AN APPLICATION OF ENVIRONMENTAL ECONOMIC DISPATCH USING GENETIC ALGORITHM

Özge Pınar ARSLAN
Kirikkale University
Electrical and Electronics Engineering
Kirikkale, Turkey
pozge.arlans@gmail.com

Yağmur ARIKAN
Kirikkale University
Electrical and Electronics Engineering
Kirikkale, Turkey
yagmurarikan@gmail.com

Ertuğrul ÇAM
Kirikkale University
Electrical and Electronics Engineering
Kirikkale, Turkey
camertugrul@gmail.com

İbrahim EKE
Kirikkale University
Electrical and Electronics Engineering
Kirikkale, Turkey
ekte@kku.edu.tr

Abstract: In the economic load dispatch, power plants are operated at minimum cost, but environmental pollution caused by fossil-fueled electric power plants is not considered. Therefore, new solution suggestions have come up due to the growing environmental problems in recent years. One of these suggestions is environmental economic load dispatch which aims to both operations of plants at minimum cost and trying to minimize the amount of emissions. In this study, 6-generator system with three load demands 500, 700 and 900 MW is tested to solve environmental economic load dispatch problem. Genetic algorithm from heuristic optimization methods is preferred for this problem. The results which transmission losses are considered are compared with the other studies in the literature. These results show the effectiveness and superiority of the method over economy and reduction of the emission.

Keywords: Environmental Economic Dispatch, Genetic Algorithm, Optimization, Emission.

Introduction

Economic load dispatch is one of the important problems in operation of power systems. It minimizes the generation cost while meeting demand and satisfying equality and inequality constraints. However, operation at minimum cost cannot be the only basis for dispatching electric load when the pollution is considered. Thermal power plants cause high concentration of pollutants. Therefore, emissions caused by electric power plants that use fossil fuel must be considered while operating electric power systems. Environmental economic dispatch, (EED), is the problem which takes into consideration the environmental pollution and aims to reduce emissions with minimum cost. It minimizes both cost and emission together.

EED problem has two objectives consisting of minimum fuel cost and minimum emission. There are many methods that have been proposed to solve this problem in the literature. Song et al. have applied fuzzy logic controlled genetic algorithm to EED on a six-generator system (Song, 1997). Pandit et al. have proposed an improved differential evolution method for EED in multi-area power system by studying on three test cases (Pandit, 2015). Sivasubramani and Swarup have presented a new multi-objective harmony search algorithm for EED problem and tested on the standard IEEE 30 bus and 118 bus systems (Sivasubramani, 2011). Güvenç et al. have proposed Gravitational Search Algorithm to find the optimal solution for Combined Economic and Emission Dispatch problems and it has been implemented on four different test cases, having no valve point effect without transmission loss and valve point affect with transmission loss (Güvenç, 2012). Bhattacharya and Chattopadhyay have presented the combination of Biogeography-based Optimization algorithm and differential evolution to solve complex economic emission load dispatch problems (Bhattacharya, 2011).

Problem Formulation

EED problem can be formulated by adding emission to the economic dispatch problem. Economic dispatch, (ED), formula is shown in Equation 1.

$$F(P_g) = \sum_{i=1}^{n}(a_i P_i^2 + b_i P_i + c_i)$$ \hspace{1cm} (1)

In Equation 1, a_i, b_i, c_i are the fuel cost coefficients of the ith unit, $F(P_g)$ is total generation cost in the system ($$/h), P_i is the power generated by ith unit and the n is the number of generating units.

Emissions can be expressed by a quadratic equation depending on the active power output of the generator. It can be formulated as Equation 2.

$$E(P_g) = \sum_{i=1}^{n}(d_i P_i^2 + e_i P_i + f_i)$$ \hspace{1cm} (2)
In Equation 2, \(E(P_g) \) is the emission amount (lb/h or kg/h), \(d_i, e_i, f_i \) are the emission parameters of the \(i \)th power plant.

While solving the problem, the following constraints must be satisfied.

Power Balance: The sum of the generated powers must be equal to sum of the total transmission loss and power demand.

\[
\sum_{i=1}^{n} P_i = P_D + P_L
\]

In equation 3, \(P_D \) is the demanded power and \(P_L \) is the line loss. The line loss can be found by using matrix and it can be expressed as (4).

\[
P_L = \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} P_j
\]

where \(B_{ij} \) is the loss coefficient.

Generator lower and upper constraint: The active power limitation of each unit is defined as follows.

\[
P_{i(\text{min})} \leq P_i \leq P_{i(\text{max})}, \quad i = 1, \ldots, n_g
\]

where \(P_{i(\text{min})} \) is the minimum power generated by \(i \)th unit and \(P_{i(\text{max})} \) is the maximum power generated by \(i \)th unit.

EED can be formulated by using generation cost and amount of emission and converting them into the single optimization problem as seen in Equation 6.

\[
T = w1 * F(P_g) + w2 * h * E(P_g)
\]

In Equation 6, \(T \) is the total operation cost of the system, \(w1 \) and \(w2 \) are weight factors and \(h \) is the price penalty factor.

The price penalty factor \(h \) has some steps (Kulkarni, 2000):

(i) Firstly, \(h_i \) is calculated:

\[
h_i = \frac{FG_i(P_{i(\text{max})})/(P_{i(\text{max})})}{EC_i(P_{i(\text{max})})/(P_{i(\text{max})})}, \quad i = 1, \ldots, n_g\]

(ii) Secondly, arrange the values of \(h_i \) in ascending order.

(iii) Thirdly, add the maximum capacity of each generator one at a time starting from the smallest \(h_i \) until \(\sum_{i=1}^{n} P_{i(\text{max})} \geq P_D \).

(iv) And finally, \(h_i \) calculated from last generator becomes the price penalty factor \(h \).

When \(w1=1 \) and \(w2=0 \), the problem becomes ED; when \(w1=0 \) and \(w2=1 \), the problem becomes emission dispatch; when \(w1=1 \) and \(w2=1 \), the problem becomes EED.
Genetic Algorithm

A genetic algorithm (GA) is a method for optimization problems and it solves both constrained and unconstrained problems. It is based on a natural selection process. The algorithm repeatedly develops a population of individual solutions. This method randomly selects individuals from the current population and produce the children for the next generation. The population move to an optimal solution over successive generations.

The genetic algorithm uses three operators to generate the next generation from the current population. These operators are selection, crossover and mutation. The individuals named as parents are selected. Crossover combines two parents to form children for the next generation. Random changes are applied to individual parents to form children by mutation.

The Study

GA is applied on the test system and its performance is compared to other optimization methods. In the system, there are 6 generating units which have cost and emission functions with demand of 500, 700 and 900 MW. The data of this system is derived from study of Rughooputh (Rughooputh, 2003).

The value of h is calculated as 43.8983 for 500 MW demand, 47.8222 for 700 MW demand, and 43.1533 for 900 MW demand.

EED problem is solved by using GA with the help of MATLAB program. The dispatch results for 500, 700, and 900 MW demands are shown separately, see [Table 1].

<table>
<thead>
<tr>
<th>Unit (MW)</th>
<th>Demand (MW)</th>
<th>500</th>
<th>700</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (MW)</td>
<td>55.3071</td>
<td>93.4380</td>
<td>123.2889</td>
<td></td>
</tr>
<tr>
<td>P2 (MW)</td>
<td>40.1529</td>
<td>66.9674</td>
<td>116.2879</td>
<td></td>
</tr>
<tr>
<td>P3 (MW)</td>
<td>66.5698</td>
<td>82.2116</td>
<td>98.4371</td>
<td></td>
</tr>
<tr>
<td>P4 (MW)</td>
<td>80.2377</td>
<td>111.7986</td>
<td>134.9396</td>
<td></td>
</tr>
<tr>
<td>P5 (MW)</td>
<td>147.4310</td>
<td>204.2191</td>
<td>263.0380</td>
<td></td>
</tr>
<tr>
<td>P6 (MW)</td>
<td>132.9505</td>
<td>179.6866</td>
<td>228.3156</td>
<td></td>
</tr>
<tr>
<td>Total generation (MW)</td>
<td>522.6490</td>
<td>738.3213</td>
<td>964.3011</td>
<td></td>
</tr>
<tr>
<td>Losses (MW)</td>
<td>22.6491</td>
<td>38.3213</td>
<td>64.3011</td>
<td></td>
</tr>
<tr>
<td>Fuel cost (Rs/h)</td>
<td>28475</td>
<td>39008</td>
<td>51139</td>
<td></td>
</tr>
<tr>
<td>Emission output (kg/h)</td>
<td>277.4178</td>
<td>472.5402</td>
<td>764.2358</td>
<td></td>
</tr>
</tbody>
</table>

According to results of EED for the system that has 6 generating units by using genetic algorithm; fuel cost is 28475 Rs/h, emission output is 277.4178 kg/h, transmission loss is 22.6491 MW for 500 MW load; fuel cost is 39008 Rs/h, emission output is 472.5402, transmission loss is 38.3213 MW for 700 MW load; fuel cost is 51139 Rs/h, emission output is 764.2358, transmission loss is 64.3011 for 900 MW load.

The results of GA are compared with other methods. These methods are Newton-Raphson, (NR), (Song, 1997), Fuzzy Controlled Genetic Algorithm, (FCGA), (Song, 1997), Biogeography based Optimization, (BBO), (Roy, 2010), and Non-dominated Sorting Genetic Algorithm, (NSGA), (Roy, 2010). The comparison results are showed, see [Table 2]. It is explicitly seen from Table 2 that GA is the best method in terms of emission output.

<table>
<thead>
<tr>
<th>Load (MW)</th>
<th>Method</th>
<th>Total Cost (Rs/h)</th>
<th>Amount of Emission (kg/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>GA</td>
<td>28475</td>
<td>277.4178</td>
</tr>
<tr>
<td>500</td>
<td>NR [1]</td>
<td>28550.15</td>
<td>312.513</td>
</tr>
<tr>
<td>500</td>
<td>FCGA [1]</td>
<td>28231.06</td>
<td>304.90</td>
</tr>
<tr>
<td>500</td>
<td>NSGA [8]</td>
<td>28291.119</td>
<td>284.362</td>
</tr>
<tr>
<td>500</td>
<td>BBO [8]</td>
<td>28318.5060</td>
<td>279.3092</td>
</tr>
<tr>
<td>700</td>
<td>GA</td>
<td>39008</td>
<td>472.5402</td>
</tr>
<tr>
<td>700</td>
<td>NR [1]</td>
<td>39070.74</td>
<td>528.447</td>
</tr>
<tr>
<td>700</td>
<td>FCGA [1]</td>
<td>38408.82</td>
<td>527.46</td>
</tr>
<tr>
<td>700</td>
<td>NSGA [8]</td>
<td>38671.813</td>
<td>484.931</td>
</tr>
<tr>
<td>700</td>
<td>BBO [8]</td>
<td>38828.266</td>
<td>476.408</td>
</tr>
</tbody>
</table>
Conclusions
Power systems have some serious environmental problems. EED problem aims to decrease fuel cost and also emission. In this paper, GA has been successfully applied to EED problem. It is tested on six generator system. The results of GA is compared with the other studies in the literature. It has seen that GA provides improved results at cost and emission output.

References