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Abstract.
In this paper mainly, Wijsman deferred statistical convergence of sequence
of sets in an arbitrary metric space is defined and some basic theorems are
given. Besides new results, some results in this paper are the generalization
of the results given in [3], [15] and [18].
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1. INTRODUCTION

The concept of statistical convergence for real valued sequences has been in-
troduced by Fast and Steinhaus independently in the same year 1951. Since then,
several authors (Some of them, Fridy [6], Fridy-Miller [7], Fridy-Orhan [8], Kaya,
et.al. [9], Kolk [10] and Mursaleen [14], e.t.c.) investigated this subject and it is
applied different areas of mathematics, such as summability theory, analytic number
theory, Fourier series, e.t.c.

Let K be a subset of N and K(n) = {k ≤ n : k ∈ N}. Then the asymptotic
density of K is defined as follows if the limit exists

δ(K) := lim
n→∞

|K(n)|
n

where the vertical bars denotes the cardinality of the inside set.
On the contrary to the convergence of the real valued sequences, in literature,

there are only well known three type convergence method for sequence of sets: Wi-
jsman, Hausdorff and Kuratowski (see [2], [11], [19] ).

Beer [3] interested Kuratowski convergence of sequence of sets and obtained the
Arzela-Ascoli Theorem from the compactness theorem for sequence of sets.

Nuray and Rhoades [15] defined Wijsman statistical convergence of sequence of
sets. Later, in the paper [18] by using lacunary sequence, this concept is generalized
to the lacunary statistical convergence and some parallel results in [15] is given.
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Let us start with fundamental definitions.
Let (X, ρ) be a metric space. For any nonempty closed subsets A,Ak ⊆ X, we

say that the sequence (Ak) is Wijsman convergent to A if,

(1.1) lim
k→∞

dx(Ak) = dx(A)

for each x ∈ X.
In (1.1) the symbol dx(B) denotes the distance of the point x to the set B and

defined by
dx(B) := inf{ρ(x, a) : a ∈ B}

Wijsman convergency of the sequence (An) to A is denoted by W − limAn = A.
In [1], Agnew defined the deferred Cesàro mean as a generalization of Cesàro

mean for real or complex valued sequences x = (xn) by

1

q(n)− p(n)

q(n)∑
k=p(n)+1

xk

where p = (p(n)) and q = (q(n)) are the sequences of non-negative integers satisfying

(1.2) p(n) < q(n) and lim
n→∞

q(n) = ∞.

Throught the paper, we will use p and q instead of p(n) and q(n) only for sim-
plicity.

The sequence (Ak) is said to be Wijsman strongly deferred Cesàro summable to
the set A if for each x ∈ X ,

(1.3) lim
n→∞

1

q − p

q∑
k=p+1

|dx(Ak)− dx(A)| = 0

hold. In this case, we write WD − limn→∞ Ak = A.
Deferred density of K ⊂ N is defined as if the limit exists:

δD(K) := lim
n→∞

1

q − p
|{p < k ≤ q : k ∈ K}|.

The sequence (Ak) is said to be Wijsman deferred statistically convergent to A if
for every ε > 0 and x ∈ X,

(1.4) lim
n→∞

1

q − p
|{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}| = 0

hold. In this case, we write WDS − limk→∞ Ak = A.
If we consider the cases, (i) p = 0, q = n and (ii) p = kn−1, q = kn for a lacunary

sequence θ = (kn) in (1.4) and (1.3), these two concept coincide with Wijsman
statistical convergence-Wijsman strongly Cesàro summability andWijsman lacunary
statistical convergence-Wijsman lacunary strongly summability of sequence of sets
(see [15],[18]) respectively.

Theorem 1.1. Let (X, ρ) be a metric space. If (An)n∈N, (Bn)n∈N and (Cn)n∈N are
sequences of sets such that the inclusion An ⊂ Bn ⊂ Cn hold for all n ∈ N. Then,
the following statements are hold.

(i) If W − limAn = W − limCn = T, then W − limBn = T,
(ii) If WDS − limAn = WDS − limCn = T, then WDS − limBn = T.

2
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Proof. The case (i) can be proof easily by using standart methods of analysis. So,
it is omitted here.

(ii) Let x ∈ X be an arbitrary fixed point and consider the sequences (dx(An))n∈N,
(dx(Bn))n∈N and (dx(Cn))n∈N. It is clear from the inclusion An ⊂ Bn ⊂ Cn that
the inequality

(1.5) dx(Cn) ≤ dx(Bn) ≤ dx(An)

holds for all n ∈ N. From this inequality, we have

{ p < k ≤ q : |dx(Bk)− dx(T )| ≥ ε} =

= {p < k ≤ q : dx(Bk) ≥ dx(T ) + ε} ∪
∪{p < k ≤ q : dx(Bk) ≤ dx(T )− ε}

⊂ {p < k ≤ q : dx(Ak) ≥ dx(T ) + ε} ∪
∪{p < k ≤ q : dx(Ck) ≤ dx(T )− ε}

for ε > 0. It is also clear that the following inclusion

{p < k ≤ q : |dx(Ak)− dx(T )| ≥ ε}
⊃ {p < k ≤ q : dx(Ak) ≥ dx(T ) + ε},

and

{p < k ≤ q : |dx(Ck)− dx(T )| ≥ ε}
⊃ {p < k ≤ q : dx(Ck) ≤ dx(T )− ε}

are true and we have

δD({p < k ≤ q : dx(Ak) ≥ dx(T ) + ε}) = 0,

δD({p < k ≤ q : dx(Ck) ≤ dx(T )− ε}) = 0.

Therefore,

δD({p < k ≤ q : |dx(Bk)− dx(T )| ≥ ε}) = 0.

This gives the desired proof.
�

Definition 1.2. Let (An)n∈N and (Bn)n∈N be sequences of sets. If deferred density
of {n ∈ N : An ̸= Bn} is zero, then we say that the sequence (An)n∈N is deferred
almost all equial to the sequence (Bn)n∈N and it is denoted by (An) ≡ (Bn) (D −
a.a.e.).

Theorem 1.3. Let (X, ρ) be a metric space, (An)n∈N and (Bn)n∈N be sequences of
sets such that (An) ≡ (Bn), (D − a.a.e.). Then, Wijsman deferred statistical con-
vergency of the sequence (An)n∈N implies Wijsman deferred statistical convergency
of the sequence (Bn)n∈N , vice versa.

Proof. Assume that WDS − limn→∞ An = A, i.e.

(1.6) lim
n→∞

1

q − p
|{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}| = 0

holds for x ∈ X.
Since Ak ̸= Bk (D − a.a.e.), then we have

3
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(1.7) lim
n→∞

1

q − p
|{p < k ≤ q : Ak ̸= Bk}| = 0.

Also, the set
{p < k ≤ q : |dx(Bk)− dx(A)| ≥ ε},

can be represent as

(1.8) {p < k ≤ q : Ak = Bk} ∪ {p < k ≤ q : Ak ̸= Bk}
for the k when |dx(Bk)− dx(A)| ≥ ε.

From (1.6), (1.7) and (1.8) we have

lim
n→∞

1

q − p
|{p < k ≤ q : |dx(Bk)− dx(A)| ≥ ε}| = 0

and this gives the proof. The converse case can be prove suitable changes. �
Corollary 1.4. Let (X, ρ) be a metric space, (An)n∈N, (Bn)n∈N and (Cn)n∈N be a
sequences of sets such that An ⊂ Bn ⊂ Cn (D − a.a.e.).

If WDS − lim
n→∞

An = WDS − lim
n→∞

Cn = T, then WDS − lim
n→∞

Bn = T.

Definition 1.5. A sequence (An)n∈N of sets is said to be bounded if for each x ∈ X
there exists positiveMx such that dx(An) < Mx for all n ∈ N. The set of all bounded
sequence of sets is denoted by L∞, i.e.,

L∞ := {(An)n∈N : sup
n∈N

dx(An) < ∞ for each x ∈ X}.

Theorem 1.6. Let (X, ρ) be a metric space, (An)n∈N be a sequence of sets and A
be a nonempty closed subset of X. Then, the following statements are true:

(i) If WD − limn→∞ An = A, then WDS − limn→∞ An = A.
(ii) The converse of (i) is not true in general.
(iii) WDS ∩ L∞ = WD ∩ L∞.

Proof. (i) Since WD − limn→∞ An = A, then we have

lim
n→∞

1

q − p

q∑
k=p+1

|dx(Ak)− dx(A)| = 0,

for x ∈ X. Therefore, the following inequality

1

q − p

q∑
k=p+1

|dx(Ak)− dx(A)| ≥ 1

q − p

q∑
k=p+1

|dx(Ak)−dx(A)|≥ε

|dx(Ak)− dx(A)|

≥ 1

q − p
|{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}|.ε

hold for every ε > 0. Letting limit for n → ∞ we obtain desired proof.
(ii) Let us consider the sequence (Ak)k∈N as follows for an arbitrary p and q

satisfying (1.1):

Ak =

{
{k}, p < k ≤ p+ [[

√
q − p]], n ∈ N,

{0}, otherwise.
4
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It is clear that

lim
n→∞

1

q − p
|{p < k ≤ q : |dx(Ak)− dx({0})| ≥ ε}| =

= lim
n→∞

[[
√
q − p]]

q − p
= 0,

but

lim
n→∞

1

q − p

q∑
k=p+1

|dx(Ak)− dx({0})| ≥ lim
n→∞

[[
√
q − p]]([[

√
q − p]] + 1)

2(q − p)

=
1

2
̸= 0

This shows that the converse of (i) is not true.
(iii) Let (Ak) ∈ WDS ∩ L∞ be an arbitrary sequence of sets. From the bound-

edness of (Ak)k∈N for each x ∈ X there exists a positive number Mx such that
dx(Ak) ≤ Mx for all k ∈ N. Therefore,

|dx(Ak)− dx(A)| ≤ dx(Ak) + dx(A) ≤ Mx + dx(A)

holds for all x ∈ X. So, for any ε > 0, we have

1

q − p

q∑
k=p+1

|dx(Ak)− dx(A)| =

=
1

q − p

 q∑
k=p+1

|dx(Ak)−dx(A)|≥ε

+

q∑
k=p+1

|dx(Ak)−dx(A)|<ε

 |dx(Ak)− dx(A)|

≤ 2M ′
x

q − p
|{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}|+ ε

where M ′
x = Mx + dx(A).

After taking limit for n → ∞, the proof is obtained. �

Definition 1.7. A method D[p, q] is called properly deferred, if the sequence
(

p
q−p

)
is bounded in addition to p = (pn)n∈N and q = (qn)n∈N are satisfying (1.2).

In the following theorem the method WS and WDS are compared under some
restriction on p(n) and q(n).

Theorem 1.8. WS ⊂ WDS if and only if D is proper.

5
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Proof. Let (An)n∈N be a sequence of closed subsets of (X, d) and assume that WS−
limn→∞ An = A. Then, WDS transformation of the sequence (An)n∈N is

1

q − p
|{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}| =

=
1

q − p
|{1 ≤ k ≤ q : |dx(Ak)− dx(A)| ≥ ε}|

− 1

q − p
|{1 ≤ k ≤ p : |dx(Ak)− dx(A)| ≥ ε}|

= (
q

q − p
)
1

q
|{1 ≤ k ≤ q : |dx(Ak)− dx(A)| ≥ ε}|

−(
p

q − p
)
1

p
|{1 ≤ k ≤ p : |dx(Ak)− dx(A)| ≥ ε}| .

Regarding to the above equality we can say that WDS transformation of the se-
quence (dx(An)) is the linear combination of the WS transformation of the sequence
(dx(An)).

It is clear from the Silverman-Toeplitz Theorem [13] that this transformation is

regular if and only if
[

p
q−p + q

q−p

]
is bounded. That is, the sequence

(
p

q−p

)
must

be bounded. �

Theorem 1.9. WS ⊃ WDS[p, q] when q(n) = n for all n ∈ N.

Proof. Let (An)n∈N be a sequence of sets which is WDS−convergent to a set A ⊂ X
for x ∈ X. We shall show that An → A(WS). Let for each n ∈ N

p(n) = n(1) > p(n(1)) = n(2) > p(n(2)) = n(3) > · · · ,

From this partition we have

{k ≤ n : |dx(Ak)− dx(A)| ≥ ε} = {k ≤ n(1) : |dx(Ak)− dx(A)| ≥ ε}
∪ {n(1) < k ≤ n : |dx(Ak)− dx(A)| ≥ ε}

and

{k ≤ n(1) : |dx(Ak)− dx(A)| ≥ ε} = {k ≤ n(2) : |dx(Ak)− dx(A)| ≥ ε}
∪ {n(2) < k ≤ n(1) : |dx(Ak)− dx(A)| ≥ ε}.

If we continue this process consecutively we obtain

{k ≤ n(h−1) : |dx(Ak)− dx(A)| ≥ ε} = {k ≤ n(h) : |dx(Ak)− dx(A)| ≥ ε}
∪ {n(h) < k ≤ n(h−1) : |dx(Ak)− dx(A)| ≥ ε}

where h is a certain positive integer such that n(h) ≥ 1 and n(h+1) = 0.
From the above discussion, we have

1

n
|{k ≤ n : |dx(Ak)− dx(A)| ≥ ε}| =

h∑
m=0

(
n(m) − n(m+1)

n

)
Lm

6
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for every n, where Lm is a sequence as follows

(Lm) :=

(
1

n(m) − n(m+1)
|{n(m+1) < k ≤ n(m) : |dx(Ak)− dx(A)| ≥ ε}|

)
.

Let us consider the matrix T = (tn,m) as

tn,m :=

{
n(m)−n(m+1)

n , m = 0, 1, 2, · · · , h
0 , otherwise.

where n(0) = n.
It is clear that Wijsman statistical transformation of the sequence (An)n∈N is the

T transformation of the sequence (Lm).
The matrix T = (tn,m) is satisfied regularity conditions (see in [13],[16]). There-

fore, the sequence (An)n∈N Wijsman statistical convergence to A at the point x ∈ X.
�

From Theorem 1.8 and Theorem 1.9, we have following result.

Corollary 1.10. WS = WDS[p, n] if and only if(
p

n− p

)
is bounded.

Theorem 1.11. Let q = (q(n))n∈N be a sequence which contains almost all natural
numbers. Then,

WDS − limn→∞ An = A implies WS − limn→∞ An = A.

Proof. Let us choose sufficiently large natural numbers m such that the set
{q(n) : n ∈ N} contains all natural numbers which is greater than m. Then, we
may set a sequence of natural numbers such that

k1 = k2 = · · · = km = 1

and qkn = n for each n > m.
Since WDS − limn→∞ An = A for p and q, then we have

WDS − lim
n→∞

An = A

for pkn and qkn . Therefore, theorem follows from Theorem 1.9. �

From the above Theorems it is clear that any proper WDS method and WS
method are mutually consistent. Unfortunately, this is not true for any two proper
WDS method. For to see this, let us considerWDS[2n, 4n] andWDS[2n−1, 4n−1],
and sequence of sets as

An =

 {−n
2 }, n is even,

{n+1
2 }, n is old.

It is clear that

WDS[2n, 4n]− lim
n→∞

An = {0},
7
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and

WDS[2n− 1, 4n− 1]− lim
n→∞

An =

{
1

2

}
.

Let us consider the sequences p = (p(n)), q = (q(n)), p′ = (p′(n)) and q′ = (q′(n))
such that

(1.9) p ≤ p′ < q′ ≤ q

for all n ∈ N.
In the following theorems by considering (1.9), the methods WDS[p′, q′] and

WDS[p, q] are compared.

Theorem 1.12. If the sets {k : p < k ≤ p′} and {k : q′ < k ≤ q} are finite for
all n ∈ N, then

WDS − lim
n→∞

An = A w.r.t (p′ and q′)

implies

WDS − lim
n→∞

An = A w.r.t (p and q).

Proof. Let us assume that for each x ∈ X the sequence of sets (An)n∈N is Wijsman
deferred statistical convergent to A with respect to p′ and q′. For an arbitrary ε > 0,
we have

{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε} = {p < k ≤ p′ : |dx(Ak)− dx(A)| ≥ ε} ∪
∪{p′ < k ≤ q′ : |dx(Ak)− dx(A)| ≥ ε} ∪ {q′ < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}.

It is also clear that following inequality

1

q − p
|{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}| ≤

≤ 1

q′ − p′
|{p < k ≤ p′ : |dx(Ak)− dx(A)| ≥ ε}|+

+
1

q′ − p′
|{p′ < k ≤ q′ : |dx(Ak)− dx(A)| ≥ ε}|+

+
1

q′ − p′
|{q′ < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}|

holds. On taking limit for n → ∞, it is obtained that

lim
n→∞

1

q − p
|{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}| = 0.

�

Theorem 1.13. Under the condition (1.9), if
(

q−p
q′−p′

)
is bounded then WDS[p, q] ⊂

WDS[p′, q′].

Proof. Since the inclusion

{p′ < k ≤ q′ : |dx(Ak)− dx(A)| ≥ ε} ⊂ {p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε},
8
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is hold, then we have

1

q′ − p′
|{p′ < k ≤ q′ : |dx(Ak)− dx(A)| ≥ ε}| ≤

≤ q − p

q′ − p′
1

q − p
|{p < k ≤ q : |dx(Ak)− dx(A)| ≥ ε}|.

If we take limit for n → ∞, the proof is completed. �
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M. Küçükaslan(mkkaslan@mersin.edu.tr) –Department of Mathematics, Fac-
ulty of Science and Art, Mersin University, 33343 Mersin, Turkey

9


