Muş Geniş-bant Deprem İstasyonu Verilerine Göre Doğu Anadolu'da Sismik Dalga Soğurulması

Ufuk AYDIN^{1*}, Azer KADİROV¹, Altay ACAR²

¹Atatürk Üniversitesi, Deprem Araştıra Merkezi / ERZURUM ²Çukurova Üniversitesi, Mühendislik Mimarlık Fakültesi, Jeoloji Mühendisliği Bölümü / ADANA Alınış Tarihi:27.04.2008, Kabul Tarihi:02.06.2009

Özet: Bu çalışmada, Muş ve çevresinde kabuk için kalite faktörü ve soğurulma katsayısının bulunması amaçlanmıştır. Hesaplamalar için Atatürk Üniversitesi Deprem Araştırma Merkezi (AÜDAM) Mus istasyonuna ait 56 adet yakın alan deprem verisi kullanılmıştır. Deprem büyüklüğünün hesaplamak için P_n dalgasının en büyük genlik değeri kullanılmıştır. Tüm depremler için oluşturulan lineer denklem sistemi en küçük kareler yöntemi ile çözülmüştür. Böylece Mus istasyonu için genlik bağımlı bir lokal büyüklük eşitliği (M_L=0.617logA+0.003Δ+4.404) bulunmuştur. Genlikler üzerindeki büyüklük etkisini gidermek için M_L= 4'e göre büyüklük normalizasyonu işlemi yapılmıştır. Normalize edilmiş genlikler yardımıyla bölge için soğurulma katsayısı (γ) 0.012 km⁻¹, kalite faktörü (Q) 39.59 olarak bulunmuştur.

Anahtar kelimeler: Doğu Anadolu Bölgesi, Kalite Faktörü, Dalga Soğurulması, Lokal Magnitüd.

Absorption of the Seismic Waves in East Anatolian than Broad-Band Mus Station Data

Abstract: In this study, we aimed to obtain quality factor and absorption coefficient of crust of Muş city and its surrounding. In total 56 near-fields earthquake data recorded by the Mus Station of Ataturk University Earthquake Research Center (AUERC) were used for the calculations. Maximum amplitudes of P_n waves were used in order to compute the earthquake magnitude. The linear equations systems obtained for the all events were solved using the least-squares method. Thus, a local magnitude formula as a function of amplitude was described for the Mus station as ($M_L=0.617\log A+0.003\Delta+4.404$). Amplitude normalization process was performed for a reference value $M_L=4$, so as to correct effect of the magnitudes. The attenuation on calculation of absorption coefficient (γ) of 0.012 km⁻¹ and quality factor (Q) 39.59 were obtained with the assistance of normalized amplitudes values for the region.

Key words: Eastern Anatolia Region, Quality Factor, Wave Absorption, Local Magnitude.

Giriş

Deprem anında açığa çıkan elastik deformasyon enerjisinin taşanımı ve malzemenin yer değişiminden dolayı meydana gelen soğurulmanın mekanizmasını ve oranını araştırmak sismolojinin inceleme alanlarından biridir. Soğurulma çalışmaları ayrıca kabuk yapısı hakkında da bilgi verir. Bir bölgede deprem riskini etkileyen faktörler ana hatları ile iki kategoride toplanabilir. Bunların ilki sismik kaynak zonlarının yeri, dağılımı, boyutları deprem odak derinliği, büyük depremlerin tekrarlama sıklığı ve deprem odak İkincisi mekanizmasının bilinmesidir. ise sismik dalgaların geçtiği ortamların soğurulma özellikleridir. Sismik dalgaların yayınımına etki eden en önemli parametre sismik dalga hızı ve soğurulmadır. Sismik enerjinin soğurulması; sismik dalganın kırılması, yansıması, saçılması, yeri oluşturan malzemenin yoğunluğu, yerin 1s1sı, yerin bileşimi, anelastisitesi ve diğer fiziksel ve kimyasal özellikleri ile ilgilidir. Bu çalışmada yakın alan deprem verilerinden yararlanarak yerin soğurulma özellikleri araştırılmıştır.

Anadolu gibi oldukça aktif bir tektonizmaya sahip bir bölge için soğurulma çalışmaları hem bölgenin depremselliğinin incelenmesi ve hem de deprem zonlarının özelliğinin belirleme açısından çok önemlidir.Soğurmayı değiştirecek sayısız mekanizma vardır ve şartların bazılarının değişmesi soğurmayı anlamlı bir şekilde değiştirir (Toksöz ve Johnson, 1981). Yerin 15151, kimyasal bileşimi, katılığı, sismik hız değerleri, yoğunluğu, sismik dalga yayınımı, yerin su doygunluğu ve daha birçok parametre dalga enerjisinin azalmasına etki eden faktörlerdir. Soğurulmanın doğru olarak belirlenebilmesi icin bu parametrelerin incelenmesi gerekir. Kalite faktörü ve sönüm oranlarının tespiti için laboratuar yöntemleri kullanılabilir ancak bu değerler sismik açıdan yanıltıcıdır. Soğurulma ve kalite faktörü hesaplamaları için amaca göre yakın alan deprem verileri veya uzak alan deprem verileri kullanılabilir.

Soğurulma ile ilgili olan çalışmalar değerlendirildiğinde; Batı Anadolu için koda dalgalarıyla Akıncı (1994). Doğu Türkiye için Lg fazlarının soğurulması Püskülcü (1996). Erzincan bölgesinin S ve koda dalgaları ile soğurulma çalışması Akıncı ve Eyidoğan (1996). Türkiye geneli için Sn ve Lg dalgaları yardımıyla soğurulma Gök ve Türkelli (2000). Sn dalgası kullanılarak Anadolu, İran platosu ve yakın çevresi için soğurulma çalışması Gök vd. (2003) gösterilebilir. Çalışma alanımıza en yakın yapılmış soğurulma çalışması Serçelik ve Kenar (2001) tarafından yapılmış olan Diyarbakır istasyonu verilerinden düşey *P* dalgası kullanılarak yakın alan depremlerinin soğurulması çalışmasıdır.

Muş çevresinin tektoniği

Türkiye'nin neotektonik rejimi, Orta Miyosen'den Arap-Afrika ve Avrasya levhaları arasındaki kıtasal çarpışma ve bunun devamında Anadolu bloğunun batıya doğru hareketi kontrol edilmektedir (Ketin, 1984; McKenzie, 1970; Dewey ve Sengör, 1979; Şengör ve Yılmaz, 1981; Jackson ve Mckenzie, 1988). Arap levhasının kuzeye doğru hareketi Doğu Anadolu'da bir sıkışmaya sebep olmaktadır (McKenzie, 1972; Alptekin, 1978; Jackson, 1992). Bu sıkışma sonucu Anadolu Bloğu batıya ve Kuzeydoğu Anadolu Bloğu doğuya doğru kaçmaya çalışmaktadır. Bu kaçış sonucu Anadolu Bloğu'nun kuzey sınırını oluşturan Kuzey Anadolu Fay Zonu'nda (KAFZ) sağ-yanal, güney sınırını oluşturan Doğu Anadolu Fay Zonu'nda (DAFZ) ise sol-yanal hareketler oluşmaktadır. Bu iki fay Karlıova üçlü ekleminde birleşir (Ketin, 1969; Allen, 1969; Toksöz vd., 1979; Jackson ve McKenzie, 1984; Barka vd., 1988). Kuzeydoğu Anadolu Bloğu'nun doğuya ha0.617logA+0.003∆+4.404 eketi, bu bloğun kuzey sınırını oluşturan Kuzeydoğu Anadolu Fay Zonu'nda (KDAFZ) sol-yanal hareketlere ve blok için karmasık deformasyonlara neden olur (Barka ve Gülen,

1987). Güneydoğu Anadolu orojenik kuşağında güneyden kuzeye üç yapısal kuşak ayırt edilmektedir; Arap platformu, Bitlis-Pötürge-Engizek şaryaj cephesi (Ekay zonu) ve Nap alanı'dır (Yiğitbaş vd., 1993). En önemli tektonik yapı Asya plakası ile Arap plakasının çarpışması sonucunda oluşmuş sismik aktivitesi devam eden genç topografyaya sahip ve yüksek olan Bitlis-Zagros boyunca devam eden kuşaktır (Sengör ve Kidd, 1979) (Şekil 1).

Bu çarpışma sonucunda değişik ve karmaşık bileşenlere sahip geniş alana yayılmış volkanlar Doğu Anadolu'nun birçok bölgesini etkiler (Keskin, 2003).

Kuzeydoğu Anadolu fayı ile Karlıova-Muradiye arasında yer alan bölgede, KB-GD doğrultulu kısa uzunluklara sahip olan sağ yönlü doğrultu atımlı faylar yer alır. Bu bölge, 100 km uzunlukta Balıklıgölü fayı, 55 km uzunlukta Çaldıran fayı, 50 km uzunlukta Doğubeyazıt fayı, 50 km uzunlukta Tutak fayı ve 85 km uzunlukta Karayazı fayı bulunmaktadır. Malazgirt'in doğusunda 20 km uzunlukta KD-GB doğrultulu sol yönlü Süphan fayı, KB-GD doğrultulu ve sağ yönlü 20 km uzunlukta Erciş fayı ile Muradiye ilçesinin hemen yakın kuzeydoğusu ile İran sınırı arasında 45 km uzunlukta Hasan-Timur gölü fayı bulunmaktadır (Gülkan vd., 1993). Muş ve Van havzaları Bitlis kuşağının hemen kuzeyinde yer alır. Bu havzalar sismik aktivite, odak mekanizması çözümlemesi, fotoğraf ve uydu görüntülerinden, sismik sondaj yorumlamalarından sıkışmadan oluşmuş eğim havzası olarak kabul edilir (McKenzie, 1972; Sengör ve Kidd, 1979; Sengör vd., 1985).

Şekil 1. Doğu Anadolu'nun önemli faylarının basitleştirilmiş haritası (Bozkurt, 2001)

Kullanılan veriler

Bayındırlık ve İskân Bakanlığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi katalogundan 2000–2006 yılları arasında 37.50° - 40.50° enlemleri ve 39.00° - 44.00° boylamları arasında meydana gelmiş depremlerin derinliği, dış merkez koordinatları ve büyüklük değerlerine göre incelenmiştir. Depremler seçilirken uzaklık, derinlik, yansıma, kırılma, saçılma etkilerinden doğacak hata olasılığını en aza indirmek için dengeli bir deprem dağılımı seçilmeye çalışılmıştır. İncelenen depremlerden büyüklükleri 3.5 ile 5.4 arası ve büyüklük ortalaması 3.99, merkez üstü uzaklıkları ise 79 km ile 197 km arasıda değişmektedir. Depremlerin odak derinlikleri 1 km ile 19 km arasında değişmektedir ve odak derinliği ortalaması ~7.2 km dir (Tablo 1). Normalizasyon yapılırken daha doğru bir sonuca ulaşabilmek için depremlerin büyüklük ortalamaları değerleri normalize edilecek değere eşit olacak şekilde uygun seçilmiştir. Depremlerin uzaklık değerlerinden dolayı saçılma etkisi göstermeyeceği için geometrik düzeltme yapılmasına gerek görülmemiştir.

Kullanılan veriler Muş ilinde 41.4991° enlem ve 38.7416° boylamına yerleştirilmiş CMG-3T sismometresi ile kaydedilmiştir. Bütün kayıtlar aynı sismometre ile alınmıştır ve sismometrenin konumu değişmediği için yükseklik düzeltmesi yapılmamıştır. Ancak yapılacak diğer çalışmaları desteklemesi için alet düzeltmesi yapılmıştır. Deprem kayıtların alındığı bölgenin sınırları (Şekil 2)'de, depremlerin merkez üstü dağılımları da (Şekil 3)'de gösterilmiştir.

Fablo 1. Çalışmada kullanılan depremlerin listesi							28	13.04.2004	16:04:43	39.9100	40.9000	2	3.7
No	Tarih	Zaman	Enlem	Boylam	H(km)	Μ	29	01.05.2004	19:48:53	39.7894	40.8769	3	4.2
1	15.11.2000	15:05:34	38.5100	43.0100	11	5.4	30	12.06.2004	13:37:56	38.6000	39.6000	15	4.4
2	16.11.2000	21:13:47	38.6200	43.0400	11	3.8	31	16.06.2004	05:07:18	38.8441	40.0485	12	3.6
3	17.11.2000	00:28:00	38.6000	42.9500	10	3.9	32	26.06.2004	05:47:34	39.9300	40.9300	10	3.5
4	11.05.2001	12:30:33	38.6700	40.0400	11	4.1	33	29.06.2004	00:09:31	39.9016	40./132	3	3.5
5	24.08.2002	15:26:28	39.4600	40.2900	8	3.8	34	08.07.2004	11:44:42	39.5626	41.1506	4	3.8
6	22.10.2002	15:52:12	39.3000	40.3200	10	4.6	35	25.08.2004	01:06:44	39.6657	39.6339	5	3.5
7	27.01.2003	15:57:42	39.3200	39.7700	11	4.0	36	26.09.2004	21:03:16	38.6564	43.2297	19	4.0
8	25.04.2003	00:43:58	38.6100	43.0300	6	3.9	3/	02.10.2004	08:40:19	38.1018	43.0996	16	3.1
9	01.05.2003	06:34:43	39.2000	40.2600	6	4.0	38	09.10.2004	10 44 54	39.1338	40.4434	7	3.0
10	02.05.2003	03:52:02	38.9800	40.5100	8	3.9	39	23.10.2004	18:44:54	39.7304	41.0493	/	3.0
11	04.05.2003	05:46:18	39.0100	40.4200	8	4.1	40	24.10.2004	19:00:41	38.4134	43.6077	4	3.8
12	11.05.2003	23:43:59	39.1100	40.3700	4	4.0	41	25.10.2004	19:41:24	38.5115	39.6/00	2	3.0
13	12.05.2003	05:01:19	39.0300	40.4400	7	4.1	42	27.11.2004	12:47:09	39.9937	40.7871	1	3.5
14	02.07.2003	20:59:16	39.2100	40.2700	7	3.9	43	04.12.2004	10:10:20	39.9313	40.8438	4	4.4
15	04.07.2003	19:00:10	39.0100	40.5300	8	3.9	44	23.07.2005	10:4/:52	38.3030	40.64/6	5	3.0
16	23.10.2003	17:24:02	37.7100	42.5200	11	4.8	45	02.09.2005	14:00:18	39.9178	42.0505	5	3.0
17	26.10.2003	02:17:13	37.6400	42.5800	12	3.9	40	14.09.2005	00:01:02	39.4024	40.8403	0	3.3
18	25.03.2004	20:48:53	39.9976	40.7548	2	3.8	4/	18.09.2005	05:57:55	39.8044	41.8382	11	3.7
19	25.03.2004	21:10:03	39.8214	40.8293	2	3.8	48	21.11.2005	22:43:40	39.8834	40.8380	8	3.9
20	25.03.2004	21:17:46	39.8110	41.0591	17	4.0	49 50	10.12.2005	01:40:54	38.3/1/	45.1507	2	5.8 5.2
21	26.03.2004	10:22:17	39.8250	40.8513	1	4.1	50	10.12.2005	00:09:40	39.39/0	40.8547	19	3.2
22	27.03.2004	04:43:51	39.7709	40.8181	2	4.1	51	23.12.2005	14.08.00	39.3/18	40.9178	3	5.7
23	27.03.2004	07:42:31	39.7700	40.9600	2	4.0	52 52	28.12.2005	14:08:00	38.4339	39.34/1	2	4.4
24	28.03.2004	04:15:25	39.7778	41.1060	3	4.0	55	03.06.2006	14:40:20	39.1390	40.2117	9	4.0
25	30.03.2004	04:42:22	39.9777	40.7959	6	3.9	54	02.07.2006	19:39:39	39.41/3	40.84/1	15	4.3
26	03.04.2004	12:47:33	39.9437	40.8013	2	4.0	33 56	21.07.2006	22:01:40	39.4072 20.4574	40.81/3	9	4.2
27	07.04.2004	17:43:11	39.9906	40.7357	3	4.1	30	23.07.2006	01:10:12	39.4374	40.8258	9	3.5

Şekil 2. Çalışma alanının yer bulduru haritası

Şekil 3. Çalışma alanının yalınlaştırılmış aktif fay haritası. Çalışma alanı depremlerinin merkez üstü dağılımları.

Materyal ve Yöntem

Homojen bir ortamda düzlemsel dalga yayınımı genliği, (Chobra ve Alexeev, 2004).

$$A_{\Delta} = A_{o} e^{\left(-\gamma \Delta\right)} \tag{1}$$

Burada A_{Δ} , herhangi bir Δ mesafedeki genlik, A_{O} başlangıç genliği, γ soğurulma katsayısıdır. Soğurulma katsayısı,

$$\gamma = \frac{\pi \,\mathrm{f}}{\mathrm{Q}\,\mathrm{V}} \tag{2}$$

olarak tanımlanır ve burada, Q sismik kalite faktörü, V sismik hız, f frekanstır. Kalite faktörü ve soğurulma katsayısı ters orantılıdır.

Soğurulma uyumlu dalganın genliğinin logaritmik azalmasından hesaplanabilir. Buna göre logaritmik azalma. (Aki ve Richards, 1980).

$$\delta = \ln(A_1/A_2) \tag{3}$$

Burada A_1 ve A_2 farklı uzaklıktaki iki genliktir. Eşitlik (3) seriye açıldığında

$$\delta = \left((A_1 - A_2) / A_1 \right) + \frac{1}{2} \left((A_1 - A_2) / A_1 \right)^2 + \dots$$
 (4)

Fourier analizi sismik sinyaller üzerinde soğurulmanın en doğru etkisini verecektir.

Kalite faktörü her bir dönümdeki enerji kaybı olarak tanımlanır (Aki ve Richards, 1980).

$$\frac{1}{Q(\varpi)} = \frac{-\Delta E}{(2\pi E)}$$
(5)

Burada Q, sismik kalite faktörü, ϖ periyodik olarak uygulanan gerilme, E cisimde depolanan enerji, ΔE , her bir dönümdeki enerji kaybıdır (Aki ve Richards, 1980).

Elastik olmayan ortamdan her bir dönümdeki enerji kaybı genlik kaybı olarak yazılır ve $\Delta E \approx \Delta A$ eşit sayılabilir (Aki ve Richards, 1980).

$$\frac{1}{Q(\varpi)} = \frac{-\Delta A}{(2\pi A)} \tag{6}$$

Burada ΔA her bir dönümdeki genlik kaybı ve A ise dalga genliğidir.

Depremin yerel büyüklüğü (M_L) en büyük dalga genliğinden ve merkez üstü uzaklığından (Δ) hesaplanır (Richter, 1958).

$$M_{L} = alog(A) + b\Delta + c \tag{7}$$

Burada a, b, c, bölgesel katsayılar, Δ dış merkez uzaklığı, A en büyük genlik ve M_Lise yerel büyüklüktür.

Bulgular ve Hesaplamalar

Muş istasyonu için çalışmada kullanılan depremlerin dış merkez uzaklıkları (Δ) hesaplanmıştır. *P* dalgası maksimum düşey genlik değerleri (A) okunarak alet düzeltmesi yapılmış (A_a) ve log(A_a) değerleri bulunmuştur (Tablo 2).

Tüm depremler için bayındırlık katalogundan alınmış M, hesapladığımız $log(A_a)$ ve Δ değerleri eşitlik (7)'de yerlerine koyularak elde edilen denklem sistemi en küçük kareler yöntemi ile çözülmüş ve bölgesel katsayılar a=0.617, b=0.003, c=4.404 hesaplanmıştır.

Muş istasyonu için yerel büyüklük eşitliği

$$M_{L}=0.617\log(A_{a})+0.003\Delta+4.404$$
(8)

olarak yeniden düzenlenmiştir.

Genlikler üzerinde farklı büyüklük etkilerini gidermek için M_L , 4'e göre normalizasyon yapılması gerekir. Eşitlik (8) kullanılarak M_L , değeri 4 alınarak, 56 deprem için hesaplanmış olan dış merkez uzaklıkları (Δ) yerlerine koyularak alet düzeltmesi yapılmış ve normalize edilmiş (A_n) değerleri bulunmuştur.

Normalize edilmiş A_n değeri ile dış merkez uzaklıkları arasında $\ln(A_n)$ - $\Delta(km)$ grafiği çizilmiştir (Şekil 4).

Tablo 2. Çalışmada kullanılan depremlerin P dalgası varış zamanı ($T_p(sn)$), dış merkez uzaklığı ($\Delta(km)$), alet düzeltmesi yapılmış genlik değerleri (A_a), $log(A_a)$, normalize edilmiş genliği (A_n) ve ($ln(A_n)$)

No	T _n (sn)	A(km)	A _s (count)	log(A _a)	An	ln(A _n)
1	20	138	6963174	<u>6.8</u>	497408	13.1
2	20	139	454762	57	491788	13.1
3	18	132	661472	5.8	540143	13.1
4	22	132	614224	5.8	539912	13.2
5	22	135	779592	5.0	518632	13.2
6	21	123	1328850	6.1	500006	13.2
7	21	168	330736	5.5	3/7180	12.5
8	20	130	773686	5.0	106/33	12.0
0	19	139	5126408	5.9	601272	12.1
2 10	10	03	A13420	5.6	850078	13.5
10	14	102	413420	5.0	010660	13.7
11	15	102	570700	J.0 5 9	702281	12.5
12	17	101	2008040	5.0	703201	13.5
13	14	101	2006040	0.5	602006	12.0
14	1/	122	185498	5.9 5 7	003900	13.3
15	14	92	434702	5.7	000349 440570	13.7
10	25	14/	13/0990	0.2 5.6	449570	13.0
1/	20	150	415420	5.0	401399	12.9
18	24	133	1/12/4	5.2	409080	12.9
19	22	134	236240	5.4	523295	13.2
20	18	125	218522	5.3	583200	13.3
21	23	134	496104	5.7	526562	13.2
22	23	130	30/112	5.5	552406	13.2
23	20	124	496104	5.7	590944	13.3
24	20	120	289394	5.5	617778	13.3
25	22	151	118120	5.1	427021	13.0
26	24	147	419326	5.6	446020	13.0
27	23	155	194898	5.3	408813	12.9
28	21	140	64966	4.8	485232	13.1
29	22	129	578788	5.8	556192	13.2
30	23	172	3697156	6.6	333705	12.7
31	18	131	218522	5.3	543230	13.2
32	21	142	200804	5.3	479138	13.1
33	23	147	41342	4.6	449058	13.0
34	13	96	212616	5.3	823647	13.6
35	29	197	44295	4.6	246932	12.4
36	21	156	383890	5.6	402429	12.9
37	21	161	283488	5.5	380994	12.9
38	15	105	502010	5.7	747023	13.5
39	16	117	188992	5.3	643144	13.4
40	29	193	106308	5.0	257489	12.5
41	26	167	336642	5.5	354568	12.8
42	24	153	109261	5.0	417169	12.9
43	22	145	1641868	6.2	461813	13.0
44	13	79	94496	5.0	1012781	13.8
45	23	140	259864	5.4	489812	13.1
46	15	94	188992	5.3	847718	13.7
47	19	122	372078	5.6	606622	13.3
48	23	140	401608	5.6	486645	13.1
49	23	148	265770	5.4	442944	13.0
50	16	93	2051138	7.3	856804	13.7
51	13	87	1133952	6.1	917899	13.7
52	31	196	720532	5.9	248214	12.4
53	18	124	2462802	6.4	591180	13.3
54	13	95	7736860	6.9	835072	13.6
55	15	96	1736364	6.2	827100	13.6
56	14	100	348454	55	789313	13.6

(1) eşitlik logaritmik özelliklerden faydalanarak $\ln A_{\Delta} = \ln A_{o}$ - $\gamma \Delta$ şeklinde doğru denklemine dönüştürülür ve $\ln(A_n)$ - Δ (km) grafiği kullanılarak soğurulma katsayısı (γ), 0.012 bulunur (Şekil 4).

Şekil 4. Episantr uzaklığı-genlik grafiği

Sismik soğurulma ve kalite faktörü hesaplamaları için kullanılan Vp sismik hız değerleri çalışmada kullanılan depremlerden elde edilen $T_P(sn)-\Delta(km)$ grafiğinden Vp, 6.6 km/sn elde edilmiştir (Şekil 5).

Şekil 5. P dalgası ilk varış zamanı-uzaklık grafiği

Ölçümler 1 cps ortamda alındığından f, 1 cps., Vp, 6.6, γ , 0.012 alınarak (2) no lu eşitlikten sismik kalite faktörü;

$$Q = \frac{\pi . f}{\gamma V} = 39.59$$

olarak bulunur.

Sonuçlar

Muş istasyonu verilerinden çalışılan bölge için yeni bir magnitüd formülü önerilmiştir;

 $M_L=0.617\log(A_a)+0.003\Delta+4.404$

Yapılan çalışma ile soğurulma katsayısı 0.012 ve kalite faktörü de 39.59 olarak belirlenmiştir.

P dalgası soğurulması ile alakalı olarak Sertçilik F. ve Kenar Ö. (2001) Diyarbakır istasyonunda kaydedilmiş Pdalgası düşey bileşeni kullanılarak hesaplanmış oldukları soğurulma katsayısı 0.0114 ve kalite faktörü 47.5 değerleri mevcuttur. Muş ile Diyarbakır arasındaki soğurulma değerlerinin farklı çıkması doğaldır. Bu durum farklı kabuk yapısı, farklı jeoloji ve litolojik etkiler ile yapısal ve kimyasal farklılığın bir sonucudur. Bulduğumuz bu sonuçlar ışığında iki bölgenin kabuksal ve yapısal farklılığı Muş çevresinin kalite faktörünün Diyarbakır dan daha küçük olması ve dolayısı ile P dalgası düşey bileşen genliklerinin soğurulmasının yüksek olması beklenen bir sonuçtur.

Kaynaklar

- Akıncı, A. 1994. Attenuative Behaviors of Western Anatolia and Southern Spain Using Single and Multiple Scattering Models. Ph. D.Thesis. Dokuz Eylül University. Graduate School of Natural and Applied Sciences, p. 37–39.
- Akıncı, A., Eyidoğan, H. 1996. Frequency-Dependent Attenuation of S and Code waves in Erzincan Region (Turkey). Phys. Earth Planet. Inter, 97. 109–119.
- Aki, K., Richards, P.G. 1980. Quantitative Seismology: Theory and Methods, p. 98, 168-169.
- Allen, C.R. 1969. Active Faulting in Northern Turkey. California Inst. Technology. Geol. Sci.. Contribution No.1577. 32p.
- Alptekin, Ö. 1978. Batı Anadolu Depremlerinin Odak Mekanizmaları ve Bunların Aktif Tektonik ile İlişkileri, 2. Odak Mekanizmaları ve Plaka Tektoniği Modeli. Jeofizik C.VII, s. 3, 35–57.
- Barka, A.A., Toksöz, M.N., Gülen, L., Kadinsky-Cade, K. 1988. Kuzey Anadolu Fayı'nın Doğu Kesiminin Segmentasyonu, Sismitivitesi ve Deprem Potansiyeli. Yerbilimleri 14. 337–352.
- Barka, A.A., Gülen, L. 1987. Complex Evolution of the Erzincan Basin (eastern Türkey). Jour. Structural Geol. 11. 275–283.
- Bozkurt, E. 2001. Neotectonics of Turkey a Synthesis. Geodinamica Acta 14 (2001) 3-30.
- Chobra, S. and Alexeev, V. 2004. A New Approach to Enhancement of Frequency Bandwidth of Surface Seismic Data. Technical Article. First Break. August v.22 p.30-42.
- Dewey, J.F., Şengör, A.M.C. 1979. Aegean and Surrounding Regions: Complex Multi-Plate And Continuum Tectonics in A Convergent Zone. Geological Society of America Bulletin 90(I), 84–92.
- Gök, R. and Türkelli, N. 2000. Regional Wave Propagation in Turkey and Surrounding Regions. Geoph. Res. Let. Vol. 27 No. 3 p:429–432.
- Gök, R., Sondvol, E., Turkelli, N., Seber, D. and Barazangi, M. 2003. Sn Attenuation in the Anatolian and Iranian Plateaue and Surrounding Regions. Geophys. Res. Lett.. 30(24).
- Gülkan, P., Kocyiğit, A., Yücemen, M.S. and Doyuran, V. 1993. En Son Verilere Gore Hazırlanan Deprem Haritası. O.D.T.U. Rapor No. 93-01. Deprem Mühendisliği Araştırma Merkezi.

- Jackson, J. and McKenzie, D.P. 1984. Active Tectonics of the Alpine-Himalaya Belt Between Western Turkey and Pakistan. Geophys. Jour. Roy. Astr. Soc. 77. 185–265.
- Jackson, J. and McKenzie, D.P. 1988. the Relationship Between Plate Motions and Seismic Moment Tensors and the Rates of Active Deformation in the Mediterranean and Middle East. Geophysical Journal of Royal Astronomical Society 93. 45-73.
- Jackson, J. 1992. Partitioning of Strike-Slip and Convergent Motion Between Eurasia and Arabia in Eastern Turkey and the Caucasus. J. Geophys. Res. 97. 12. 471–12.479.
- Keskin, M. 2003. Magma Generation by Slaps Steepening And Break off Beneath a Subdiction-Accretion Complex: An Alternative Model for Collision-Related Volcanism in Eastern Anatolia. Turkey. Geophysics. Res. Lett... 30(24). 8046. doi: 10.1029/2003GL018019.
- Ketin, İ. 1969. Kuzey Anadolu Fayı hakkında. M.T. A. Enstitüsü Dergisi 72. 1–27.
- Ketin, I. 1984. Uber die Tektonics-Mechanischen Folgerungen aus den Grossen Anatolischen Erdbeben des letzten Dezenniums. Geologische Rundschau 36. 77-83.
- McKenzie, D.P. 1970. Plate Tectonics of the Mediterranean Region. Nature 226. 239-243.
- McKenzie, D.P. 1972. Active Tectonics of the Mediterranean Region Geophysics. J.R. Astron Soc 30:109-185.

- Püskülcü, S. 1996. Attenuation of Lg Phase in Eastern Turkey. M.Sc. Thesis. in Geophy. Eng. Bogaziçi University.
- Richter, C. F. 1958. Elementary Seismology. W. H. Freeman and Company. San Francisco. 135-149.
- Şengör, A.M.C., Yılmaz. Y. 1981. Tethyan Evolution of Turkey: a Plate Tectonic Approach. Tectonophysics 75. 181–241.
- Sengör, A.M.C., Kidd, W.S.F. 1979 Post-Collisional Tectonics of the Turkish-Iranian Plateau and Comparisons with Tibet. Tectonophysics 55:361-376.
- Sengör, A.M.C., Görür, N., Şaroğlu, F. 1985 Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. In: Biddle KT.
- Serçelik, F., Kenar, Ö. 2001. Doğu Anadolu'da Soğurma. Jeofizik c. 15. 1. 63-75.
- Toksöz, M.N., Johnston, D.H. 1981. Seismic Wave Attenuation. Geophysics Reprint Series No.2.339– 351.
- Toksöz, M.N., Shakal, A.F. and Micheal, A.J. 1979. Spacetime Migration of Earthquakes Along the North Anatolian Fault Zone and Seismic Gaps. Pageoph 117. 1258-1270.
- Yiğitbaş, E., Genç, Ş.C. and Yılmaz. Y. 1993. Güneydoğu Anadolu Orojenik Kuşağında Maden Grubunun Tektonik Konumu ve Jeolojik Önemi. A. Suat Erk Jeol. Sem.1991 Bildirileri. P.251–264.