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Abstract. In this study, we give a different proof for the central angle theorem in the Lorentz plane. We also
obtain beneficial trigonometric results regarding to the interior, exterior, and inscribes angle on the Lorentz circle
S 1
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1. Introduction

In Euclidean space, it is known that a negative Gaussian constant curvature surface is a two-sheeted hyperboloid.
In [3], Luneburg is based upon one sheeted hyperboloid and this is called as hyperbolic space. For such reasons, it is
normal for a visual space to intersect with S 2

1 de Sitter plane embedded in the Lorentz space. Vieth Müller circles taking
a role in examining the visual space are related to the circles involved in the Euclidean model. An angle magnitude
defined by means of the Euclidean unit circle has a significant role in the use of Vieth Müller circles [4]. We see that
the analogy of Vieth Müller circles in the Lorentz space corresponds to the S 1

1 de Sitter line.
For this reason, the computation of the Lorentz analogies of central, exterior, interior, and inscribed angles, which

are well known in Euclidean space, and obtaining the relation among such angles in the S 1
1 de Sitter plane was necessary

for our doctorate study and they constitute the principal target of this study. A review including these matters revealed
that there are no other studies except [1] and the proofs contained in [1] are carried out by means of artificial methods.
We obtained simpler results by making such proofs through analytical methods. Theorem 2.6 and Theorem 2.7 are
orijinal results which may not be found in [1].

2. Preliminaries

Let R2
1 be the Lorentzian plane in which the scalar product of two vectors. x = (x0, x1) and y = (y0, y1) is given by

〈x, y〉 = −x0y0 + x1y1.

The sets
{
x ∈ R2

1 | 〈x, x〉 = 1
}

and
{
x ∈ R2

1 | 〈x, x〉 = −1
}

are called the Lorentzian circle S 1
1 and hyperbolic line H1

0 .

(S 1
1)+ =

{
xεS 1

1 | x2 > 1
}
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and
(S 1

1)− =
{
xεS 1

1 | x2 < 1
}

as two branches of S 1
1. Each P ∈ (S 1

1)+ can be given by the parametric form P(sinh θ, cosh θ). Similarly, each P ∈ (S 1
1)−

can be given as P(sinh θ,− cosh θ). Branches of hyperbolic line H1
0 are given by

(H1
0)+ =

{
(x1, x2)εH1

0 | x1 > 0
}
,

(H1
0)− =

{
(x1, x2)εH1

0 | x1 < 0
}
.

As in the Euclidean case, the angles in the Lorentz plane are related to the lengths of arcs on the circle of S 1
1.

Remark 2.1. If P,Q ∈ S 1
1, then we have the following facts:

1. 〈P,Q〉 > 1 if and only if P and Q are on the same branch of S 1
1.

2. 〈P,Q〉 < −1 if and only if P and Q are on the different branch of S 1
1 [2].

Remark 2.2. For each pair of points P,Q ∈ H1
0 ,

1. 〈P,Q〉 < −1 if and only if P and Q are on the same branch of H1
0 .

2. 〈P,Q〉 > 1 if and only if P and Q are on the different branch of H1
0 [2].

Let θ be the angle between unit vectors u and v of R2
1. Then [2],

θ =


arccos(〈u, v〉) ; if |〈u, v〉| < 1
arccosh(−〈u, v〉) ; if 〈u, v〉 < −1
arccosh(〈u, v〉) ; if 〈u, v〉 > 1
arcsinh(|〈u, v〉|) ; if u timelike and v spacelike.

The triangle
∆

PQR with the middle vertex in Lorentz plane is called pure spacelike triangle if the vectors
−−→
PQ,
−−→
QR,
−−→
PR

are spacelike [1].

The triangle
∆

PQR with the middle vertex in Lorentz plane is called pure timelike triangle if the vectors
−−→
PQ,
−−→
QR,
−−→
PR

are timelike [1].
Let O be center of S 1

1 and let P and Q be same branch of S 1
1. Then the angle between vectors

−−→
OP and

−−→
OQ is called

central angle. The magnitude of P̂OQ is the length of the arc PQ [1].
Let P,Q,R be three points of S 1

1, then the angle between vectors
−−→
RP,
−−→
RQ is called inscribed angle if 〈P,Q〉 > 1 and

〈R,Q〉 < −1.

In what follows we will denote with
_

PQ to the arc between the points P and Q if 〈P,Q〉 > 1.
The sets (S 1

1)I =
{
r ∈ R2

1 | 〈r, r〉 < 1
}

and (S 1
1)E =

{
r ∈ R2

1 | 〈r, r〉 > 1
}

are called the interior of S 1
1 and exterior of

S 1
1.

The angle P̂RQ is called an exterior angle of S 1
1 for P,Q ∈ S 1

1 and r ∈ (S 1
1)E .

The angle P̂RQ is called an interior angle of S 1
1 for P,Q ∈ S 1

1 and r ∈ (S 1
1)I .

Let P, Q, R be three points on the same branch of S 1
1 then the triangle

∆

PQR is a pure timelike triangle.

If
∆

PQR is a pure timelike triangle then the angle P̂RQ is called the middle angle at the middle vertex of
∆

PQR.

Theorem 2.3 (Central angle theorem). The central angle subtended by two points on same part of S 1
1 is twice the

inscribed angle subtended by those points.

Proof. If the point R is on the first zone of coordinate axis, then we can write P(cosh θ1, sinh θ1), Q(cosh θ2, sinh θ2),
and R(cosh θ3, sinh θ3). Therefore,

−−→
RP = (sinh θ1 − sinh θ3, cosh θ1 − cosh θ3),
−−→
RQ = (sinh θ2 − sinh θ3, cosh θ2 − cosh θ3).
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Since,

〈
−−→
RP,
−−→
RP〉 = −4 sinh2

(
θ3 − θ1

2

)
,

〈
−−→
RQ,
−−→
RQ〉 = −4 sinh2

(
θ3 − θ2

2

)
−−→
RP and

−−→
RQ are timelike. Thus we can see that

〈
−−→
RP,
−−→
RQ〉∥∥∥∥−−→RP

∥∥∥∥ ∥∥∥∥−−→RQ
∥∥∥∥ = − cosh

(
θ2 − θ1

2

)
.

ii) If the point R is on the second zone of the coordinate axis, then we have P(cosh θ1, sinh θ1), Q(cosh θ2, sinh θ2),
and R(− cosh θ3, sinh θ3). Thus,

−−→
RP = (sinh θ1 − sinh θ3, cosh θ1 − cosh θ3),
−−→
RQ = (sinh θ2 − sinh θ3, cosh θ2 + cosh θ3).

Because

〈
−−→
RP,
−−→
RP〉 = 4 cosh2

(
θ1 + θ3

2

)
,

〈
−−→
RQ,
−−→
RQ〉 = 4 cosh2

(
θ2 + θ3

2

)
−−→
RP and

−−→
RQ are spacelike, then we have

〈
−−→
RP,
−−→
RQ〉∥∥∥∥−−→RP

∥∥∥∥ ∥∥∥∥−−→RQ
∥∥∥∥ = cosh

(
θ2 − θ1

2

)
.

iii) If the point R is on the third zone of the coordinate axis, P(cosh θ1, sinh θ1), Q(cosh θ2, sinh θ2) and R(− cosh θ3,− sinh θ3).
We see that

−−→
RP = (sinh θ1 + sinh θ3, cosh θ1 + cosh θ3),
−−→
RQ = (sinh θ2 + sinh θ3, cosh θ2 + cosh θ3).

Since,

〈
−−→
RP,
−−→
RP〉 = 4 cosh2

(
θ2 − θ1

2

)
,

〈
−−→
RQ,
−−→
RQ〉 = 4 cosh2

(
θ3 − θ2

2

)
−−→
RP and

−−→
RQ are spacelike. Then we have

〈
−−→
RP,
−−→
RQ〉∥∥∥∥−−→RP

∥∥∥∥ ∥∥∥∥−−→RQ
∥∥∥∥ = cosh

(
θ2 − θ1

2

)
.

iv) If the point R is on the fourth zone of the coordinate axis, P(cosh θ1, sinh θ1), Q(cosh θ2, sinh θ2), and R(cosh θ3,− sinh θ3).
Thus,

−−→
RP = (sinh θ1 + sinh θ3, cosh θ1 − cosh θ3),
−−→
RQ = (sinh θ2 + sinh θ3, cosh θ2 − cosh θ3).
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Because

〈
−−→
RP,
−−→
RP〉 = −4 sinh2

(
θ3 + θ1

2

)
,

〈
−−→
RQ,
−−→
RQ〉 = −4 sinh2

(
θ3 + θ2

2

)
−−→
RP and

−−→
RQ are timelike. Then we have

〈
−−→
RP,
−−→
RQ〉∥∥∥∥−−→RP

∥∥∥∥ ∥∥∥∥−−→RQ
∥∥∥∥ = − cosh

(
θ2 − θ1

2

)
.

�

By the proof of Theorem 2.3, we have the following corollary.

Corollary 2.4. An inscribed angle is half of a central angle that has the subtends of the same arc.

Theorem 2.5. The sum of two interior angles is equal to an exterior angle of a triangle.

Proof. Let V be a point in (S 1
1)I and let A,B be a point of the same branch of S 1

1. The lines
−−→
VA and

−−→
VB cut the other

branch of S 1
1 points at C and D. Then we can write points A(cosh θ0, sinh θ0), B(cosh θ1, sinh θ1), C(− cosh θ3, sinh θ3),

D(− cosh θ2, sinh θ2), which are taken on the hyperbola.
We must show the following equation for the proof of theorem:

arcsinh

 〈
−−→
AB,
−−→
AD〉∥∥∥∥−−→AB

∥∥∥∥ ∥∥∥∥−−→AD
∥∥∥∥
 + arccosh

 〈
−−→
DA,
−−→
DB〉∥∥∥∥−−→DA

∥∥∥∥ ∥∥∥∥−−→DB
∥∥∥∥
 = − arcsinh

 〈
−−→
BA,
−−→
BD〉∥∥∥∥−−→BA

∥∥∥∥ ∥∥∥∥−−→BD
∥∥∥∥
 .

We can write
−−→
AB = (sinh θ1 − sinh θ0, cosh θ1 − cosh θ0),
−−→
AD = (sinh θ2 − sinh θ0,− cosh θ2 − cosh θ0),
−−→
DB = (sinh θ1 − sinh θ2, cosh θ1 + cosh θ2),

.

〈
−−→
AB,
−−→
AB〉 = −4 sinh2

(
θ0 − θ1

2

)
,

〈
−−→
AD,
−−→
AD〉 = 4 cosh2

(
θ0 + θ2

2

)
,

〈
−−→
DB,
−−→
DB〉 = 4 cosh2

(
θ1 + θ2

2

)
.

Since
−−→
AD,
−−→
DB are spacelike and

−−→
AB timelike. We obtain that

〈
−−→
AB,
−−→
AD〉∥∥∥∥−−→AB

∥∥∥∥ ∥∥∥∥−−→AD
∥∥∥∥ = sinh

(
θ1 + θ2

2

)
,

〈
−−→
DA,
−−→
DB〉∥∥∥∥−−→DA

∥∥∥∥ ∥∥∥∥−−→DB
∥∥∥∥ = cosh

(
θ0 − θ1

2

)
,

〈
−−→
BA,
−−→
BD〉∥∥∥∥−−→BA

∥∥∥∥ ∥∥∥∥−−→BD
∥∥∥∥ = − sinh

(
θ0 + θ2

2

)
,
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arcsinh

 〈
−−→
AB,
−−→
AD〉∥∥∥∥−−→AB

∥∥∥∥ ∥∥∥∥−−→AD
∥∥∥∥
 + arccosh

 〈
−−→
DA,
−−→
DB〉∥∥∥∥−−→DA

∥∥∥∥ ∥∥∥∥−−→DB
∥∥∥∥
 =

θ1 + θ2

2
+
θ0 − θ1

2

=
θ0 + θ2

2
which implies the proof of theorem .

�

Theorem 2.6. Inscribed angles where one chord is a diameter are the Lorentz orthogonal angle.

Proof. If R(0,−1) ∈ (S 1
1)−, L(0, 1) and P(sinh θ, cosh θ) ∈ (S 1

1)+, then

−−→
PR = −(sinh θ, 1 + cosh θ),
−→
PL = (− sinh θ, 1 − cosh θ).

Because

〈
−−→
PR,
−−→
PR〉 = 2(1 + cosh θ),

〈
−→
PL,
−→
PL〉 = 2(1 − cosh θ)

−→
PL is a timelike vector and

−−→
PR is a spacelike vector. Since

〈
−→
PL,
−−→
PR〉 = 0

and the angle α between
−→
PL and

−−→
PR is calculated by

〈
−→
PL,
−−→
PR〉 =

∥∥∥∥−−→PR
∥∥∥∥ ∣∣∣∣∥∥∥∥−→PL

∥∥∥∥∣∣∣∣ sinhα

we obtain α = 0. �

Theorem 2.7. In a hyperbola, two inscribed angles with the same intercepted arc of S 1
1 are congruent.

Proof. Let the points A, B be on same branch of S 1
1 and let points C, D be on the other branch of S 1

1. Then by Theorem

2.3, inscribed angles with the same arc
_

AB are equal. �
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