A PLANAR ROBOT DESIGN AND CONSTRUCTION WITH MAPLE

Engin CAN1, Özkan CANAY2

1Kaynarca School of Applied Sciences, Sakarya University, Turkey, ecan@sakarya.edu.tr
2Vocational School of Adapazari, Sakarya University, Turkey

Abstract: Maple is used to do numerical computation, plot graphs and do exact symbolic manipulations and word processing. In this study we demonstrate how Maple can be used for the simulation of a planar robot. This offers the possibility to become familiar of mathematical modelling. The mechanism under consideration is a so-called F-mechanisms (Can & Stachel, 2014), i.e., a planar parallel 3-RRR robot with three synchronously driven cranks. It turns out that at this example it is not possible to find the poses of the moving triangle exactly by graphical methods with traditional instruments only. Hence, numerical methods are essential for the analysis of motions which can be performed by a planar robot.

Keywords: Maple, scientific computing, mathematical modelling, planar mechanism, planar parallel 3-RRR-robot.

Introduction
F-mechanisms were first introduced and analyzed by Can (2012) and Can & Stachel (2014). These are high-speed planar mechanisms with modifiable compulsory courses based on parallel robots simultaneously driven cranks. Staicu (2008) has the kinematics of such robot treated; the website of Ahamed provides a controllable interactive simulation of parallel planar manipulators. In the following, we review the characteristics of F-mechanisms:

Definition A Fehrer-mechanism (F-mechanism in short), is a kinematic chain with 8-links $\Sigma_0, \ldots, \Sigma_7$ and 9 revolute joints $A_0, B_0, C_0, A_1, \ldots, C_2$ (see Figure 1) with the following properties:

1) There are three driving cranks $A_0A_1 \subset \Sigma_1$, $B_0B_1 \subset \Sigma_2$, and $C_0C_1 \subset \Sigma_3$. They rotate with the same angular velocity ω about the respective anchor points A_0, B_0 and C_0, all fixed in the frame Σ_0. The links Σ_1 and Σ_3 rotate counter-clockwise; Σ_2 rotates either counter-clockwise (direct F-mechanism) or clockwise (indirect F-mechanism).

2) The bars $A_1A_2 \subset \Sigma_4$, $B_1B_2 \subset \Sigma_5$, and $C_1C_2 \subset \Sigma_6$ connect the active cranks with the moving frame Σ_7. The points A_2, B_2, C_2 are attached to Σ_7.

3) Variable phase shiftings between the cranks enable to modify the constrained motion Σ_7/Σ_0.

The lengths of the cranks are denoted by $a_1 = \overline{A_0A_1}$, $b_1 = \overline{B_0B_1}$ and $c_1 = \overline{C_0C_1}$. The bars' lengths are $a_2 = \overline{A_1A_2}$, $b_2 = \overline{B_1B_2}$ and $c_2 = \overline{C_1C_2}$.

Figure 1: A planar parallel 3-RRR robot (An indirect F-mechanism)
Maple Procedure and Construction of the Motion

After all mathematical representation was given by Can & Stachel (2014), we will only give design and construction of a planar parallel robot with Maple which is displayed in Figure 2 also addressed in Fig. 3 and Fig. 4. Its dimensions are as follows:

- **fixed triangle:** $A_0 = (0.0, 0.0)$, $B_0 = (52.5, 8.0)$, $C_0 = (40.0, 99.0)$,
- **lengths of cranks:** $a_1 = 19.0$, $b_1 = 14.0$, $c_1 = 16.0$,
- **phase shifts:** $\alpha_B = 243^\circ$, $\delta_C = -15^\circ$,
- **lengths of bars:** $a_2 = 35.0$, $b_2 = 34.0$, $c_2 = 54.0$,
- **moving triangle:** $A_2 = (0.0, 0.0)$, $B_2 = (40.0, 18.0)$, $C_2 = (-7.0, 28.0)$.

Figure 2: An indirect F-mechanism displayed using Maple

From here we start to write the program with using Maple:

```maple
> restart:
> with(linalg):with(plots):
> A0:=[0,0]: B0:=[52.5,8]: C0:=[40,99]:
> A2g:=[0,0]: B2g:=[40,18]: C2g:=[-7,28]:
> la1:=19: lb1:=14: lc1:=16:
> la2:=35: lb2:=34: lc2:=54:
> omegab:=-1:
> phasgradb:=243: phasgradc:=-15:
> phasb:=evalf(phasgradb*Pi/180): phasc:=evalf(phasgradc*Pi/180):
> pi:=evalf(Pi): x:=evalf(326*Pi/180):
> epsilon:=pi: mitte:=x:
> start:=mitte-epsilon: ende:=mitte+epsilon:
> anz:=200:
> dif:=ende-start: w:=dif/anz:
> idxo:=1:

Now we set the points $A_1$, $B_1$ and $C_1$ to depending on tangent $f_1$, $f_2$ and $f_3$ half drive angle. In addition, the angle of rotation is $t := \varphi_{70}$ introduced. Furthermore, we introduce the shifting vector $\text{trans} = (u, v) := u_0$ and an orthogonal matrix $\text{dreh} := A$.

```maple
> Arm:=[((1-f^2)/(1+f^2)),(2*f/(1+f^2))]:
> A1:=A0+la1*(subs(f=f1,Arm)):
> B1:=B0+lb1*(subs(f=f2,Arm)):
> C1:=C0+lc1*(subs(f=f3,Arm)):
> trans:=[u,v]:
> co:=(1-t^2)/(1+t^2): si:=2*t/(1+t^2):
> dreh:=matrix(2,2,[co,-si,si,co]):
> A2:=simplify(matadd(evalm(dreh &* A2g),trans)):
> B2:=simplify(matadd(evalm(dreh &* B2g),trans)):
> C2:=simplify(matadd(evalm(dreh &* C2g),trans)):
```

Equivalent to the system of equations (4) in Can & Stachel (2014) are now the equations $AG_1 = 0$, $AG_2 = 0$ and $AG_3 = 0$:

---

www.tojsat.net Copyright © The Online Journal of Science and Technology
\begin{verbatim}
> a1:=coeff(AG1,u^2);
> a2:=coeff(AG2,u^2);
> AG3:=numer(simplify(((C2[1]-C1[1])^2+(C2[2]-C1[2])^2)-lc2^2));
> a3:=coeff(AG3,u^2);

It is followed by the elimination of \( u_0 = u^2 + v^2 \) by subtraction. We take into account only the coefficients \( a_i \) of \( u^2 \). There remain two linear equations eq [1] and eq [2], we solve for \( u \) and \( v \):

\begin{verbatim}
> eq[1]:=eval(numer(combine(a1*AG2-a2*AG1))):
> eq[2]:=eval(numer(combine(a1*AG3-a3*AG1))):
> G1:=collect(expand(eq[1]),[u,v]):
> G2:=collect(expand(eq[2]),[u,v]):
> P:=coeff(G1,u): Q:=coeff(G1,v):
> S:=coeff(G2,u): T:=coeff(G2,v):
> R:=-subs(u=0,v=0,G1): U:=-subs(u=0,v=0,G2):
> mat:=matrix(2,2,[P,Q,S,T]):
> vec:=[R,U]:
> loesung:=linsolve(mat,vec):
> uu:=loesung[1]:
> vv:=loesung[2]:
> tt:=numer(simplify(subs(u=uu,v=vv,AG1))):
\end{verbatim}

We denote the individual values of the angle drive for the cranks \( A_0A_1 \), \( B_0B_1 \) and \( C_0C_1 \) respectively with \( \text{ff1}[i] \), \( \text{ff2}[i] \) and \( \text{ff3}[i] \), for \( i = 1, \ldots, \text{anz} \) (\( \text{anz} := 200 \)) and start the main loop of the program:

\begin{verbatim}
> for i from 0 to anz do
> ff1[i]:=start+i*w:
> ff2[i]:=omegab*ff1[i]+phasb:
> ff3[i]:=ff1[i]+phasc:
> tt_werte[i]:=[fsolve(evalf(subs(f1=tan(ff1[i]/2),f2=tan(ff2[i]/2),
                   f3=tan(ff3[i]/2),tt)))];
\end{verbatim}

Case of \( i = 0 \) we choose one of the zeros arbitrary (see Figure 2).

\begin{verbatim}
> t_neu[0]:=tt_werte[0][idx0]:
\end{verbatim}

Otherwise, we find the number of zeros from using

\begin{verbatim}
> nbr[i]:= nops(tt_werte[i]);
\end{verbatim}

and search for fixed \( i \) the solution \( \text{tt_werte[i][j]} \), \( 1 \leq j \leq \text{nbr[i]} \) that the calculated approximation value from the previous position \( \text{naeh[i]} := \text{tneu[i-1]} + \text{dtneu[i-1]} \) comes closest. This is done as follows:

\begin{verbatim}
> for j from 2 to \text{nbr[i]} do
> if abs(tt_werte[i][j]-naeh[i])<abs(tt_werte[i][idx[i]]-naeh[i])
> then idx[i]:= j fi
> od;
\end{verbatim}

Then we set

\begin{verbatim}
> t_neu[i]:=tt_werte[i][idx[i]]:
\end{verbatim}

The here proposed selection of the 'right' zero point must be observed four conditions:

\begin{verbatim}
> idx[I]:= 1;
> if abs(naeh[I])<2 then
> for j from 2 to \text{nbr[I]} do
> if abs(tt_werte[I][j]-naeh[I]) <
> abs(tt_werte[I][idx[I]]-naeh[I]) then idx[I]:= j fi
> od;
\end{verbatim}
\end{verbatim}
else
for j from 2 to nrb[I] do
if abs((1/tt_werte[I][j])-(1/naeh[I])) <
abs((1/tt_werte[I][idx[I]])-(1/naeh[I]))
then idx[I]:= j fi
od;
> t_neu[i]:=tt_werte[i][idx[i]];

Velocity Analysis of the Motion
In the following we calculate an approximate value of the next correct position.

> A1:=A0+la1*(subs(f=tan(ff1[i]/2),Arm));
> B1:=B0+lb1*(subs(f=tan(ff2[i]/2),Arm));
> C1:=C0+lc1*(subs(f=tan(ff3[i]/2),Arm));
> d1:=A1-A0: d2:=B1-B0: d3:=C1-C0:
> vA1:=w*[-d1[2],d1[1]]:
> vB1:=w*[-d2[2],d2[1]]:
> vC1:=w*[-d3[2],d3[1]]:
> X[i]:= [x1[i],x2[i]]:
> Y[i]:=matrix(2,2,[0,-x3[i],x3[i],0]):
> uu_werte:=evalf(subs(f1=tan(ff1[i]/2),f2=tan(ff2[i]/2),
    f3=tan(ff3[i]/2),t=t_neu[i],uu));
> v_werte:=evalf(subs(f1=tan(ff1[i]/2),f2=tan(ff2[i]/2),
    f3=tan(ff3[i]/2),t=t_neu[i],vv));
> transm:=[uu_werte,vv_werte];
> c2:=evalf(subs(t=t_neu[i],co));
> s2:=evalf(subs(t=t_neu[i],si));
> A2:=convert(evalf((matadd(evalm(drehm &* A2g),transm))),list):
> B2:=convert(evalf((matadd(evalm(drehm &* B2g),transm))),list):
> C2:=convert(evalf((matadd(evalm(drehm &* C2g),transm))),list):
> vB2:=simplify(matadd(evalm(Y[i] &* B2),X[i])):
> vC2:=simplify(matadd(evalm(Y[i] &* C2),X[i])):
> GL1:=simplify(innerprod(V11,V12));
> GL2:=simplify(innerprod(V21,V22));
> GL3:=simplify(innerprod(V31,V32));
> T1:=subs(x1[i]=0,x2[i]=0,x3[i]=0,GL1):
> T2:=subs(x1[i]=0,x2[i]=0,x3[i]=0,GL2):
> T3:=subs(x1[i]=0,x2[i]=0,x3[i]=0,GL3):
> vec:=[T1,T2,T3]:
> losung:=linsolve(mat,vec):
> x1[i]:= losung[1]: x2[i]:= losung[2]:
> x3[i]:= losung[3]:
> dt_neu[i]:= eval((1+t_neu[i]*t_neu[i])*x3[i]/2):
> od:

Displaying of the Motion
And finally should animation of the motion with Maple generated, one must proceed according to the calculation
of the positions within the loop as follows:

> for i from 0 to anz do
> AA1[i]:=A0+la1*(subs(f=tan(ff1[i]/2),Arm));
> BB1[i]:=B0+lb1*(subs(f=tan(ff2[i]/2),Arm));
> CC1[i]:=C0+lc1*(subs(f=tan(ff3[i]/2),Arm));
> uu_werte:=evalf(subs(f1=tan(ff1[i]/2),f2=tan(ff2[i]/2),
    f3=tan(ff3[i]/2),t=t_neu[i],uu));
> vv_werte:=evalf(subs(f1=tan(ff1[i]/2),f2=tan(ff2[i]/2),
    f3=tan(ff3[i]/2),t=t_neu[i],vv));
> end;
trans2 := [uu_werte, vv_werte];
c2 := evalf(subs(t = t_neu[i], co));
s2 := evalf(subs(t = t_neu[i], si));
dreh2 := matrix(2, 2, [c2, -s2, s2, c2]);
AA2[i] := convert(evalf((matadd(evalm(dreh2 &* A2g), trans2))), list);
BB2[i] := convert(evalf((matadd(evalm(dreh2 &* B2g), trans2))), list);
CC2[i] := convert(evalf((matadd(evalm(dreh2 &* C2g), trans2))), list);
Gelenk_a01[i] := polygonplot([A0, AA1[i]], thickness=2);
Gelenk_a12[i] := polygonplot([AA1[i], AA2[i]], thickness=2);
Gelenk_b01[i] := polygonplot([B0, BB1[i]], thickness=2);
Gelenk_b12[i] := polygonplot([BB1[i], BB2[i]], thickness=2);
Gelenk_c01[i] := polygonplot([C0, CC1[i]], thickness=2);
Gelenk_c12[i] := polygonplot([CC1[i], CC2[i]], thickness=2);
od :
Konfiguration := seq(display(Dreieck[i], Gelenk_a01[i], Gelenk_b01[i],
Gelenk_c01[i], Gelenk_a12[i], Gelenk_b12[i], Gelenk_c12[i]), i = 1 .. anz):
display(Konfiguration, scaling=constrained, insequence=true);

Figure 3: Different poses of given example
Figure 4: Diagram showing $\varphi_{70}$ in given example

If you want to have an overview how many rotational angle $\varphi_{70}$ are possible, for how many positions the moving plane $\Sigma$; for which drive angles (here with $\text{ff1[i]}$ denotes), so it can be drawing in a graph (see Figure 4) discrete $\text{ff1}$-values the corresponding - each in degrees- $\varphi_{70}$ value (in this case $\text{tt_werte[i][j]}$).

Acknowledgements
This work has been supported by the Research Fund of the Sakarya University with the project number 2014-17-02-001.

References
Ahamed, S. Simulation of a 3-DOF 3-RRR Planar Parallel Robot, www.parallemic.org/Java/3RRR.html