Dihedral Angles and Edge Lengths of Spacelike n-simplex in S_{1}^{n}

Baki Karliga

Abstract

. In this paper, we give necessary and sufficent conditions for $\frac{n(n+1)}{2}$ positive real numbers $\phi_{i j}$ and $\theta_{i j}$ to be dihedral angles and edge lengths of an n-simplex having spacelike faces with codimensions 1 and 2 in de Sitter space.

2010 AMS Classification: $51 \mathrm{M} 04,51 \mathrm{M} 05,51 \mathrm{M} 20,51 \mathrm{M} 25,52 \mathrm{~A} 38,52 \mathrm{~A} 37,52 \mathrm{~B} 10$
Keywords: Edge matrix, simplices, hyperbolic space, edge length, de Sitter

1. INTRODUCTION

Let $R_{1}{ }^{n+1}$ be the $(n+1)$-Minkowski space in which the scalar product of two vectors $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ is given by

$$
\langle x, y\rangle=-x_{0} y_{0}+\sum_{i=1}^{n} x_{i} y_{i}
$$

In what follows we will take n-dimensional hyperbolic space $H^{n}=\left\{x \in R_{1}{ }^{n+1} \mid\right.$ $\left.\langle x, x\rangle=-1 x_{0}>0\right\}$. The hyperbolic distance between any two points v_{i} and v_{j} is given by the real number $\phi_{i j}=\operatorname{arccosh}\left(-<v_{i}, v_{j}>\right)$ in H^{n}. (see for detail [5], [12], [6], [7], [1],[2]).

Suppose that \triangle is an n-simplex in the hyperbolic space H^{n} with vertices $v_{1}, v_{2}, \ldots, v_{n+1}$. The face of \triangle opposite to v_{i} is the intersection of the timelike hyperplane $u_{i}{ }^{\perp}$ in $R_{1}{ }^{n+1}$ with H^{n}. We call the codimension 2 face $\left(u_{i}{ }^{\perp} \cap u_{j}{ }^{\perp}\right) \cap H^{n}$ opposite to $v_{i}, v_{j}, i \neq j$ the $i j$-face of \triangle. We denote the dihedral angle at the $i j$-face of \triangle in H^{n} by $\theta_{i j}$ and we set $\theta_{i i}=\pi$. The symmetric matrix $G=\left[-\cos \theta_{i j}\right]$ is called the Gram Matrix of \triangle. The hyperbolic distance $\phi_{i j}=\operatorname{arccosh}\left(-<v_{i}, v_{j}>\right)$ between any two vertices $v_{i}, v_{j}, i \neq j$ is called the edge length of $\triangle . M=\left[<v_{i}, v_{j}>\right.$ $]=\left[-\cosh \phi_{i j}\right]$ is called Edge Matrix of \triangle in H^{n} (see for detail [4]). In what follows we will restrict our attention to the class of $n-\operatorname{simplices} \Delta^{n}$ having spacelike faces with codimensions 1 and 2 in $S_{1}{ }^{n}$.

Consider the 2-dimensional vector subspace of $R_{1}{ }^{n+1}$ spanned by the unit timelike vectors v_{i} and v_{j}. Since v_{i}, v_{j} are timelike, this plane is timelike (see [6],p.141), and so the codimension 2 subspace $v_{i}{ }^{\perp} \cap v_{j}{ }^{\perp}$ is spacelike. Thus the codimension 1 spacelike hyperplanes $v_{i}{ }^{\perp} \cap S_{1}{ }^{n}$ and $v_{j}{ }^{\perp} \cap S_{1}{ }^{n}$ intersect at the codimension 2 spacelike hyperplane $\left(v_{i}{ }^{\perp} \cap v_{j}^{\perp}\right) \cap S_{1}{ }^{n}$ spanned by spacelike vectors, $u_{1}, \ldots, \hat{u}_{i}, \ldots, \hat{u}_{j}, \ldots, u_{n+1}$. Hence, it is also natural to call the matrices $\left.M^{*}=\left[<u_{i}, u_{j}\right\rangle\right]$ and $\left.G^{*}=\left[<v_{i}, v_{j}\right\rangle\right]$ edge matrix and Gram matrix of \triangle^{*} which has spacelike faces $v_{i}{ }^{\perp} \cap S_{1}{ }^{n} i=1, \ldots, n$.

Given a $q x q$ matrix A, we denote the cofactor of A corresponding to the $(i, j)-$ entry and the determinant of A by $A_{i j}$ and $|A|$.

Let a spacelike $n-\operatorname{simplex} \triangle^{*}$ in S_{1}^{n} and hyperbolic $n-\operatorname{simplex} \triangle$, and let M^{*}, M and G^{*}, G be edge matrix and Gram matrix of \triangle^{*} and \triangle, respectively.

Two questions were raised by Fenchel in his book [3](p.170-174). The first question is "What are the conditions six numbers have to satisfy in order that they are the dihedral angles of a hyperbolic tetrahedron?" and the other is "What are the conditions six positive numbers have to satisfy in order that they are the edge lengths of a hyperbolic tetrahedron?"

The first question of Fenchel solved by Luo in [5] and the other by Karlığa in [4], for n-simplex in hyperbolic space. Recently, the definition of dihedral angle in semi-riemannian geometry appeared in [11],[10]. The duality between polyhedra in the hyperbolic space and the de Sitter space appeared in [11], [8], [9], [10].

The main aim of this paper is to give hyperbolic and de Sitter duality exchanging dihedral angles and edge lengths of Δ^{*} and \triangle.

2. Main Theorems

Theorem 2.1. Let \triangle^{*} be a spacelike n-simplex with faces outer normals $v_{1}, v_{2}, \ldots v_{n+1}$. Then, Gram matrix $G^{*}=\left[\left\langle v_{i}, v_{j}\right\rangle\right]$ of \triangle^{*} is equal to edge matrix M of \triangle if and only if there exist $\frac{n(n+1)}{2}$ real positive numbers $\phi_{i j}=\phi_{j i}$ such that $G^{*}=\left[-\cosh \phi_{i j}\right]$ which satisfies
i) $\left|G^{*}\right|<0$
ii) all principal submatrices of G^{*-1} are positive definite
iii $G_{i j}^{*}>0$
where $i \neq j$ and $i, j=1, \ldots, n+1$.
Proof. Suppose that all conditions are sufficient. By Theorem 2.1 in [4] and (i), (ii) and (iii), there exist $\frac{n(n+1)}{2}$ real positive numbers $\phi_{i j}=\phi_{j i}$ which are edge lengths of \triangle in H^{n}. Namely, $G^{*}=M$. Conversely, suppose we are given a spacelike n-simplex \triangle^{*} whose face unit outer normals are $v_{1}, v_{2}, \ldots v_{n+1}$. Then, we have hyperbolic simplex \triangle with vertices $v_{1}, v_{2}, \ldots v_{n+1}$ such that $M=\left[\left\langle v_{i}, v_{j}\right\rangle\right]=G^{*}$. By Theorem 2.1 in [4], there exist $\frac{n(n+1)}{2}$ real positive numbers $\phi_{i j}=\phi_{j i}$ such that $G^{*}=\left[-\cosh \phi_{i j}\right]$ satisfies (i), (ii) and (iii).

Theorem 2.2. Let \triangle^{*} be a spacelike n-simplex with vertices $u_{1}, u_{2}, \ldots u_{n+1}$. Then, edge matrix $M^{*}=\left[\left\langle u_{i}, u_{j}\right\rangle\right]$ of \triangle^{*} is equal to Gram matrix G of \triangle if and only if
there exist $\frac{n(n+1)}{2}$ real positive numbers $\theta_{i j}=\theta_{j i} \in(0, \pi)$ such that $M^{*}=\left[-\cos \theta_{i j}\right]$ which satisfies
i) $\left|M^{*}\right|<0$
ii) all principal submatrices of M^{*} are positive definite
iii $M_{i j}^{*}>0$
where $i \neq j, i, j=1, \ldots, n+1$.
Proof. Suppose that all conditions are sufficient. By main theorem of [5], there exists hyperbolic n-simplex \triangle with Gram matrix $G=\left[-\cos \theta_{i j}\right]=M^{*}$.

Conversely, suppose we are given a spacelike n-simplex \triangle^{*} with vertices $u_{1}, u_{2}, \ldots u_{n+1}$. By main theorem of [5], we have hyperbolic n-simplex \triangle whose Gram matrix $G=\left[\left\langle u_{i}, u_{j}\right\rangle\right]=M^{*}$ satisfies (i), (ii) and (iii).

References

[1] Blumenthal, L.M., Theory and Applications of Distance Geometry, Chelsea Publishing Company, Bronx, New York, (1970).
[2] Blumenthal, L.M., Metric Foundation of Hyperbolic Geometry, Revista de Ciencias, 40, 3-20, (1938).
[3] Fenchel, W., Elementary Geometry in Hyperbolic Space, W.de Gruyter, Berlin, New York, (1989).
[4] Karliga, B., Edge Matrix of Hyperbolic Simplices, Geometriae Dedicata, 109, 1-6, (2004).
[5] Luo, F., On a problem of Fenchel, Geometriae Dedicata,64, 277-282, (1997).
[6] O'neill, B., Semi-Riemannian Geometry, Academic Press, New York, (1983).
[7] Ratcliffe, J.G., Foundations of Hyperbolic Manifold, Springer-Verlag, New York, (1994).
[8] Schlenker, J.M., Dihedral Angles of Convex Polyhedra, Discrete Comput. Geom., 23, 409-417, (2000).
[9] Schlenker, J.M., Hypersurfaces in H^{n} and the Space of Its Horospheres, Geometric and Functional Analysis, 12, 395-435, (2002).
[10] Schlenker, J.M., Métriques sur les Polyédres Hyperboliques Convexes, J. Differential Geom., 48(2), 323-405, (1998).
[11] Suárez-Peiró, E., A Schläfli Differential Formula for Simplices in Semi Riemannian Hyperquadrics, Pacific Journal of Mathematics, 194:1), 229-255, (2000).
[12] Vinberg E.B., Geometry II, Encyclopaedia of Mathematical Sciences, Springer-Verlag, 29, Berlin, NewYork, (1993).
B. Karliga -Department of Mathematics, Faculty of Science, Gazi University, 06500 Ankara, Turkey

