Turkish Journal of Mathematics and Computer Science TJMCS

http://tjmcs.matder.org.tr/

©TJMCS © MatDer http://www.matder.org.tr/

Dihedral Angles and Edge Lengths of Spacelike n-simplex in S_1^n

BAKI KARLIGA

Abstract.

In this paper, we give necessary and sufficient conditions for $\frac{n(n+1)}{2}$ positive real numbers ϕ_{ij} and θ_{ij} to be dihedral angles and edge lengths of an *n*-simplex having spacelike faces with codimensions 1 and 2 in de Sitter space.

2010 AMS Classification: 51M04, 51M05, 51M20, 51M25, 52A38, 52A37, 52B10 Keywords: Edge matrix, simplices, hyperbolic space, edge length, de Sitter

1. INTRODUCTION

Let R_1^{n+1} be the (n+1)-Minkowski space in which the scalar product of two vectors $x = (x_0, x_1, ..., x_n)$ and $y = (y_0, y_1, ..., y_n)$ is given by

$$\langle x, y \rangle = -x_0 y_0 + \sum_{i=1}^n x_i y_i.$$

In what follows we will take *n*-dimensional hyperbolic space $H^n = \{x \in R_1^{n+1} \mid \langle x, x \rangle = -1 x_0 > 0\}$. The hyperbolic distance between any two points v_i and v_j is given by the real number $\phi_{ij} = \operatorname{arccosh} (-\langle v_i, v_j \rangle)$ in H^n . (see for detail [5], [12], [6], [7], [1], [2]).

Suppose that \triangle is an *n*-simplex in the hyperbolic space H^n with vertices $v_1, v_2, ..., v_{n+1}$. The face of \triangle opposite to v_i is the intersection of the timelike hyperplane u_i^{\perp} in R_1^{n+1} with H^n . We call the codimension 2 face $(u_i^{\perp} \cap u_j^{\perp}) \cap H^n$ opposite to $v_i, v_j, i \neq j$ the ij-face of \triangle . We denote the dihedral angle at the ij-face of \triangle in H^n by θ_{ij} and we set $\theta_{ii} = \pi$. The symmetric matrix $G = [-\cos \theta_{ij}]$ is called the **Gram Matrix** of \triangle . The hyperbolic distance $\phi_{ij} = \operatorname{arccosh}(- \langle v_i, v_j \rangle)$ between any two vertices $v_i, v_j, i \neq j$ is called the edge length of \triangle . $M = [\langle v_i, v_j \rangle] = [-\cosh \phi_{ij}]$ is called **Edge Matrix** of \triangle in H^n (see for detail [4]). In what fol-

lows we will restrict our attention to the class of n- simplices \triangle^n having spacelike faces with codimensions 1 and 2 in S_1^n .

Consider the 2-dimensional vector subspace of R_1^{n+1} spanned by the unit timelike vectors v_i and v_j . Since v_i , v_j are timelike, this plane is timelike (see [6],p.141), and so the codimension 2 subspace $v_i^{\perp} \cap v_j^{\perp}$ is spacelike. Thus the codimension 1 spacelike hyperplanes $v_i^{\perp} \cap S_1^n$ and $v_j^{\perp} \cap S_1^n$ intersect at the codimension 2 spacelike hyperplane $(v_i^{\perp} \cap v_j^{\perp}) \cap S_1^n$ spanned by spacelike vectors, $u_1, ..., \hat{u}_i, ..., \hat{u}_j, ..., u_{n+1}$. Hence, it is also natural to call the matrices $M^* = [\langle u_i, u_j \rangle]$ and $G^* = [\langle v_i, v_j \rangle]$ edge matrix and Gram matrix of Δ^* which has spacelike faces $v_i^{\perp} \cap S_1^n$ i = 1, ..., n.

Given a qxq matrix A, we denote the cofactor of A corresponding to the (i, j)entry and the determinant of A by A_{ij} and |A|.

Let a spacelike n-simplex \triangle^* in S_1^n and hyperbolic n-simplex \triangle , and let M^* , M and G^* , G be edge matrix and Gram matrix of \triangle^* and \triangle , respectively.

Two questions were raised by Fenchel in his book [3](p.170-174). The first question is "What are the conditions six numbers have to satisfy in order that they are the dihedral angles of a hyperbolic tetrahedron?" and the other is "What are the conditions six positive numbers have to satisfy in order that they are the edge lengths of a hyperbolic tetrahedron?"

The first question of Fenchel solved by Luo in [5] and the other by Karlığa in [4], for n-simplex in hyperbolic space. Recently, the definition of dihedral angle in semi-riemannian geometry appeared in [11],[10]. The duality between polyhedra in the hyperbolic space and the de Sitter space appeared in [11], [8], [9], [10].

The main aim of this paper is to give hyperbolic and de Sitter duality exchanging dihedral angles and edge lengths of Δ^* and Δ .

2. Main Theorems

Theorem 2.1. Let \triangle^* be a spacelike n-simplex with faces outer normals $v_1, v_2, ... v_{n+1}$. Then, Gram matrix $G^* = [\langle v_i, v_j \rangle]$ of \triangle^* is equal to edge matrix M of \triangle if and only if there exist $\frac{n(n+1)}{2}$ real positive numbers $\phi_{ij} = \phi_{ji}$ such that $G^* = [-\cosh \phi_{ij}]$ which satisfies i) $|G^*| < 0$ ii) all principal submatrices of G^{*-1} are positive definite

iii $G_{ij}^* > 0$ *where* $i \neq j$ *and* i, j = 1, ..., n + 1.

Proof. Suppose that all conditions are sufficient. By Theorem 2.1 in [4] and (i), (ii) and (iii), there exist $\frac{n(n+1)}{2}$ real positive numbers $\phi_{ij} = \phi_{ji}$ which are edge lengths of \triangle in H^n . Namely, $G^* = M$. Conversely, suppose we are given a spacelike n-simplex \triangle^* whose face unit outer normals are $v_1, v_2, ..., v_{n+1}$. Then, we have hyperbolic simplex \triangle with vertices $v_1, v_2, ..., v_{n+1}$ such that $M = [\langle v_i, v_j \rangle] = G^*$. By Theorem 2.1 in [4], there exist $\frac{n(n+1)}{2}$ real positive numbers $\phi_{ij} = \phi_{ji}$ such that $G^* = [-\cosh \phi_{ij}]$ satisfies (i), (ii) and (iii).

Theorem 2.2. Let \triangle^* be a spacelike n-simplex with vertices $u_1, u_2, ..., u_{n+1}$. Then, edge matrix $M^* = [\langle u_i, u_j \rangle]$ of \triangle^* is equal to Gram matrix G of \triangle if and only if

there exist $\frac{n(n+1)}{2}$ real positive numbers $\theta_{ij} = \theta_{ji} \in (0,\pi)$ such that $M^* = [-\cos \theta_{ij}]$ which satisfies

i) $|M^*| < 0$ ii) all principal submatrices of M^* are positive definite iii $M_{ij}^* > 0$ where $i \neq j, i, j = 1, ..., n + 1$.

Proof. Suppose that all conditions are sufficient. By main theorem of [5], there exists hyperbolic n-simplex \triangle with Gram matrix $G = [-\cos \theta_{ij}] = M^*$.

Conversely, suppose we are given a spacelike n-simplex \triangle^* with vertices u_1, u_2, \dots, u_{n+1} . By main theorem of [5], we have hyperbolic n-simplex \triangle whose Gram matrix $G = [\langle u_i, u_j \rangle] = M^*$ satisfies (i), (ii) and (iii).

References

- Blumenthal, L.M., Theory and Applications of Distance Geometry, Chelsea Publishing Company, Bronx, New York, (1970).
- [2] Blumenthal, L.M., Metric Foundation of Hyperbolic Geometry, *Revista de Ciencias*, 40, 3-20, (1938).
- [3] Fenchel, W., Elementary Geometry in Hyperbolic Space, W.de Gruyter, Berlin, New York, (1989).
- [4] Karliga, B., Edge Matrix of Hyperbolic Simplices, Geometriae Dedicata, 109, 1-6, (2004).
- [5] Luo, F., On a problem of Fenchel, Geometriae Dedicata, 64, 277-282, (1997).
- [6] O'neill, B., Semi-Riemannian Geometry, Academic Press, New York, (1983).
- [7] Ratcliffe, J.G., Foundations of Hyperbolic Manifold, Springer-Verlag, New York, (1994).
- [8] Schlenker, J.M., Dihedral Angles of Convex Polyhedra, Discrete Comput. Geom., 23, 409-417, (2000).
- Schlenker, J.M., Hypersurfaces in Hⁿ and the Space of Its Horospheres, Geometric and Functional Analysis, 12, 395-435, (2002).
- [10] Schlenker, J.M., Métriques sur les Polyédres Hyperboliques Convexes, J. Differential Geom., 48(2), 323-405, (1998).
- [11] Suárez-Peiró, E., A Schläfli Differential Formula for Simplices in Semi Riemannian Hyperquadrics, Pacific Journal of Mathematics, 194:1), 229-255, (2000).
- [12] Vinberg E.B., Geometry II, Encyclopaedia of Mathematical Sciences, Springer-Verlag, 29, Berlin, NewYork, (1993).

<u>B. KARLIGA</u> –Department of Mathematics, Faculty of Science, Gazi University, 06500 Ankara, Turkey