Turk. J. Math. Comput. Sci.
4(2016) 26-30
(c) MatDer
http://tjmcs.matder.org.tr/

# Central Angle Theorem for Hyperbolic Angle 

Sabiha Bostan ${ }^{a, *}$, Baki Karliga ${ }^{b}$<br>${ }^{a}$ Department of Mathematics, Polatlı Science and Arts Faculty, Gazi University, 06900, Polatll, Ankara, Turkey.<br>${ }^{b}$ Department of Mathematics, Science Faculty, Gazi University, 06500, Ankara, Turkey.

Abstract. In this study, we give a different proof for the central angle theorem in the Lorentz plane. We also obtain beneficial trigonometric results regarding to the interior, exterior, and inscribes angle on the Lorentz circle $S_{1}^{1}$.

2010 AMS Classification: 51B20, 51M25, 53C50.
Keywords: Central angle, Lorentz circle, inscribed angle, visual space.

## 1. Introduction

In Euclidean space, it is known that a negative Gaussian constant curvature surface is a two-sheeted hyperboloid. In [3], Luneburg is based upon one sheeted hyperboloid and this is called as hyperbolic space. For such reasons, it is normal for a visual space to intersect with $S_{1}^{2}$ de Sitter plane embedded in the Lorentz space. Vieth Müller circles taking a role in examining the visual space are related to the circles involved in the Euclidean model. An angle magnitude defined by means of the Euclidean unit circle has a significant role in the use of Vieth Müller circles [4]. We see that the analogy of Vieth Müller circles in the Lorentz space corresponds to the $S_{1}^{1}$ de Sitter line.

For this reason, the computation of the Lorentz analogies of central, exterior, interior, and inscribed angles, which are well known in Euclidean space, and obtaining the relation among such angles in the $S_{1}^{1}$ de Sitter plane was necessary for our doctorate study and they constitute the principal target of this study. A review including these matters revealed that there are no other studies except [1] and the proofs contained in [1] are carried out by means of artificial methods. We obtained simpler results by making such proofs through analytical methods. Theorem 2.6 and Theorem 2.7 are orijinal results which may not be found in [1].

## 2. Preliminaries

Let $R_{1}^{2}$ be the Lorentzian plane in which the scalar product of two vectors. $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right)$ is given by

$$
\langle x, y\rangle=-x_{0} y_{0}+x_{1} y_{1}
$$

The sets $\left\{x \in R_{1}^{2} \mid\langle x, x\rangle=1\right\}$ and $\left\{x \in R_{1}^{2} \mid\langle x, x\rangle=-1\right\}$ are called the Lorentzian circle $S_{1}^{1}$ and hyperbolic line $H_{0}^{1}$.

$$
\left(S_{1}^{1}\right)_{+}=\left\{x \in S_{1}^{1} \mid x_{2}>1\right\}
$$

[^0]and
$$
\left(S_{1}^{1}\right)_{-}=\left\{x \in S_{1}^{1} \mid x_{2}<1\right\}
$$
as two branches of $S_{1}^{1}$. Each $P \in\left(S_{1}^{1}\right)_{+}$can be given by the parametric form $P(\sinh \theta, \cosh \theta)$. Similarly, each $P \in\left(S_{1}^{1}\right)_{-}$ can be given as $P(\sinh \theta,-\cosh \theta)$. Branches of hyperbolic line $H_{0}^{1}$ are given by
\[

$$
\begin{aligned}
& \left(H_{0}^{1}\right)_{+}=\left\{\left(x_{1}, x_{2}\right) \epsilon H_{0}^{1} \mid x_{1}>0\right\} \\
& \left(H_{0}^{1}\right)_{-}=\left\{\left(x_{1}, x_{2}\right) \epsilon H_{0}^{1} \mid x_{1}<0\right\}
\end{aligned}
$$
\]

As in the Euclidean case, the angles in the Lorentz plane are related to the lengths of arcs on the circle of $S_{1}^{1}$.
Remark 2.1. If $P, Q \in S_{1}^{1}$, then we have the following facts:

1. $\langle P, Q\rangle>1$ if and only if P and Q are on the same branch of $S_{1}^{1}$.
2. $\langle P, Q\rangle<-1$ if and only if P and Q are on the different branch of $S_{1}^{1}$ [2].

Remark 2.2. For each pair of points $P, Q \in H_{0}^{1}$,

1. $\langle P, Q\rangle<-1$ if and only if P and Q are on the same branch of $H_{0}^{1}$.
2. $\langle P, Q\rangle>1$ if and only if P and Q are on the different branch of $H_{0}^{1}$ [2].

Let $\theta$ be the angle between unit vectors $u$ and $v$ of $R_{1}^{2}$. Then [2],

$$
\theta=\left\{\begin{array}{lll}
\arccos (\langle u, v\rangle) & ; & \text { if }|\langle u, v\rangle|<1 \\
\operatorname{arccosh}(-\langle u, v\rangle) & ; & \text { if }\langle u, v\rangle<-1 \\
\operatorname{arccosh}(\langle u, v\rangle) & ; & \text { if }\langle u, v\rangle>1 \\
\operatorname{arcsinh}(|\langle u, v\rangle|) & ; & \text { if } u \text { timelike and } v \text { spacelike. }
\end{array}\right.
$$

The triangle $P \stackrel{\Delta}{Q} R$ with the middle vertex in Lorentz plane is called pure spacelike triangle if the vectors $\overrightarrow{P Q}, \overrightarrow{Q R}, \overrightarrow{P R}$ are spacelike [1].

The triangle $P \stackrel{\Delta}{Q} R$ with the middle vertex in Lorentz plane is called pure timelike triangle if the vectors $\overrightarrow{P Q}, \overrightarrow{Q R}, \overrightarrow{P R}$ are timelike [1].

Let $O$ be center of $S_{1}^{1}$ and let $P$ and $Q$ be same branch of $S_{1}^{1}$. Then the angle between vectors $\overrightarrow{O P}$ and $\overrightarrow{O Q}$ is called central angle. The magnitude of $\widehat{P O Q}$ is the length of the arc $P Q$ [1].

Let $P, Q, R$ be three points of $S_{1}^{1}$, then the angle between vectors $\overrightarrow{R P}, \overrightarrow{R Q}$ is called inscribed angle if $\langle P, Q\rangle>1$ and $\langle R, Q\rangle<-1$.

In what follows we will denote with $\widehat{P Q}$ to the arc between the points $P$ and $Q$ if $\langle P, Q\rangle>1$.
The sets $\left(S_{1}^{1}\right)^{I}=\left\{r \in R_{1}^{2} \mid\langle r, r\rangle<1\right\}$ and $\left(S_{1}^{1}\right)^{E}=\left\{r \in R_{1}^{2} \mid\langle r, r\rangle>1\right\}$ are called the interior of $S_{1}^{1}$ and exterior of $S_{1}^{1}$.

The angle $\widehat{P R Q}$ is called an exterior angle of $S_{1}^{1}$ for $P, Q \in S_{1}^{1}$ and $r \in\left(S_{1}^{1}\right)^{E}$.
The angle $\widehat{P R Q}$ is called an interior angle of $S_{1}^{1}$ for $P, Q \in S_{1}^{1}$ and $r \in\left(S_{1}^{1}\right)^{I}$.
Let $P, Q, R$ be three points on the same branch of $S_{1}^{1}$ then the triangle $P \stackrel{\Delta}{Q} R$ is a pure timelike triangle.
If $P \stackrel{\Delta}{Q} R$ is a pure timelike triangle then the angle $\widehat{P R Q}$ is called the middle angle at the middle vertex of $P \stackrel{\Delta}{Q} R$.
Theorem 2.3 (Central angle theorem). The central angle subtended by two points on same part of $S_{1}^{1}$ is twice the inscribed angle subtended by those points.

Proof. If the point $R$ is on the first zone of coordinate axis, then we can write $P\left(\cosh \theta_{1}, \sinh \theta_{1}\right), Q\left(\cosh \theta_{2}, \sinh \theta_{2}\right)$, and $R\left(\cosh \theta_{3}, \sinh \theta_{3}\right)$. Therefore,

$$
\begin{aligned}
& \overrightarrow{R P}=\left(\sinh \theta_{1}-\sinh \theta_{3}, \cosh \theta_{1}-\cosh \theta_{3}\right) \\
& \overrightarrow{R Q}=\left(\sinh \theta_{2}-\sinh \theta_{3}, \cosh \theta_{2}-\cosh \theta_{3}\right)
\end{aligned}
$$

Since,

$$
\begin{aligned}
\langle\overrightarrow{R P}, \overrightarrow{R P}\rangle & =-4 \sinh ^{2}\left(\frac{\theta_{3}-\theta_{1}}{2}\right) \\
\langle\overrightarrow{R Q}, \overrightarrow{R Q}\rangle & =-4 \sinh ^{2}\left(\frac{\theta_{3}-\theta_{2}}{2}\right)
\end{aligned}
$$

$\overrightarrow{R P}$ and $\overrightarrow{R Q}$ are timelike. Thus we can see that

$$
\frac{\langle\overrightarrow{R P}, \overrightarrow{R Q}\rangle}{\|\overrightarrow{R P}\|\|\overrightarrow{R Q}\|}=-\cosh \left(\frac{\theta_{2}-\theta_{1}}{2}\right)
$$

ii) If the point $R$ is on the second zone of the coordinate axis, then we have $P\left(\cosh \theta_{1}, \sinh \theta_{1}\right), Q\left(\cosh \theta_{2}, \sinh \theta_{2}\right)$, and $R\left(-\cosh \theta_{3}, \sinh \theta_{3}\right)$. Thus,

$$
\begin{aligned}
& \overrightarrow{R P}=\left(\sinh \theta_{1}-\sinh \theta_{3}, \cosh \theta_{1}-\cosh \theta_{3}\right) \\
& \overrightarrow{R Q}=\left(\sinh \theta_{2}-\sinh \theta_{3}, \cosh \theta_{2}+\cosh \theta_{3}\right)
\end{aligned}
$$

Because

$$
\begin{aligned}
& \langle\overrightarrow{R P}, \overrightarrow{R P}\rangle=4 \cosh ^{2}\left(\frac{\theta_{1}+\theta_{3}}{2}\right) \\
& \langle\overrightarrow{R Q}, \overrightarrow{R Q}\rangle=4 \cosh ^{2}\left(\frac{\theta_{2}+\theta_{3}}{2}\right)
\end{aligned}
$$

$\overrightarrow{R P}$ and $\overrightarrow{R Q}$ are spacelike, then we have

$$
\frac{\langle\overrightarrow{R P}, \overrightarrow{R Q}\rangle}{\|\overrightarrow{R P}\|\|\overrightarrow{R Q}\|}=\cosh \left(\frac{\theta_{2}-\theta_{1}}{2}\right)
$$

iii) If the point $R$ is on the third zone of the coordinate axis, $P\left(\cosh \theta_{1}, \sinh \theta_{1}\right), Q\left(\cosh \theta_{2}, \sinh \theta_{2}\right)$ and $R\left(-\cosh \theta_{3},-\sinh \theta_{3}\right)$. We see that

$$
\begin{aligned}
& \overrightarrow{R P}=\left(\sinh \theta_{1}+\sinh \theta_{3}, \cosh \theta_{1}+\cosh \theta_{3}\right) \\
& \overrightarrow{R Q}=\left(\sinh \theta_{2}+\sinh \theta_{3}, \cosh \theta_{2}+\cosh \theta_{3}\right)
\end{aligned}
$$

Since,

$$
\begin{aligned}
& \langle\overrightarrow{R P}, \overrightarrow{R P}\rangle=4 \cosh ^{2}\left(\frac{\theta_{2}-\theta_{1}}{2}\right) \\
& \langle\overrightarrow{R Q}, \overrightarrow{R Q}\rangle=4 \cosh ^{2}\left(\frac{\theta_{3}-\theta_{2}}{2}\right)
\end{aligned}
$$

$\overrightarrow{R P}$ and $\overrightarrow{R Q}$ are spacelike. Then we have

$$
\frac{\langle\overrightarrow{R P}, \overrightarrow{R Q}\rangle}{\|\overrightarrow{R P}\|\|\overrightarrow{R Q}\|}=\cosh \left(\frac{\theta_{2}-\theta_{1}}{2}\right)
$$

iv) If the point $R$ is on the fourth zone of the coordinate axis, $P\left(\cosh \theta_{1}, \sinh \theta_{1}\right), Q\left(\cosh \theta_{2}, \sinh \theta_{2}\right)$, and $R\left(\cosh \theta_{3},-\sinh \theta_{3}\right)$. Thus,

$$
\begin{aligned}
& \overrightarrow{R P}=\left(\sinh \theta_{1}+\sinh \theta_{3}, \cosh \theta_{1}-\cosh \theta_{3}\right) \\
& \overrightarrow{R Q}=\left(\sinh \theta_{2}+\sinh \theta_{3}, \cosh \theta_{2}-\cosh \theta_{3}\right)
\end{aligned}
$$

Because

$$
\begin{aligned}
& \langle\overrightarrow{R P}, \overrightarrow{R P}\rangle=-4 \sinh ^{2}\left(\frac{\theta_{3}+\theta_{1}}{2}\right), \\
& \langle\overrightarrow{R Q}, \overrightarrow{R Q}\rangle=-4 \sinh ^{2}\left(\frac{\theta_{3}+\theta_{2}}{2}\right)
\end{aligned}
$$

$\overrightarrow{R P}$ and $\overrightarrow{R Q}$ are timelike. Then we have

$$
\frac{\langle\overrightarrow{R P}, \overrightarrow{R Q}\rangle}{\|\overrightarrow{R P}\|\|\overrightarrow{R Q}\|}=-\cosh \left(\frac{\theta_{2}-\theta_{1}}{2}\right)
$$

By the proof of Theorem 2.3, we have the following corollary.
Corollary 2.4. An inscribed angle is half of a central angle that has the subtends of the same arc.
Theorem 2.5. The sum of two interior angles is equal to an exterior angle of a triangle.
Proof. Let V be a point in $\left(S_{1}^{1}\right)^{I}$ and let A,B be a point of the same branch of $S_{1}^{1}$. The lines $\overrightarrow{V A}$ and $\overrightarrow{V B}$ cut the other branch of $S_{1}^{1}$ points at C and D . Then we can write points $A\left(\cosh \theta_{0}, \sinh \theta_{0}\right), B\left(\cosh \theta_{1}, \sinh \theta_{1}\right), C\left(-\cosh \theta_{3}, \sinh \theta_{3}\right)$, $D\left(-\cosh \theta_{2}, \sinh \theta_{2}\right)$, which are taken on the hyperbola.

We must show the following equation for the proof of theorem:

$$
\operatorname{arcsinh}\left(\frac{\langle\overrightarrow{A B}, \overrightarrow{A D}\rangle}{\|\overrightarrow{A B}\|\|\overrightarrow{A D}\|}\right)+\operatorname{arccosh}\left(\frac{\langle\overrightarrow{D A}, \overrightarrow{D B}\rangle}{\|\overrightarrow{D A}\|\|\overrightarrow{D B}\|}\right)=-\operatorname{arcsinh}\left(\frac{\langle\overrightarrow{B A}, \overrightarrow{B D}\rangle}{\|\overrightarrow{B A}\|\|\overrightarrow{B D}\|}\right)
$$

We can write

$$
\begin{aligned}
& \overrightarrow{A B}=\left(\sinh \theta_{1}-\sinh \theta_{0}, \cosh \theta_{1}-\cosh \theta_{0}\right) \\
& \overrightarrow{A D}=\left(\sinh \theta_{2}-\sinh \theta_{0},-\cosh \theta_{2}-\cosh \theta_{0}\right) \\
& \overrightarrow{D B}=\left(\sinh \theta_{1}-\sinh \theta_{2}, \cosh \theta_{1}+\cosh \theta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \langle\overrightarrow{A B}, \overrightarrow{A B}\rangle=-4 \sinh ^{2}\left(\frac{\theta_{0}-\theta_{1}}{2}\right) \\
& \langle\overrightarrow{A D}, \overrightarrow{A D}\rangle=4 \cosh ^{2}\left(\frac{\theta_{0}+\theta_{2}}{2}\right) \\
& \langle\overrightarrow{D B}, \overrightarrow{D B}\rangle=4 \cosh ^{2}\left(\frac{\theta_{1}+\theta_{2}}{2}\right)
\end{aligned}
$$

Since $\overrightarrow{A D}, \overrightarrow{D B}$ are spacelike and $\overrightarrow{A B}$ timelike. We obtain that

$$
\begin{aligned}
& \frac{\langle\overrightarrow{A B}, \overrightarrow{A D}\rangle}{\|\overrightarrow{A B}\|\|\overrightarrow{A D}\|}=\sinh \left(\frac{\theta_{1}+\theta_{2}}{2}\right) \\
& \frac{\langle\overrightarrow{D A}, \overrightarrow{D B}\rangle}{\|\overrightarrow{D A}\|\|\overrightarrow{D B}\|}=\cosh \left(\frac{\theta_{0}-\theta_{1}}{2}\right) \\
& \frac{\langle\overrightarrow{B A}, \overrightarrow{B D}\rangle}{\|\overrightarrow{B A}\|\|\overrightarrow{B D}\|}=-\sinh \left(\frac{\theta_{0}+\theta_{2}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{arcsinh}\left(\frac{\langle\overrightarrow{A B}, \overrightarrow{A D}\rangle}{\|\overrightarrow{A B}\|\|\overrightarrow{A D}\|}\right)+\operatorname{arccosh}\left(\frac{\langle\overrightarrow{D A}, \overrightarrow{D B}\rangle}{\|\overrightarrow{D A}\|\|\overrightarrow{D B}\|}\right) & =\frac{\theta_{1}+\theta_{2}}{2}+\frac{\theta_{0}-\theta_{1}}{2} \\
& =\frac{\theta_{0}+\theta_{2}}{2}
\end{aligned}
$$

which implies the proof of theorem .

Theorem 2.6. Inscribed angles where one chord is a diameter are the Lorentz orthogonal angle.
Proof. If $R(0,-1) \in\left(S_{1}^{1}\right)_{-}, L(0,1)$ and $P(\sinh \theta, \cosh \theta) \in\left(S_{1}^{1}\right)_{+}$, then

$$
\begin{aligned}
\overrightarrow{P R} & =-(\sinh \theta, 1+\cosh \theta) \\
\overrightarrow{P L} & =(-\sinh \theta, 1-\cosh \theta)
\end{aligned}
$$

Because

$$
\begin{aligned}
& \langle\overrightarrow{P R}, \overrightarrow{P R}\rangle=2(1+\cosh \theta) \\
& \langle\overrightarrow{P L}, \overrightarrow{P L}\rangle=2(1-\cosh \theta)
\end{aligned}
$$

$\overrightarrow{P L}$ is a timelike vector and $\overrightarrow{P R}$ is a spacelike vector. Since

$$
\langle\overrightarrow{P L}, \overrightarrow{P R}\rangle=0
$$

and the angle $\alpha$ between $\overrightarrow{P L}$ and $\overrightarrow{P R}$ is calculated by

$$
\langle\overrightarrow{P L}, \overrightarrow{P R}\rangle=\|\overrightarrow{P R}\|\| \| \overrightarrow{P L}\| \| \sinh \alpha
$$

we obtain $\alpha=0$.
Theorem 2.7. In a hyperbola, two inscribed angles with the same intercepted arc of $S_{1}^{1}$ are congruent.
Proof. Let the points $A, B$ be on same branch of $S_{1}^{1}$ and let points $C, D$ be on the other branch of $S_{1}^{1}$. Then by Theorem 2.3, inscribed angles with the same arc $\overparen{A B}$ are equal.

## References

[1] Desideri, G.M., Angles in the Lorentzian circle, Comptes rendus de l'Académie bulgare des Sciences, 60(2007), 357-364. 1, 2
[2] Karliga, B., Tokeser, U., Savas, M., Girard type theorem for de Sitter triangles, (2016), preprint. 2.1, 2.2, 2
[3] Luneburg, R.K., Mathematical Analysis of Binocular Vision, Princeton, New Jersey: Princeton University Press, 1947. 1
[4] Zage, W. M., Hyperbolic Geometry and Luneburg's Theory of Binocular Visual Space, University of Illinois at Chicago, D. A., 1977. 1


[^0]:    *Corresponding author
    Email addresses: sdodurgali@gazi.edu.tr (Sabiha Bostan), karliaga@gazi.edu.tr (Baki Karliga)

