{q}+\left|S_{m}\right| N_{m}+\left|S_{n}\right| N_{n}=0
$$

where N_{t} is unit outer normal vector of $S_{t}, t \in\{i, j, k, \ell\}$. By taking the inner product of the sides with N_{p} and by using

$$
\left\langle N_{t}, N_{s}\right\rangle=-\left\|N_{t}\right\|\left\|N_{s}\right\|_{2} \cos \theta_{t s} ; t, s \in\{i, j, k, \ell\}
$$

Figure 2. Edges of Rectangular Tetrahedron

Figure 3. Faces of Rectangular Tetrahedron
we obtain equation (2.1).
Theorem 2.2. Let T be a rectangular tetrahedron with right vertex A_{i} generated by points $A_{i}, A_{j}, A_{k}, A_{\ell}$. Then the hedronometric proportions of T at S_{p} is given by

$$
\begin{aligned}
\cos \theta_{i p} & =\frac{\left|S_{p}\right|}{\left|S_{i}\right|} \\
\sin \theta_{i p} & =\frac{\sqrt{\left|S_{m}\right|^{2}+\left|S_{n}\right|^{2}}}{\left|S_{i}\right|}
\end{aligned}
$$

where S_{m}, S_{n} adajacent perpendicular faces and S_{p} opposite perpendicular face at edge $a_{i p}$ of T.

Proof. By using $\theta_{p q}=\frac{\pi}{2}, p, q \in\{j, k, \ell\}$ in Lemma 2.1, we see that

$$
\begin{equation*}
\left|S_{p}\right|=\left|S_{i}\right| \cos \theta_{i p} \tag{2.2}
\end{equation*}
$$

or

$$
\cos \theta_{i p}=\frac{\left|S_{p}\right|}{\left|S_{i}\right|}
$$

By substituting equation (2.2) at De Gua formula,

$$
\left|S_{i}\right|^{2}=\left|S_{j}\right|^{2}+\left|S_{k}\right|^{2}+\left|S_{\ell}\right|^{2}
$$

Then, we obtain

$$
\sin \theta_{i p}=\frac{\sqrt{\left|S_{m}\right|^{2}+\left|S_{n}\right|^{2}}}{\left|S_{i}\right|}
$$

for the permutation (p, m, n) of $\{j, k, \ell\}$.

3. Vertex Angles and Hedronometric Proportions

A vertex angle θ_{p} is defined by the area of spherical triangle which is determined by unit sphere centered at A_{p} and three edges joining A_{p}.

Theorem 3.1. The measure of the vertex angle θ_{p} and dihedral angles $\theta_{p q}, \theta_{p m}, \theta_{p n}$ of a tetrahedron satisfies the following relationships

$$
\begin{equation*}
\theta_{p}=\theta_{p q}+\theta_{p m}+\theta_{p n}-\pi \tag{3.1}
\end{equation*}
$$

where (p, q, m, n) is a permutation of $\{i, j, k, \ell\}$.
Proof. It can be seen in [4], [8].
Corollary 3.2. Let T be a rectangular tetrahedron with right vertex A_{i} generated by points $A_{i}, A_{j}, A_{k}, A_{\ell}$. Then

$$
\begin{equation*}
\theta_{p}=\theta_{p i}, p \in\{j, k, \ell\} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{i}=\theta_{i j}+\theta_{i k}+\theta_{i l}-\pi \tag{3.3}
\end{equation*}
$$

Proof. Since $\theta_{m n}=\frac{\pi}{2}$ for $m \neq n ; m, n \in\{j, k, \ell\}$, equation (3.1) reduces to $\theta_{p}=\theta_{p i}$ for $p \neq i$ and $\theta_{i}=\theta_{i q}+\theta_{i m}+\theta_{i n}-\pi$ for $p=i$.

The proof of Corollary (3.2) can be given by the way of Theorem 2 in [5] (or [10]). For the sake of its clearness, we preferred the above method rather than the other.

Now we are ready to give the following theorem which is another version of equation (1.1) for vertex angles of a rectangular tetrahedron in terms of hypotenuse and perpendicular face areas.

Theorem 3.3. Let T be a rectangular tetrahedron with right vertex A_{i} generated by points $A_{i}, A_{j}, A_{k}, A_{\ell}$. Then the hedronometric proportions of T in terms of hypotenuse and perpendicular face areas for the vertex angle θ_{p} is given by

$$
\begin{aligned}
\cos \theta_{p} & =\frac{\left|S_{p}\right|}{\left|S_{i}\right|} \\
\sin \theta_{p} & =\frac{\sqrt{\left|S_{m}\right|^{2}+\left|S_{n}\right|^{2}}}{\left|S_{i}\right|}
\end{aligned}
$$

where (p, m, n) is a permutation of $\{j, k, \ell\}$.
Proof. It is evident from the Theorem 2.2 and Corallary 3.2. By substituting equation (3.2) in equation (3.3), we obtain the following equations for a rectangular tetrahedron with right vertex A_{i}.

$$
\theta_{j}+\theta_{k}+\theta_{\ell}=\frac{3 \pi}{2}
$$

Figure 4. Vertex Angle

Figure 5. Measure of Vertex Angle

$$
\begin{equation*}
\theta_{i}+\theta_{j}+\theta_{k}+\theta_{\ell}=2 \pi \tag{3.4}
\end{equation*}
$$

Vertex angles sum of rectengular tetrahedron is constant (i.e. 2π) by equation (3.4).

References

[1] Cho E., Pythagoren Theorems on Rectangular Tetrahedron, Appl. Math. Lett., 4:6, 37-38, (1991).
[2] Cho E., Dihedral Angles of n-simplices, Appl. Math. Lett., 5(4), 55-57, (1992).
[3] Grunbaum B., Convex Polytopes, John Wiley and Sons Ltd., New York, (1967).
[4] Henderson D.W., Taimina D., Experiencing Geometry in Euclidean, Spherical and Hyperbolic Spacees, Pearson, (2000).
[5] Leng G.S. and Zhang Y., Vertex Angles for Simplices, Appl. Math. Lett. 12(1), 1-5, (1999).
[6] Quadret J.P., Lasserre J.B., and Hiriart-Urruty J.B., Pythagoras' Theorem for Areas, Amer. Math. Monthly, 108(6), 549-552, (2001).
[7] Veljan D. The 2500 Years Old Pythagorean Theorem, Mathematics Magazine, 73(4), 259272, (2000).
[8] Veljan D., The Sine Theorem and Inequalities for Volume Simplices, Linear Algeb.and Its Applications,70-91, (1995).
[9] Yakut A.T., Savas M., Kader S., On The Schlafli Differential Formula Based on Edge Lengths of Tetrahedron in H^{3} and S^{3}, Geometriae Dedicata, 1, 99-115, (2009).
[10] Wirth K., Dreiding A.S., Relations between Edge Lengths, Dihedral Angles and Solid Angles in Tetrahedra, J. Math. Chem., 52, 1624-1638, (2014).

Baki Karliga -Department of Mathematics, Faculty of Sciences, Gazi University, 06500 Ankara, Turkey

