

#### Tarım Bilimleri Dergisi Tar. Bil. Der.

Dergi web sayfası: www.agri.ankara.edu.tr/dergi

#### Journal of Agricultural Sciences

Journal homepage: www.agri.ankara.edu.tr/journal

# Effects of Organic Manures and Non-chemical Weed Control on Wheat: I-Plant Growth and Grain Yield

Ali ÖZTÜRK $^{a}$ , Sancar BULUT $^{b}$ , Nesrin YILDIZ $^{c}$ , Mehmet Murat KARAOĞLU $^{d}$ 

- a Atatürk University, Faculty of Agriculture, Department of Field Crops, Erzurum, TURKEY
- ${}^{b}\ Erciyes\ University,\ Faculty\ of\ Agriculture,\ Department\ of\ Field\ Crops,\ Kayseri,\ TURKEY$
- <sup>c</sup> Atatürk University, Faculty of Agriculture, Department of Soil Science, Erzurum, TURKEY

#### ARTICLE INFO

Research Article — Crop Production DOI: 10.1501/Tarimbil 0000001188

Corresponding author: Ali ÖZTÜRK, e-mail: aozturk@atauni.edu.tr, Tel: +90(442) 231 25 42 Received: 26 October 2011, Received in revised form: 06 March 2012, Accepted: 10 April 2012

#### **ABSTRACT**

Organic wheat yield is limited by climatic and agronomic factors including nutrient deficiency, weed competition and no suitable cultivars. The effects of organic manures and non-chemical weed control on grain yield of wheat were investigated during the 2006-07, 2007-08 and 2008-09 growing seasons, in Erzurum (Turkey) rain-fed conditions. The experiment contained three experimental factors in a factorial design: (1) cultivar (Doğu 88, Kırik), (2) weed control (weedy control, hand weeding, dense sowing) and (3) manure (unfertilized, mineral NP, Bio, Bio SR, Leonardit, Organic Manure, cattle manure). The modern cultivar Doğu 88 had significantly higher leaf area index, grain filling period, spikes per m², kernels per spike, grain yield and harvest index than the local cultivar Kırik. On average of years, hand weeding and dense sowing increased grain yield by 9.2% and 7.7% compared to weedy control, respectively. Application of mineral NP resulted in the highest grain yield. Among the organic manures, the highest grain yield was obtained at cattle manure and Organic Manure, respectively. Cattle manure and Organic Manure increased grain yield of wheat by 25.6% and 23.2%, respectively, compared to unfertilized treatment. Improved performance in response to treatments was generally related to spikes per m². Doğu 88 should be preferred to local cultivar Kırik. Dense sowing appears to be a useful method to provide the wheat a competitive advantage against weeds. As a result, cattle manure can be used for improvement of grain yield of wheat and soil fertility under rain-fed conditions.

Keywords: Organic farming; Cultivar; Weed control; Manure; Yield

### Organik Gübreler ve Kimyasal Olmayan Yabancı Ot Kontrolünün Buğday Üzerine Etkileri: I-Bitki Gelişmesi ve Tane Verimi

#### ESER BİLGİSİ

Araştırma Makalesi — Bitkisel Üretim Sorumlu Yazar: Ali ÖZTÜRK, e-posta: aozturk@atauni.edu.tr, Tel: +90(442) 231 25 42 Geliş tarihi: 06 Ekim 2011, Düzeltmelerin gelişi: 06 Mart 2012, Kabul: 10 Nisan 2012

d Atatürk University, Faculty of Agriculture, Department of Food Engineering, Erzurum, TURKEY

#### ÖZET

Organik buğdayın verimi iklim, uygun olmayan çeşit seçimi, besin eksikliği ve yabancı ot rekabeti tarafından sınırlanır. Organik gübreler ve kimyasal olmayan yabancı ot kontrolünün buğdayın tane verimine etkisi 2006-07, 2007-08 ve 2008-09 ürün yıllarında Erzurum sulamasız koşullarında incelenmiştir. Tesadüf bloklarında faktöriyel deneme deseninde yürütülen araştırmada iki ekmeklik buğday çeşidi (Doğu 88 ve Kırik), üç yabancı ot kontrol yöntemi (yabancı otlu kontrol, elle yolma ve sık ekim) ve yedi gübre kaynağı (gübresiz, mineral NP, Bio, Bio SR, Leonardit, Organik Gübre ve sığır gübresi) yer almıştır. Bir ıslah çeşidi olan Doğu 88 yerel Kırik çeşidine göre daha yüksek yaprak alanı indeksi, tane dolum süresi, m² de başak sayısı, başakta tane sayısı, tane verimi ve hasat indeksine sahip olmuştur. Yılların ortalaması olarak, yabancı ot mücadelesinin yapılmadığı koşullar ile karşılaştırıldığında, tane verimini elle yolma %9.2, sık ekim ise %7.7 oranında artırmıştır. En yüksek tane verimi mineral NP uygulamasından elde edilmiştir. Organik gübrelerden en yüksek tane verimini sığır gübresi sağlamış, bunu Organik Gübre izlemiştir. Gübresiz koşullara göre tane verimini sığır gübresi %25.6, Organik Gübre ise %23.2 oranında artırmış olup, verim artışları başlıca m² deki başak sayısı artışları ile ilgili olmuştur. Benzer ekolojik koşullarda Doğu 88 çeşidinin Kırık çeşidine tercih edilmesi gerektiği, sık ekimin buğdaya yabancı otlara karşı rekabette avantaj sağladığı, toprak verimliliği ve buğdayın tane verimini artırmak için kuru şartlarda sığır gübresinin kullanılabileceği sonucuna varılmıştır.

Anahtar sözcükler: Organik tarım; Çeşit; Yabancı ot kontrolü; Gübre; Verim

© Ankara Üniversitesi Ziraat Fakültesi

#### 1. Introduction

Consumers' interest in organically produced foods has grown steadily in recent years prompting increased use of organic agricultural systems. Wheat occupies more than half of the area devoted to organic cereals in Europe and is subject to strong demand from millers and animal feed processors (David et al 2005). There are 109,387 ha organic cropland comprising 0.5% of the total agricultural land in Turkey. The proportion of organic wheat farming in the East Anatolia Region of Turkey, has increased considerably over the past decade (TUIK 2008). Most comparisons of organic and conventional systems show that organically grown wheat produces lower yield than conventionally grown wheat (Garcia-Martin et al 2007: Kaut et al 2008). Nonetheless, selection of suitable cultivars in organic wheat farming is very important input factor. Past researches demonstrated that modern cultivars of winter wheat generally had higher grain yield than old cultivars in fields managed organically (Poutala et al 1993: Carr et al 2006). The yield differences between wheat cultivars may be related to yield potential (Kitchen et al 2003), an ability to use nitrogen inputs (Baresel et al 2008), and an ability to compete with weeds (Berthldsson 2005; Kaut et al 2008) in organic

systems.

The use of herbicides is not permitted in organic farming so that weeds reduce crop yield and quality through competition for moisture, nutrients, sunlight and space. In the absence of herbicides, weeds are controlled primarily through agronomic practices. Many researchers reported that hand weeding had superiority in weed control (Kironmay et al 2006) and in grain yield (Abouziena et al 2008) compared to other weed methods. A management practice commonly used in organic wheat production is to increase seeding rates in order to provide the wheat a competitive advantage against weeds. Weiner et al (2001) found that increasing seeding rate resulted in significant decrease in weed biomass and significant increase in grain yield.

The productivity of wheat in organic farming is mainly restricted by nutrient deficiency. Supplementing the nutrient requirement of wheat through organic manures plays a key role in sustaining soil fertility and crop productivity. These also improve the soil biological properties, humus contents, cation exchange capacity, aeration, water holding capacity and water infiltration rate (Barzegar et al 2002; Gopinath et al 2008). Many researchers have reported that farmyard manure increased grain yield through

improvement of soil water holding capacity, physical and chemical conditions, and greater availability of plant nutrients (Hiltbrunner et al 2005; Olesen et al 2009). The development of organic agriculture has led to the emergence new organic amendments permitted in organic farming as a nutrient source. The use of commercial amendments has not been recommended in organic farming due to their high prices, low nutrient value, and poor agronomic performance (Rodrigues et al 2006).

Despite the increases in organic wheat farming, there has been no previous research targeting organic wheat production in these areas in Turkey. Therefore, the primary objectives of this study were to: (i) investigate the adaptation of the most popular two bread wheat cultivars to organic growing conditions; (ii) assess the effects of hand weeding and dense sowing on yield; (iii) compare the agronomic performance of cattle manure, commercial organic amendments and inorganic fertilizer.

#### 2. Materials and Methods

#### 2.1. Site description and experimental design

Field experiments were performed on a fallow field in last two-years of the Experimental Farm of Ataturk University in Erzurum (39°55′N and 41°16′E with an altitude of 1850 m a.s.l.), Turkey, in the 2006-07, 2007-08 and 2008-09 growing seasons. The climate is semi-arid with an average annual precipitation of 395 mm and an average annual air temperature of 4.9°C. Some properties of the experimental soils (0-20 cm) were determined in the fall prior to the cropping years (Table 1).

The experiments were carried out in a factorial design with four replications. The factors were two wheat (*T. aestivum* L.) cultivars (Kırik, Doğu 88), three weed control (weedy control, hand weeding, dense sowing) and seven manure sources (unfertilized, mineral N and P, Bio, Bio SR, Leonardit, Organic Manure, cattle manure). Kırik is an old local cultivar (awnless, whitegrain, facultative), and the most common cultivar in the region. Doğu 88 is a modern cultivar (awny,

red-grain, winter), and the highest-yielding cultivar under rain-fed conditions of the region. Optimum seeding rate for winter wheat in the region is 475 seeds m<sup>-2</sup> under dryland conditions. The Zadoks growth scale (ZGS) was used to take phenological data (Zadoks et al 1974). The experiment comprised three non-chemical weed control: an weedy control (475 seeds m<sup>-2</sup>), a hand weeding-once at the beginning of stem elongation (475 seeds m<sup>-2</sup>+HW) (ZGS 30), and a dense sowing (625 seeds m<sup>-2</sup>). Cattle manure from the Research Farm of Ataturk University was prepared after cattle dung and bedding material had been composted about 90 days. The cattle manure and four commercial organic amendments (Bio Organic, Bio Organic SR, Leonardit, Organic Manure) were manually applied to plots and incorporated into the soil just before sowing in recommended doses. Application rates and important characteristics of organic manures are shown in Table 2. In mineral fertilized plots, N as ammonium sulphate (21% N) was applied of 60 kg ha<sup>-1</sup> and P as triple superphosphate (42-44 P<sub>2</sub>O<sub>5</sub>) of 50 kg ha<sup>-1</sup>. Half of N and all P were applied at sowing; second half of N was applied at the beginning of stem elongation.

## 2.2. Crop management, measurements and calculations

The fallow field was prepared by ploughing to a depth of 20 cm, which was followed by surface cultivation. Plots were sown with a six-row planter. The plots consisted of six rows spaced 20 cm apart, with a row length of 6.0 m. The sowing and harvesting dates were shown in Table 1. No chemical fungicides, herbicides or insecticides were used. No pests and diseases control were performed in the experiments.

The length of the grain filling period (GFP) was taken as the number of days from anthesis to physiological maturity. Anthesis was defined as when 50% of spikes had anthers extruding (ZGS 65), and physiological maturity defined as when 50% of the glumes had turned yellow (ZGS 92). Chlorophyll-SPAD values were determined at anthesis (ZGS 65) with a self-calibrating chlorophyll meter (Model SPAD 502, Minolta,

Table 1-Soil properties, environmental data, sowing and harvesting dates for field experiments *Cizelge -Deneme yerlerinin toprak özellikleri, deneme yıllarına göre iklim verileri ile ekim ve hasat tarihleri* 

| Growing seasons                                         | 2006-07             | 2007-08              | 2008-09               |
|---------------------------------------------------------|---------------------|----------------------|-----------------------|
| Soil texture                                            | Clay-loam           | Clay-loam            | Clay-loam             |
| Organic matter (%)                                      | 1.49-1.56           | 1.71-1.77            | 1.38-1.50             |
| Total N (g kg <sup>-1</sup> )                           | 0.6-0.7             | 0.7-0.8              | 0.5-0.7               |
| Available P (mg kg <sup>-1</sup> )                      | 11.2-14.8           | 9.8-12.2             | 9.1-12.9              |
| Available K (mg kg <sup>-1</sup> )                      | 699-748             | 602-721              | 762-776               |
| pH                                                      | 7.6-7.8             | 7.1-7.5              | 6.6-6.8               |
| Precipitation (mm)                                      |                     |                      |                       |
| Total (1 September-31 August)                           | 467.0               | 336.7                | 386.7                 |
| 1 September-30 November                                 | 144.6               | 101.9                | 76.9                  |
| 1 December-30 April                                     | 130.0               | 108.0                | 138.4                 |
| 1 May-31 August                                         | 192.4               | 126.8                | 171.4                 |
| Air temperature (°C)                                    |                     |                      |                       |
| Average annual                                          | 5.3                 | 5.0                  | 5.2                   |
| Average of 1 September-30 November                      | 7.5                 | 7.4                  | 8.4                   |
| Average of 1 December-30 April                          | -4.6                | -5.6                 | -4.5                  |
| Average of 1 May-31 August                              | 16.0                | 16.4                 | 14.8                  |
| Maximum                                                 | 31.0 (in July)      | 32.9 (in July)       | 32.0 (in July)        |
| Minimum                                                 | -31.6 (in December) | -32.6 (in January)   | -36.0 (in January)    |
| Sowing date                                             | 1 September         | 30 August            | 29 August             |
| Hand weeding date                                       | 28 May              | 25 May               | 24 May                |
| Second half of N application date                       | 29 May              | 26 May               | 25 May                |
| Harvesting date                                         | 9 August            | 15 August            | 18 August             |
| Number of weeds in hand weeding plots m <sup>-2</sup>   | 26-57 (average 42)  | 41-67 (average 55)   | 17-34 (average 26)    |
| Weed biomass in hand weeding plots (g m <sup>-2</sup> ) | 14-177 (average 63) | 74-413 (average 179) | 122-297 (average 103) |

Table 2-Important characteristics and application rates of organic manures used in the experiments Cizelge 2-Araştırmada kullanılan organik gübrelerin önemli özellikleri ve uygulama oranları

| Organic manures         | Total N       | Available P   | Organic matter | Application rate       | Producer company |
|-------------------------|---------------|---------------|----------------|------------------------|------------------|
|                         | $(g kg^{-1})$ | $(g kg^{-1})$ | (%)            | (kg ha <sup>-1</sup> ) |                  |
| Bio-Organic (Bio)       | 14.8          | 0.52-0.83     | 50-55          | 750                    | Biyotar          |
| Bio-Organic SR (Bio SR) | 14.8          | 0.52-0.83     | 70-75          | 750                    | Biyotar          |
| Leonardit               | 10.3          | 3.06          | 25-45          | 650                    | Bereket Organik  |
| Organic Manure          | 35.0          | 13.10         | 70             | 1500                   | BioFarm          |
| Cattle manure           |               |               |                |                        |                  |
| 2006-07                 | 7.7           | 2.62          | 17             | 10000                  |                  |
| 2007-08                 | 8.0           | 2.84          | 20             | 10000                  |                  |
| 2008-09                 | 8.3           | 2.71          | 21             | 10000                  |                  |

Japan) on 20 flag leaves per plot (Badaruddin et al 1999). A 30-cm sample from the inner row of each plot was harvested at anthesis stage (ZGS 65) and leaf area determined on plants. Leaf lamina area was measured with area meter (Licor, LI-3000C Model). Leaf area index (LAI) was calculated as the sum of the areas of the leaf laminae (one side) per unit of ground surface area

(Yunusa & Sedgley 1992). Spikes per square meter were determined from 1-m row sample in the center of each plot at the hard dough stage of kernel development (ZGS 87). At maturity, ten spikes were randomly harvested from within plots for kernels per spike determination. The plots were trimmed to 5.0 m, and the four inner rows were harvested by hand at 3-4 cm above soil

surface. The plants were tied and left in respective plots for sun drying for three days. Biomass was measured after drying, and plants were threshed with a plot-combine, and the weight of cleaned grain from each plot was recorded. Thousand-kernel weight was determined from 4×100 kernel samples. Harvest index was estimated as the ratio of grain weight to the biomass.

Statistical analyses were made with the MSTAT-C software package (Freed et al 1989). The analysis of variance was made separately for each growing season, because of large growth differences in between seasons, and the main effect of year, and its interactions were significant. Duncan's multiple range test was used to separate the means when the ANOVA test indicated a significant effect of the treatment (Steel et al 1997).

#### 3. Results and Discussion

#### 3.1. Weather conditions and year effects

Years differed considerably in terms of both precipitation and temperature. Total precipitation was 467.0 mm in 2006-07, 336.7 mm in 2007-08 and 386.7 mm in 2008-09 (Table 1). In 2007-08, very low blanket of snow together with severe during the January resulted in approximately 50% winterkill for Kırik wheat plots. Only in 2008-09 cropping season, wheat stripe rust was observed. Plants did not lodge at any rate of seeding. The climatic conditions were more favorable in 2006-07, and spikes per m<sup>2</sup> and grain yield were higher than other years. The winterkills in Kırik plots in 2007-08 were largely responsible for the resulting low leaf area index, spikes per m<sup>2</sup> and grain yield as well as the reason for the between-year differences and the year × cultivar interactions. Severe infection of wheat stripe rust decreased kernel weight in 2008-09.

#### 3.2. Cultivar performance

There were significant differences between cultivars for all studied parameters. The modern cultivar, Doğu 88 had significantly higher leaf area index, grain filling period, spikes per m<sup>2</sup>, kernels per spike, grain yield and harvest index than the local cultivar Kırik, however, the Kırik

had higher SPAD value and 1000-kernel weight (Tables 3, 4,5 & 6). On average of weed control methods and manure sources, Doğu 88 produced grain yield that was 44.7%, 135.0% and 63.6% higher than the Kırik in 2006-07, 2007-08 and 2008-09 growing seasons, respectively. The higher grain yield in Doğu 88 was due to larger number of spikes per m<sup>2</sup> and kernels per spike. Results of this research and previous studies by Poutala et al (1993), Kitchen et al (2003) and Carr et al (2006) do not support the hypothesis that old cultivars are better adapted to organic systems than modern cultivars if grain yield is an important selection criterion. The cultivars and their interaction with weed control methods were significant for grain yield and the other parameters studied, except leaf area index (Tables 3, 4, 5 & 6). In the growing seasons, Doğu 88 showed 8.8-10.9% and 7.7-10.8% increases in grain yield in response to hand weeding and dense sowing, and Kırik showed 4.2-14.6% and 1.5-8.3%, compared with the weedy control, respectively. Competition with weeds had a large negative effect on grain yield, and wheat cultivars may be differ in weed suppression ability (Kitchen et al 2003: Kaut et al 2008). Weed biomass per unit area was used as a measure of the weed suppression ability of wheat cultivars (Bertholdsson 2005). As averages of years, weed biomass at the beginning of stem elongation was 90.3 g m<sup>-2</sup> and 139.5 g m<sup>-2</sup> in Doğu 88 and Kırik wheat plots, respectively. Doğu 88 plants suppressed weed growth by 35% because of a denser plant canopy. Cultivars × manure source interactions were detected for all parameters. Yield increases in response to manure source were consistently greater for Doğu 88 than for Kırik. As average of years, mineral NP and cattle manure increased grain yield of wheat by 56% and 35% in Doğu 88, by 28% and 15% in Kırik, respectively, compared with unfertilized control. On the other hand, Doğu 88 (80.1 kg ha<sup>-1</sup>) had significantly higher total grain N-uptake than Kırik cultivar (48.9 kg ha<sup>-1</sup>). Possible difference between cultivars in grain yield may be depend on cultivars' adaptation ability to low N-input conditions and on their ability to use nitrogen

Table 3-Effects of experimental variables on leaf area index and grain filling period

Çizelge 3-Deneme faktörlerinin yaprak alanı indeksi ve tane dolum süresi üzerine etkileri

| (IV) (IV) (IV) (IV) (IV) (IV) (IV) (IV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cultivars           | Weed control  | Manures       |         | Leaf area index |         |        | filling period (a | lays)   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|---------------|---------|-----------------|---------|--------|-------------------|---------|
| Mineral NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |               |         |                 | 2008-09 |        |                   |         |
| Weedy control   Bio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |               | Unfertilized  | 1.90    | 0.80            | 1.80    | 38.0   | 35.2              | 38.0    |
| Meedy control   Bio SR   2.15   0.93   2.25   38.8   36.8   40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               | Mineral NP    |         |                 |         |        |                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |               |         |                 |         |        |                   |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | Weedy control |               |         |                 |         |        |                   |         |
| Marcal NP   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000      |                     |               |               |         |                 |         |        |                   |         |
| Unfertilized   2.50   0.80   1.85   38.5   34.9   30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               |               |         |                 |         |        |                   |         |
| Mineral NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |               |         |                 |         |        |                   |         |
| Cirrik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               |               |         |                 |         |        |                   |         |
| Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.   Fig.      |                     |               |               |         |                 |         |        |                   |         |
| Leonardit   2,83   1,55   2,90   37,5   35,0   39,8   20,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   36,0   41,8   39,0   35,2   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39,5   39   |                     |               |               |         |                 |         |        |                   |         |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kırik               | Hand weeding  |               |         |                 |         |        |                   |         |
| Cattle manure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |               |               |         |                 |         |        |                   |         |
| Unfertilized   2.48   1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |               |         |                 |         |        |                   |         |
| Dense sowing   Bio SR   2.70   1.95   3.83   3.83   36.5   41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |               |               |         |                 |         |        |                   |         |
| Dense sowing   Bio   2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |               |               |         |                 |         |        |                   |         |
| Dense sowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |               |               |         |                 |         |        |                   |         |
| Leonardit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |               |               |         |                 |         |        |                   |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | Dense sowing  |               |         |                 |         |        |                   |         |
| Cattle manure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |               |               |         |                 |         |        |                   |         |
| Unfertilized   2.37   2.25   2.43   38.5   37.0   40.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               |               |         |                 |         |        |                   |         |
| Mineral NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |               |         |                 |         |        |                   |         |
| Needy control   Bio SR   2.71   2.55   2.83   3.95   37.4   41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               |               |         |                 |         |        |                   |         |
| Weedy control   Bio SR   2.71   2.55   2.83   39.3   37.8   41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               |               |         |                 |         |        |                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ***           |               |         |                 |         |        |                   |         |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | Weedy control |               |         |                 |         |        |                   |         |
| Cattle manure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |               |               |         |                 |         |        |                   |         |
| Unfertilized   2.64   2.68   2.40   40.8   38.7   42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               |               |         |                 |         |        |                   |         |
| Mineral NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |               |         |                 |         |        |                   |         |
| Panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |               |               |         |                 |         |        |                   |         |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |               |               |         |                 |         |        |                   |         |
| Leonardit   3.38   2.80   3.30   41.0   38.1   42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D × 00              | TT 1 1'       |               |         |                 |         |        |                   |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dogu 88             | Hand weeding  |               |         |                 |         |        |                   |         |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |               |               |         |                 |         |        |                   |         |
| Unfertilized   2.87   2.55   3.03   37.5   37.1   39.8   Mineral NP   4.31   4.05   4.75   38.5   36.7   43.0   43.0   43.0   4.75   38.5   36.7   43.0   43.0   43.0   4.75   38.5   36.7   43.0   43.0   43.0   4.75   38.5   38.5   38.5   38.6   40.5   43.0   43.0   43.0   43.0   4.75   38.5   38.5   38.5   37.7   39.5   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0   43.0      |                     |               |               |         |                 |         |        |                   |         |
| Mineral NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |               |         |                 |         |        |                   |         |
| Dense sowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |               |               |         |                 |         |        |                   |         |
| Dense sowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |               |               |         |                 |         |        |                   |         |
| Leonardit   3.28   2.80   3.20   39.0   36.8   39.5     Organic manure   3.50   3.30   4.08   37.8   35.5   41.8     State   Mean±SEM   2.93±0.47   2.18±0.36   3.11±0.25   39.1±0.97   36.5±1.10   41.1±0.92     Kirik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | D             |               |         |                 |         |        |                   |         |
| Organic manure   3.50   3.30   4.08   37.8   35.5   41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Dense sowing  |               |         |                 |         |        |                   |         |
| Mean±SEM   2.93±0.47   2.18±0.36   3.11±0.25   39.1±0.97   36.5±1.10   41.1±0.92     Kirik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |               |               |         |                 |         |        |                   |         |
| Mean±SEM   2.93±0.47   2.18±0.36   3.11±0.25   39.1±0.97   36.5±1.10   41.1±0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               |               |         |                 |         |        |                   |         |
| Kirik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Moon I SEM    | Cattle manure |         |                 |         |        |                   |         |
| Doğu 88   Weedy control   Hand weeding   Hand wee   | Vivile              | Mean±SEM      |               |         |                 |         |        |                   |         |
| Weedy control   Hand weeding   3.04 a   2.33 a   3.17 a   39.8 a   36.8 a   41.6 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |               |               |         |                 |         |        |                   |         |
| Hand weeding Dense sowing 3.04 a 2.33 a 3.17 a 39.8 a 36.8 a 41.6 a 3.03 a 2.36 a 3.20 a 38.4 c 36.0 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 b 40.5 c 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.5 42.7 a 40.0 a 36.6 40.5 c 40.5 c 40.0 a 40.0 a 40.5 c 40.5 c 40.0 a 40.0 a 40.0 a 40.5 c 40.5 c 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a 40.0 a | Dogu 88             | Weedy control |               |         |                 |         |        |                   |         |
| Dense sowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |               |               |         |                 |         |        |                   |         |
| Unfertilized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |               |               |         |                 |         |        |                   |         |
| Mineral NP   3.44 a   2.74 a   4.27 a   40.0 a   36.5   42.7 a     Bio   2.65 cd   2.06 c   2.72 d   38.8 b   36.6   40.5 c     Bio SR   2.91 bc   2.12 bc   2.75 d   38.9 b   36.8   40.5 c     Leonardit   2.88 bc   2.00 c   2.91 d   38.9 b   36.4   40.2 c d     Organic manure   2.98 bc   2.23 bc   3.60 b   39.0 b   36.1   41.7 b     Cattle manure   3.16 ab   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Companie manure   2.98 bc   2.23 bc   3.60 b   39.0 b   36.1   41.7 b     Cattle manure   3.16 ab   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Companie manure   2.98 bc   2.23 bc   3.60 b   39.0 b   36.1   41.7 b     Cattle manure   3.16 ab   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Companie manure   2.98 bc   2.23 bc   3.60 b   39.0 b   36.1   41.7 b     Companie manure   3.16 ab   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Companie manure   2.98 bc   2.23 bc   3.60 b   39.0 b   36.1   41.7 b     Companie manure   3.16 ab   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Companie manure   2.98 bc   2.001   4.001   4.001   4.001   4.001   4.001     Companie manure   4.17 bc   4.18 bc   4.18 bc   4.18 bc     Companie manure   4.18 bc   4.18 bc   4.18 bc     Companie manure   4.18 bc   4.18 bc   4.18 bc     Companie manure   4.18 bc     C   |                     | 5             | Unfertilized  |         |                 |         |        |                   |         |
| Bio   2.65 cd   2.06 c   2.72 d   38.8 b   36.6   40.5 c     Bio SR   2.91 bc   2.12 bc   2.75 d   38.9 b   36.8   40.5 c     Leonardit   2.88 bc   2.00 c   2.91 d   38.9 b   36.4   40.2 cd     Organic manure   2.98 bc   2.23 bc   3.60 b   39.0 b   36.1   41.7 b     Cattle manure   3.16 ab   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Cattle manure   2.98 bc   2.35 bc   3.60 bc   3.00 l   40.00 l     Cattle manure   2.98 bc   2.23 bc   3.60 bc   3.00 l     Cattle manure   2.98 bc   3.60 bc   3.00 l     Cattle manure   2.98 bc   2.23 bc   3.60 bc   3.00 l     Cattle manure   2.98 bc   2.23 bc   3.60 bc   3.00 l     Cattle manure   2.98 bc   2.23 bc   3.60 bc   3.00 l     Cattle manure   2.98 bc   3.60 bc   3.00 l     Cattle manure   2.98   |                     |               | Mineral NP    | 3.44 a  |                 |         |        |                   |         |
| Leonardit   2.88 bc   2.00 c   2.91 d   38.9 b   36.4   40.2 cd     Organic manure   2.98 bc   2.23 bc   3.60 b   39.0 b   36.1   41.7 b     Cattle manure   3.16 ab   2.35 b   3.27 c   40.1 a   36.6   42.3 ab     Ovalues   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               |               | 2.65 cd | 2.06 c          |         | 38.8 b | 36.6              | 40.5 c  |
| Organic manure Cattle manure         2.98 bc Cattle manure         2.23 bc Sand Sand Sand Sand Sand Sand Sand Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |               |               |         |                 |         |        |                   |         |
| P values         Cattle manure         3.16 ab         2.35 b         3.27 c         40.1 a         36.6         42.3 ab           P values         < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |               |               |         |                 |         |        |                   |         |
| O values          < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.001         < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |               |               |         |                 |         |        |                   |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |               | Cattle manure | 3.16 ab | 2.35 b          | 3.27 c  | 40.1 a | 36.6              | 42.3 ab |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |               |               |         |                 |         |        |                   |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W                   |               |               |         |                 |         |        |                   |         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |               |               |         |                 |         |        |                   |         |
| C × M     <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |               |               |         |                 |         |        |                   |         |
| W×M 0.281 0.416 0.013 <0.001 0.218 0.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C \times M$        |               |               |         |                 |         |        |                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $W \times M$        |               |               |         |                 |         |        |                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C\times W\times M$ |               |               |         |                 |         |        |                   |         |

 $a^{-d}$ ; For each variable, values in a column followed by the different letter are significantly different ( $P \le 0.05$ )

Table 4-Effects of experimental variables on SPAD value and spikes per m<sup>2</sup>

Çizelge 4-Deneme faktörlerinin SPAD değeri ve metrekaredeki başak sayısı üzerine etkileri

| Cultivars    | Weed control  | Manures                         | 2007.07          | SPAD value       | 2000.00          | 2006.07          | Spikes per m <sup>2</sup> | 2000.00          |
|--------------|---------------|---------------------------------|------------------|------------------|------------------|------------------|---------------------------|------------------|
| (C)          | (W)           | (M)                             | 2006-07          | 2007-08          | 2008-09          | 2006-07          | 2007-08                   | 2008-09          |
|              |               | Unfertilized                    | 43.2<br>49.5     | 45.8             | 46.3<br>51.2     | 410.0            | 210.0                     | 410.0            |
|              |               | Mineral NP<br>Bio               | 49.5<br>45.6     | 47.6<br>46.5     | 51.2<br>47.6     | 452.5<br>415.0   | 237.5<br>267.5            | 480.0<br>430.0   |
|              | Wasdersantasl | Bio SR                          | 46.3             | 45.4             | 46.9             | 420.0            | 232.5                     | 430.0            |
|              | Weedy control |                                 | 50.2             |                  | 46.4             |                  |                           | 423.0            |
|              |               | Leonardit                       | 30.2<br>45.0     | 46.2<br>47.1     | 50.3             | 437.5            | 220.0                     |                  |
|              |               | Organic manure<br>Cattle manure | 48.2             | 46.5             | 30.3<br>48.6     | 427.5<br>427.5   | 205.0<br>242.5            | 457.5<br>458.8   |
|              | -             | Unfertilized                    | 45.3             | 45.2             | 46.5             | 427.5            | 220.0                     | 420.0            |
|              |               | Mineral NP                      | 49.6             | 46.5             | 40.3<br>50.5     | 422.3<br>477.5   | 265.0                     | 505.0            |
|              |               | Bio                             | 47.4             | 45.3             | 48.1             | 430.0            | 235.0                     | 430.0            |
| Kırik        | Hand weeding  | Bio SR                          | 47.5             | 46.6             | 48.2             | 430.0            | 220.0                     | 407.5            |
| KIIIK        | riand weeding | Leonardit                       | 48.4             | 46.3             | 48.2             | 437.5            | 245.0                     | 432.5            |
|              |               | Organic manure                  | 47.3             | 43.5             | 50.0             | 477.5            | 265.0                     | 487.5            |
|              |               | Cattle manure                   | 48.5             | 48.4             | 49.5             | 450.0            | 250.0                     | 477.5            |
|              | -             | Unfertilized                    | 44.8             | 44.7             | 45.9             | 462.5            | 245.0                     | 417.3            |
|              |               | Mineral NP                      | 48.9             | 46.3             | 49.7             | 567.5            | 272.5                     | 495.0            |
|              |               | Bio                             | 49.5             | 44.7             | 45.6             | 477.5            | 257.5                     | 493.0            |
|              | Dense sowing  | Bio SR                          | 45.5             | 46.4             | 47.5             | 470.0            | 257.5                     | 437.5            |
|              | Delise sowing | Leonardit                       | 43.3<br>47.8     | 45.5             | 46.2             | 540.0            | 280.0                     | 437.3            |
|              |               | Organic manure                  | 47.8<br>48.0     | 45.5<br>45.0     | 46.2<br>50.8     | 540.0<br>457.5   | 280.0                     | 430.0            |
|              |               | Cattle manure                   | 50.0             | 48.2             | 47.6             | 477.5            | 272.5                     | 485.0            |
|              |               | Unfertilized                    | 43.7             | 44.0             | 44.9             | 430.0            | 387.5                     | 407.5            |
|              |               | Mineral NP                      | 44.6             | 46.2             | 44.9             | 520.0            | 512.5                     | 525.0            |
|              |               | Bio                             | 44.4             | 45.4             | 45.7             | 450.0            | 456.3                     | 470.0            |
|              | Weedy control | Bio SR                          | 44.9             | 43.4             | 43.5             | 490.0            | 477.5                     | 440.0            |
|              | weedy control | Leonardit                       | 43.8             | 44.5             | 44.9             | 452.5            | 456.3                     | 450.0            |
|              |               | Organic manure                  | 43.4             | 44.5             | 44.9             | 432.5            | 450.0                     | 500.0            |
|              |               | Cattle manure                   | 44.4             | 46.0             | 45.9             | 477.5            | 475.0                     | 497.5            |
|              | -             | Unfertilized                    | 45.5             | 44.5             | 42.7             | 445.0            | 445.0                     | 425.0            |
|              |               | Mineral NP                      | 47.1             | 45.9             | 46.7             | 537.5            | 550.0                     | 542.5            |
|              |               | Bio                             | 45.2             | 44.1             | 44.4             | 450.0            | 435.0                     | 455.0            |
| Doğu 88      | Hand weeding  | Bio SR                          | 45.5             | 46.0             | 46.2             | 477.5            | 480.0                     | 435.0            |
| Dogu oo      | riana weeding | Leonardit                       | 44.2             | 44.8             | 43.4             | 467.5            | 460.0                     | 457.5            |
|              |               | Organic manure                  | 46.3             | 44.4             | 45.0             | 490.0            | 525.0                     | 505.0            |
|              |               | Cattle manure                   | 46.0             | 46.7             | 46.9             | 527.5            | 478.8                     | 497.5            |
|              |               | Unfertilized                    | 44.9             | 43.4             | 43.0             | 480.0            | 463.8                     | 472.5            |
|              |               | Mineral NP                      | 47.6             | 45.8             | 47.2             | 602.5            | 568.8                     | 550.0            |
|              |               | Bio                             | 45.4             | 42.9             | 41.9             | 487.5            | 510.0                     | 455.0            |
|              | Dense sowing  | Bio SR                          | 45.5             | 42.9             | 42.4             | 507.5            | 477.5                     | 452.5            |
|              |               | Leonardit                       | 47.6             | 45.0             | 42.8             | 507.5            | 525.0                     | 475.0            |
|              |               | Organic manure                  | 47.0             | 42.5             | 43.3             | 582.5            | 462.5                     | 515.0            |
|              |               | Cattle manure                   | 49.0             | 46.6             | 45.2             | 590.0            | 532.5                     | 512.5            |
|              | Mean±SEM      | Cuttie manare                   | 46.5±0.76        | 45.4±0.95        | 46.5±0.60        | 477.1±33.97      | 363.0±48.28               | 463±12.87        |
| Kırik        |               |                                 | 47.4 a           | 46.1 a           | 48.1 a           | 456.0 b          | 243.7 b                   | 447.8 b          |
| Doğu 88      |               |                                 | 45.5 b           | 44.7 b           | 44.8 b           | 498.3 a          | 482.3 a                   | 478.1 a          |
|              | Weedy control |                                 | 45.5 c           | 45.6 a           | 46.9 a           | 446.6 с          | 345.0 b                   | 455.1 c          |
|              | Hand weeding  |                                 | 46.7 b           | 45.6 a           | 46.9 a           | 466.3 b          | 362.4 ab                  | 462.7 b          |
|              | Dense sowing  |                                 | 47.2 a           | 45.0 b           | 45.6 b           | 518.6 a          | 381.6                     | 471.1 a          |
|              |               | Unfertilized                    | 44.5 d           | 44.6 c           | 44.6 f           | 441.7 c          | 328.5 c                   | 425.0 d          |
|              |               | Mineral NP                      | 47.9 a           | 46.4 a           | 48.6 a           | 526.3 a          | 401.0 a                   | 516.3 a          |
|              |               | Bio                             | 46.2 c           | 44.8 bc          | 45.5 de          | 451.7 c          | 360.2 bc                  | 443.3 c          |
|              |               | Bio SR                          | 45.9 c           | 45.1 bc          | 45.6 d           | 467.1 bc         | 357.5 bc                  | 432.9 d          |
|              |               | Leonardit                       | 47.0 b           | 45.4 b           | 45.3 ef          | 482.1 b          | 364.4 bc                  | 444.2 c          |
|              |               | Organic manure                  | 46.1 c           | 44.5 c           | 47.9 b           | 479.6 b          | 354.2 bc                  | 490.8 b          |
| D            |               | Cattle manure                   | 47.6 a           | 47.1 a           | 47.3 c           | 491.7 b          | 375.2 ab                  | 488.1 b          |
| P values     |               |                                 | <0.001           | <0.001           | <0.001           | <0.001           | <0.001                    | <0.001           |
| C<br>W       |               |                                 | <0.001<br><0.001 | <0.001<br><0.001 | <0.001<br><0.001 | <0.001<br><0.001 | <0.001<br><0.001          | <0.001<br><0.001 |
| M<br>M       |               |                                 | <0.001           | <0.001           | < 0.001          | < 0.001          | < 0.001                   | < 0.001          |
| C × W        |               |                                 | < 0.001          | 0.028            | < 0.001          | 0.534            | 0.561                     | < 0.001          |
| C × W        |               |                                 | < 0.001          | 0.503            | < 0.001          | 0.018            | 0.122                     | 0.001            |
| C 171        |               |                                 | < 0.001          | < 0.001          | < 0.001          | 0.042            | 0.122                     | < 0.001          |
| $W \times M$ |               |                                 | <0.001           |                  |                  |                  |                           | <0.001           |

 $<sup>\</sup>frac{1}{a-f}$ ; For each variable, values in a column followed by the different letter are significantly different ( $P \le 0.05$ )

inputs (Baresel et al 2008). These results suggest that response to management factors in organic wheat farming may depend on choice of cultivar.

#### 3. 3. Effects of weed control

The effects of weed control methods were significant for all parameters (Tables 3, 4, 5 & 6). Over the three study years, a total of 45 weed species were recorded in hand weeding plots. The major weed species were Lactuca serriola L., Cephalaria sparsipilosa Matthews, Polygonum bellardii All., Descurainia sophia L., Adonis aestivalis L., in this study. The results indicated that allowing weeds competing with wheat plants in weedy control plots caused a significant decrement in leaf area index, grain filling period, yield components and consequently led to a reduction in grain yield by 8.4%, compared to hand weeding treatment, as average of years. The harmful effect of weeds may be attributed to allelopathy of weeds on wheat (Oudhia 2000), number of spike bearing tillers, grains per spike, net assimilation rate (Abouziena et al 2008), removal nutrients and moisture from soil (Bertholdsson 2005; Kaut et al 2008). Hand weeding gave the longer grain filling period, greater kernels per spike, heavier 1000-kernel weight and higher harvest index than other treatments. The increases in these parameters were related to lower competition conditions in hand weeding (Kironmay et al 2006; Abouziena et al 2008). As average of years, cultivars and manure sources, the highest spike number per m<sup>2</sup> was obtained from dense sowing. The greater competition in dense sowing treatment compared to hand weeding treatment had a negative effect on grain filling period, kernels per spike and 1000-kernel weight (Ozturk et al 2006). When compared to the weedy control, dense sowing increased leaf area index, spikes per m<sup>2</sup> and grain yield by 14.4%, 10.0% and 7.7%, respectively. The higher grain yield in high seeding rate treatments may be related to a decreasing in weed researchers reported Many increasing crop density resulted in reduced weed growth and increased in grain yield (Doll 1997; Weiner et al 2001).

#### 3.4. Effects of manure source

The results show significant differences in measured parameters due to various manure applications (Tables 3, 4, 5 & 6). Mineral NP application resulted in significantly higher leaf area index, spikes per m<sup>2</sup>, kernels per spike and grain yield than organic manures. As averages of years, cultivars and weed control methods; cattle manure, Organic Manure, Leonardit, Bio SR and Bio applications increased spikes per m<sup>2</sup> by 13.4%, 10.8%, 8.0%, 5.2% and 5.0%; kernels per spike by 13.4%, 11.7%, 7.7%, 6.1% and 6.6%, compared with respectively. unfertilized treatment. The highest 1000-kernel weights were obtained from NP and cattle manure application. Cattle manure and Organic Manure yielded similar results and produced higher grain yield than other organic amendments (Table 6). Cattle manure and Organic Manure increased grain yield by 25.6% and 23.2%, respectively, compared to unfertilized treatment. This finding is agreed with the results from several other studies investigating the effects of various manure sources application organically managed wheat in experiments (Barzegar et al 2002; Garcia-Martin et al 2007; Gopinath et al 2008). The greater effect of mineral NP on grain yield may have been associated with the higher readily available NP amount in plots (Hiltbrunner et al 2005; Garcia-Martin et al 2007). On the other hand, lower availability of plant nutrients in plots applied with organic manures was expected, due to the slower release rates of organic materials (Gopinath et al 2008). The higher SPAD values may have been caused by the amount and availability of nutrients in the mineral NP. Among the organic manures, cattle manure application resulted in higher grain yields followed by Organic Manure. Chemical analyses of cattle manure indicated that it generally added more N and P than did the other organic manures (Table 2). Many works have demonstrated that farmyard manure increase grain yield of wheat through improvement of soil water capacity, physical and conditions, and greater availability of plant nutrients (Garcia-Martin et al 2007; Olesen et al

Table 5-Effects of experimental variables on kernels per spike and 1000 kernel weight

Çizelge 5-Deneme faktörlerinin başaktaki tane sayısı ve 1000 tane ağırlığı üzerine etkileri

| Cultivars             | Weed control  | Manures             |              | Kernel per spike |           |           | kernel weight ( |           |
|-----------------------|---------------|---------------------|--------------|------------------|-----------|-----------|-----------------|-----------|
| (C)                   | (W)           | (M)                 | 2006-07      | 2007-08          | 2008-09   | 2006-07   | 2007-08         | 2008-09   |
|                       |               | Unfertilized        | 16.4         | 16.8             | 16.7      | 38.6      | 38.4            | 35.1      |
|                       |               | Mineral NP          | 20.2         | 22.3             | 19.3      | 39.1      | 39.9            | 39.8      |
|                       |               | Bio                 | 19.1         | 17.7             | 16.3      | 38.3      | 37.1            | 35.1      |
|                       | Weedy control | Bio SR              | 19.4         | 18.9             | 18.2      | 37.8      | 37.1            | 36.7      |
|                       |               | Leonardit           | 18.4         | 20.5             | 15.5      | 37.0      | 38.0            | 37.2      |
|                       |               | Organic manure      | 17.1         | 16.7             | 19.9      | 39.0      | 38.2            | 40.4      |
|                       |               | Cattle manure       | 19.1         | 20.1             | 18.0      | 37.7      | 38.3            | 37.8      |
|                       |               | Unfertilized        | 18.8         | 19.4             | 15.6      | 37.8      | 37.0            | 34.5      |
|                       |               | Mineral NP          | 21.5         | 22.2             | 21.3      | 40.3      | 39.0            | 41.3      |
|                       |               | Bio                 | 20.8         | 20.4             | 16.4      | 39.5      | 38.7            | 32.2      |
| Kırik                 | Hand weeding  | Bio SR              | 19.5         | 20.6             | 15.0      | 40.2      | 38.0            | 36.7      |
|                       | Tiana weening | Leonardit           | 19.7         | 19.0             | 17.2      | 38.7      | 39.1            | 35.5      |
|                       |               | Organic manure      | 19.4         | 21.5             | 17.4      | 39.8      | 38.7            | 38.4      |
|                       |               | Cattle manure       | 20.3         | 21.2             | 17.4      | 40.4      | 39.2            | 39.9      |
|                       | -             | Unfertilized        | 16.1         | 18.6             | 15.5      | 36.3      | 36.7            | 35.1      |
|                       |               |                     |              |                  |           |           |                 |           |
|                       |               | Mineral NP          | 20.2         | 21.1             | 20.1      | 37.8      | 38.1            | 38.5      |
|                       | D             | Bio                 | 16.5         | 21.5             | 14.8      | 37.2      | 37.8            | 35.6      |
|                       | Dense sowing  | Bio SR              | 16.0         | 20.5             | 16.6      | 37.6      | 38.1            | 36.5      |
|                       |               | Leonardit           | 16.6         | 21.2             | 16.9      | 36.8      | 37.6            | 34.2      |
|                       |               | Organic manure      | 17.0         | 19.7             | 17.9      | 37.3      | 38.6            | 36.9      |
|                       |               | Cattle manure       | 19.5         | 19.3             | 18.1      | 37.6      | 37.9            | 38.3      |
|                       |               | Unfertilized        | 24.1         | 24.1             | 20.4      | 35.2      | 36.4            | 31.0      |
|                       |               | Mineral NP          | 28.6         | 27.8             | 26.6      | 37.7      | 37.3            | 37.8      |
|                       |               | Bio                 | 23.9         | 23.2             | 24.1      | 36.6      | 36.7            | 35.6      |
|                       | Weedy control | Bio SR              | 25.5         | 23.2             | 21.1      | 35.9      | 35.7            | 35.7      |
|                       |               | Leonardit           | 26.2         | 24.3             | 20.4      | 38.9      | 37.3            | 35.6      |
|                       |               | Organic manure      | 25.4         | 23.5             | 25.0      | 37.0      | 37.3            | 38.1      |
|                       |               | Cattle manure       | 26.6         | 25.5             | 25.2      | 38.4      | 38.6            | 38.8      |
|                       |               | Unfertilized        | 23.7         | 23.9             | 21.2      | 36.8      | 37.1            | 33.5      |
|                       |               | Mineral NP          | 28.3         | 24.6             | 29.0      | 39.2      | 38.8            | 38.7      |
|                       |               | Bio                 | 25.7         | 24.3             | 22.0      | 38.7      | 38.4            | 32.9      |
| Doğu 88               | Hand weeding  | Bio SR              | 25.6         | 24.8             | 23.1      | 38.3      | 38.4            | 34.6      |
|                       |               | Leonardit           | 26.7         | 26.5             | 23.1      | 39.1      | 38.4            | 36.1      |
|                       |               | Organic manure      | 27.1         | 26.0             | 26.6      | 38.3      | 37.4            | 35.2      |
|                       |               | Cattle manure       | 27.2         | 25.6             | 25.4      | 40.4      | 39.8            | 39.9      |
|                       |               | Unfertilized        | 20.2         | 21.1             | 19.6      | 34.7      | 34.9            | 31.9      |
|                       |               | Mineral NP          | 27.0         | 25.9             | 28.8      | 37.0      | 37.7            | 39.7      |
|                       |               | Bio                 | 22.5         | 24.0             | 23.7      | 35.2      | 35.5            | 32.0      |
|                       | Dense sowing  |                     |              |                  |           |           |                 |           |
|                       | Dense sowing  | Bio SR<br>Leonardit | 20.8<br>26.4 | 22.5             | 24.1      | 35.3      | 35.8            | 32.4      |
|                       |               |                     |              | 23.3             | 18.8      | 34.7      | 34.8            | 33.7      |
|                       |               | Organic manure      | 23.8         | 23.9             | 25.5      | 35.2      | 36.0            | 39.5      |
|                       | ), and        | Cattle manure       | 23.1         | 24.7             | 23.3      | 36.4      | 36.5            | 38.1      |
| ** **                 | Mean±SEM      |                     | 21.9±1.61    | 22.2±1.36        | 20.5±1.74 | 37.7±0.89 | 37.6±0.82       | 36.3±1.47 |
| Kırik                 |               |                     | 18.7 b       | 20.0 b           | 17.3 b    | 38.3 a    | 38.2 a          | 36.9 a    |
| Doğu 88               | *** 1 . 1     |                     | 25.2 a       | 24.4 a           | 23.7 a    | 37.1 b    | 37.1 b          | 35.8 b    |
|                       | Weedy control |                     | 22.1 b       | 21.8 b           | 20.5      | 37.6 b    | 37.6 b          | 36.8 a    |
|                       | Hand weeding  |                     | 23.2 a       | 22.8 a           | 20.7      | 39.1 a    | 38.4 a          | 36.4 ab   |
|                       | Dense sowing  | TT C                | 20.4 c       | 21.9 b           | 20.3      | 36.4 c    | 36.9 c          | 35.9 b    |
|                       |               | Unfertilized        | 19.9 d       | 20.7 c           | 18.2 d    | 36.7 c    | 36.8 c          | 33.5 d    |
|                       |               | Mineral NP          | 24.3 a       | 24.0 a           | 24.2 a    | 38.5 a    | 38.5 a          | 39.3 a    |
|                       |               | Bio                 | 21.4 bc      | 21.8 b           | 19.5 c    | 37.7 b    | 37.4 bc         | 33.9 d    |
|                       |               | Bio SR              | 21.1 c       | 21.7 b           | 19.7 c    | 37.5 b    | 37.2 bc         | 35.4 c    |
|                       |               | Leonardit           | 22.3 bc      | 22.5 b           | 18.6 cd   | 37.5 b    | 37.5 b          | 35.4 c    |
|                       |               | Organic manure      | 21.6 bc      | 21.9 b           | 22.0 b    | 37.7 b    | 37.7 b          | 38.1 b    |
|                       |               | Cattle manure       | 22.6 b       | 22.7 b           | 21.2 b    | 38.5 a    | 38.4 a          | 38.8 ab   |
| <sup>D</sup> values   |               |                     |              |                  |           |           |                 |           |
| C                     |               |                     | < 0.001      | < 0.001          | < 0.001   | < 0.001   | < 0.001         | < 0.001   |
| W                     |               |                     | < 0.001      | < 0.001          | < 0.001   | < 0.001   | < 0.001         | < 0.001   |
| M                     |               |                     | < 0.001      | < 0.001          | < 0.001   | < 0.001   | < 0.001         | < 0.001   |
| $C \times W$          |               |                     | 0.114        | < 0.001          | 0.056     | 0.033     | < 0.001         | 0.860     |
| $C \times M$          |               |                     | 0.005        | 0.309            | < 0.001   | < 0.001   | 0.091           | 0.007     |
| $W \times M$          |               |                     | 0.149        | < 0.001          | 0.060     | 0.031     | < 0.001         | < 0.001   |
| $C \times W \times M$ |               |                     | 0.268        | 0.003            | 0.019     | 0.007     | 0.014           | < 0.001   |

 $<sup>\</sup>frac{a-d}{a-d}$ ; For each variable, values in a column followed by the different letter are significantly different ( $P \le 0.05$ )

Table 6- Effects of experimental variables on grain yield and harvest index

Çizelge 6- Deneme faktörlerinin tane verimi ve hasat indeksi üzerine etkileri

| Cultivars             | Weed control  | Manures                       |            | rain yield (kg ha <sup>-1</sup> , |            |           | arvest index (%) |           |
|-----------------------|---------------|-------------------------------|------------|-----------------------------------|------------|-----------|------------------|-----------|
| (C)                   | (W)           | (M)                           | 2006-07    | 2007-08                           | 2008-09    | 2006-07   | 2007-08          | 2008-09   |
|                       |               | Unfertilized                  | 2362       | 1421                              | 2026       | 27.4      | 24.1             | 25.5      |
|                       |               | Mineral NP                    | 3452       | 1926                              | 2955       | 30.2      | 27.0             | 25.9      |
|                       |               | Bio                           | 2676       | 1591                              | 2292       | 27.0      | 26.3             | 25.0      |
|                       | Weedy control | Bio SR                        | 2742       | 1483                              | 2395       | 27.3      | 24.9             | 28.0      |
|                       |               | Leonardit                     | 2781       | 1516                              | 2410       | 27.9      | 24.6             | 26.5      |
|                       |               | Organic manure                | 2943       | 1524                              | 2103       | 30.1      | 24.8             | 22.6      |
|                       |               | Cattle manure                 | 2819       | 1703                              | 2638       | 27.7      | 25.8             | 27.2      |
|                       |               | Unfertilized                  | 2714       | 1715                              | 2004       | 30.1      | 27.4             | 23.3      |
|                       |               | Mineral NP                    | 3463       | 1974                              | 3296       | 28.4      | 26.9             | 25.3      |
|                       |               | Bio                           | 2930       | 1645                              | 2416       | 30.4      | 26.7             | 28.8      |
| Kırik                 | Hand weeding  | Bio SR                        | 2942       | 1648                              | 2173       | 30.6      | 25.9             | 25.4      |
| KIIIK                 | riana weeding | Leonardit                     | 3091       | 1933                              | 2355       | 30.8      | 24.0             | 27.0      |
|                       |               | Organic manure                | 2892       | 1881                              | 2597       | 30.2      | 25.6             | 22.9      |
|                       |               | Cattle manure                 | 2988       | 2032                              | 2681       | 33.2      | 26.6             | 29.5      |
|                       | -             |                               |            |                                   |            |           | 23.6             | 24.3      |
|                       |               | Unfertilized                  | 2682       | 1645                              | 2041       | 26.4      |                  |           |
|                       |               | Mineral NP                    | 3506       | 1799                              | 3350       | 31.3      | 26.3             | 28.6      |
|                       | ъ .           | Bio                           | 2884       | 1817                              | 2106       | 32.2      | 24.8             | 26.4      |
|                       | Dense sowing  | Bio SR                        | 2940       | 1804                              | 2081       | 30.5      | 23.7             | 22.8      |
|                       |               | Leonardit                     | 3124       | 1648                              | 2216       | 32.3      | 23.7             | 25.7      |
|                       |               | Organic manure                | 2945       | 1498                              | 2996       | 32.3      | 25.2             | 28.9      |
|                       |               | Cattle manure                 | 3053       | 1877                              | 2291       | 28.6      | 27.5             | 25.3      |
|                       |               | Unfertilized                  | 3114       | 2955                              | 3388       | 32.1      | 28.0             | 34.2      |
|                       |               | Mineral NP                    | 4970       | 5273                              | 4075       | 31.3      | 30.3             | 26.1      |
|                       |               | Bio                           | 3446       | 3306                              | 3220       | 29.6      | 26.9             | 29.3      |
|                       | Weedy control | Bio SR                        | 3624       | 3106                              | 3810       | 26.8      | 26.3             | 29.6      |
|                       |               | Leonardit                     | 3988       | 3746                              | 3806       | 30.9      | 26.6             | 30.3      |
|                       |               | Organic manure                | 4483       | 4397                              | 3869       | 32.1      | 28.1             | 27.4      |
|                       |               | Cattle manure                 | 4510       | 3819                              | 4160       | 33.1      | 29.7             | 29.2      |
|                       |               | Unfertilized                  | 3687       | 3212                              | 3760       | 32.3      | 25.2             | 30.9      |
|                       |               | Mineral NP                    | 5236       | 5274                              | 4310       | 31.8      | 28.5             | 24.1      |
|                       |               | Bio                           | 3993       | 3679                              | 4116       | 29.9      | 28.5             | 31.6      |
| Doğu 88               | Hand weeding  | Bio SR                        | 4619       | 3773                              | 4025       | 33.6      | 30.3             | 27.5      |
| Dogu oo               | riana weeding | Leonardit                     | 4369       | 4056                              | 3935       | 30.9      | 28.1             | 29.0      |
|                       |               | Organic manure                | 4555       | 4800                              | 4194       | 31.1      | 28.5             | 28.2      |
|                       |               |                               | 4742       | 4390                              | 4310       | 34.9      | 29.3             | 29.5      |
|                       | -             | Cattle manure<br>Unfertilized | 3659       | 3102                              | 3607       | 29.6      | 24.2             | 28.4      |
|                       |               | Mineral NP                    |            | 5427                              | 4562       | 33.4      | 29.7             | 26.8      |
|                       |               |                               | 5020       |                                   |            |           |                  |           |
|                       | D             | Bio                           | 4206       | 3592                              | 4175       | 31.6      | 26.0             | 30.1      |
|                       | Dense sowing  | Bio SR                        | 4279       | 3725                              | 3866       | 31.7      | 26.6             | 27.9      |
|                       |               | Leonardit                     | 4233       | 3848                              | 4097       | 32.2      | 25.9             | 29.7      |
|                       |               | Organic manure                | 4266       | 4369                              | 4502       | 30.8      | 28.2             | 30.7      |
|                       |               | Cattle manure                 | 4628       | 4961                              | 4360       | 31.3      | 28.5             | 27.9      |
|                       | Mean±SEM      |                               | 3608±327.6 | 2878±354.9                        | 3228±313.1 | 30.6±1.47 | 26.6±1.61        | 27.5±3.40 |
| Kırik                 |               |                               | 2949 b     | 1718 b                            | 2449 b     | 29.8 b    | 25.5 b           | 25.9 b    |
| Doğu 88               |               |                               | 4268 a     | 4038 a                            | 4007 a     | 31.5 a    | 27.8 a           | 29.0 a    |
|                       | Weedy control |                               | 3422 b     | 2697 b                            | 3082 b     | 29.5 b    | 26.7 ab          | 27.6      |
|                       | Hand weeding  |                               | 3730 a     | 3001 a                            | 3298 a     | 31.3 a    | 27.2 a           | 27.4      |
|                       | Dense sowing  |                               | 3673 a     | 2937 a                            | 3303 a     | 31.0 a    | 26.0 b           | 27.4      |
|                       |               | Unfertilized                  | 3036 e     | 2341 d                            | 2804 d     | 29.6 с    | 25.4 d           | 27.8      |
|                       |               | Mineral NP                    | 4275 a     | 3612 a                            | 3758 a     | 31.1 ab   | 28.1 a           | 26.1      |
|                       |               | Bio                           | 3356 d     | 2605 cd                           | 3054 c     | 30.1 bc   | 26.5 cd          | 28.5      |
|                       |               | Bio SR                        | 3524 cd    | 2590 cd                           | 3058 с     | 30.1 bc   | 26.3 cd          | 26.9      |
|                       |               | Leonardit                     | 3598 bcd   | 2791 c                            | 3136 c     | 30.8 ab   | 25.5 d           | 28.0      |
|                       |               | Organic manure                | 3680 bc    | 3078 b                            | 3377 b     | 31.1 ab   | 26.7 bc          | 26.8      |
|                       |               | Cattle manure                 | 3790 b     | 3130 b                            | 3406 b     | 31.5 a    | 27.9 ab          | 28.1      |
| P values              |               |                               |            |                                   | 0.55       |           |                  |           |
| C                     |               |                               | < 0.001    | < 0.001                           | < 0.001    | < 0.001   | < 0.001          | < 0.001   |
| W                     |               |                               | < 0.001    | < 0.001                           | < 0.001    | < 0.001   | < 0.001          | 0.904     |
| M                     |               |                               | < 0.001    | < 0.001                           | < 0.001    | < 0.001   | < 0.001          | 0.166     |
| $C \times W$          |               |                               | 0.112      | 0.278                             | 0.008      | 0.017     | 0.607            | 0.712     |
| $C \times M$          |               |                               | < 0.001    | < 0.001                           | 0.020      | < 0.001   | 0.078            | 0.010     |
| $W \times M$          |               |                               | 0.288      | 0.213                             | 0.007      | < 0.001   | 0.056            | 0.009     |
| $C \times W \times M$ |               |                               | 0.823      | 0.670                             | 0.267      | 0.014     | 0.024            | 0.939     |

 $<sup>\</sup>frac{a-d}{a-d}$ ; For each variable, values in a column followed by the different letter are significantly different  $(P \le 0.05)$ 

2009). Lower grain yields in the plots amended with Bio, Bio SR and Leonardit may have been associated with the less readily available nutrients. Rodrigues et al (2006) indicated that commercial organic amendments did not exhibit good performance. As average of years and cultivars, weed biomass for unfertilized, mineral NP, Bio, Bio SR, Leonardit, Organic Manure and cattle manure treatments were 142.5, 150.3, 80.7, 97.3, 93.7, 74.9 and 164.8 g m<sup>-2</sup> in hand weeding plots, respectively. These results suggest that the varying amount and availability of nutrients can affect the weed biomass (Liebman & Davis 2000). Higher weed biomass in cattle manure plots may have been associated with the potential introduction of seeds in the cattle manure.

As average of years, grain yields of organic treatment combinations ranged between 1936 kg ha<sup>-1</sup> and 4649 kg ha<sup>-1</sup>. The highest grain yields were obtained from "Doğu 88 + dense sowing + cattle manure", followed by "Doğu 88 + hand weeding + Organic Manure", while the lowest grain yield was recorded for "Kırik + weedy control + unfertilized) combined plots. The economic analyses were made according to local cost and organic product prices. "Doğu 88 + dense sowing + cattle manure" combination had the highest gross production value and gross profit (Birinci et al 2010).

#### 4. Conclusions

High yield potential, ability to competition with weeds and nitrogen use may be important traits adaptation to organic farming conditions. Doğu 88 should, therefore, be preferred to local cultivar Kırik. Controlling the weeds by increasing seeding rate by 30% could be more suitable, particularly in large areas. Cattle manure can be used for improvement of grain yield of wheat and soil fertility.

#### Acknowledgements

This research (Project No: TOVAG 106O726) was supported by TUBITAK. The authors thank the TUBITAK for funding.

#### References

- Abouziena H F, Faida A A S & El-Doseki E R (2008). Efficacy of cultivar and weed control treatments on wheat yield and associated weeds in sandy soils. World Journal of Agricultural Sciences 4 (3): 384-389
- Badaruddin M, Reynolds M P & Ageeb O A A (1999). Wheat management in warm environments: Effect of organic and inorganic fertilizers, irrigation frequency, and mulching. *Agronomy Journal* **91** (6): 975-983.
- Baresel J P, Zimmermann E G & Reents E H J (2008). Effects of genotype and environment on N uptake and N partition in organically grown winter wheat (*Triticum aestivum* L.) in Germany. *Euphytica* **163** (3): 347–354
- Barzegar A R, Yousefi A & Daryashenas A (2002). The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. *Plant and Soil* **247** (2): 295-301
- Bertholdsson N O (2005). Early vigour and allelopathy—two useful traits for enhanced barley and wheat competitiveness against weeds. *Weed Research* **45** (2): 94-102
- Birinci A, Ozturk A, Bulut S & Ikikat Tumer E (2010).
  Farklı Gübre Kaynakları ve Yabancı Ot Kontrol Yöntemlerinin Organik Buğdayda Gayri Safi Üretim Değeri ve Brüt Kâr Üzerine Etkisi. Türkiye IV. Organik Tarım Sempozyumu. Bildiri Kitabı: 114-118. 28 Haziran 1 Temmuz 2010, Erzurum
- Carr P M, Kandel H J, Porter P M, Horsley R D & Zwinger S F (2006). Wheat cultivar performance on certified organic fields in Minnesota and North Dakota. *Crop Science* **46** (5): 1963-1971
- David C, Jeuffroy M H, Henning J & Meynard J M (2005). Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agronomy for Sustainable Development 25 (2): 213-223
- Doll H (1997). The ability of barley to compete with weeds. *Biological Agriculture and Horticulture* **14** (1): 43-51
- Freed R, Einensmith S P, Guetz S, Reicosky D, Smail V W & Wolberg P (1989). User's Guide to MSTAT-C Analysis of Agronomic Research Experiments. Michigan State University, East Lansing, MI, USA
- Garcia-Martin A, Lopez-Bellido R J & Coleto J M (2007). Fertilization and weed control effects on yield and weeds in durum wheat grown under rainfed conditions in a Mediterranean climate. *Weed*

- Research 47 (2): 140-148
- Gopinath K A, Saha S, Mina B L, Pande H, Kundu S & Gupta H S (2008). Influence of organic amendments on growth, yield and quality of wheat and on soil properties during transition to organic production. *Nutrient Cycling in Agroecosystems* 82 (1): 51-60
- Hiltbrunner J, Liedgens M, Stamp P & Streit B (2005). Effects of row spacing and liquid manure on directly drilled winter wheat in organic farming. *Europen Journal of Agronomy* **22** (4): 441-447
- Kaut A H E E, Mason H E, Navabi A, Donovan J T O & Spaner D (2008). Organic and conventional management of mixtures of wheat and spring cereals. Agronomy for Sustainable Development 28 (3): 363-371
- Kironmay B, Amaresh K, Ghosh S K, Pritma G & Dipali M (2006). Bio-efficacy of some new herbicides for ecosafe weed management in wheat (*Triticum aestivum* L.). Journal of Crop and Weed 2 (1): 9-12
- Kitchen J L, McDonald G K, Shepherd K W, Lorimer M F & Graham RD (2003). Comparing wheat grown in South Australian organic and conventional farming systems. I. Growth and grain yield. Australian Journal of Agricultural Research 54 (9): 889-901
- Liebman M & Davis AS (2000). Integration of soil, crop and weed management in low-external-input farming system. *Weed Research* **40** (1): 27-47
- Olesen J E, Askegaard M & Rasmussen I A (2009). Winter cereal yields as affected by animal manure and green manure in organic arable farming. European Journal of Agronomy 30 (2): 119-128
- Oudhia P (2000). Allelopathic effects of *Parthenium hysterophorus* and *Ageratum conyzoides* on wheat var. Sujata. *Crop Research* **20** (3): 563-566
- Ozturk A, Caglar O & Bulut S (2006). Growth and yield response of facultative wheat to winter sowing, freezing sowing and spring sowing at different seeding rates. *Journal of Agronomy and Crop Science* 192 (1): 10-16
- Poutala R T, Korva J & Varis E (1993). Spring wheat cultivars performance in ecological and conventional cropping systems. *Journal of Sustainable Agriculture* **3** (3): 63-68
- Rodrigues M A, Pereira A, Cabanas J E, Dias L, Pires J & Arrobas M (2006). Crop use-efficiency of nitrogen from manures permitted in organic farming. *European Journal of Agronomy* **25** (4):

- 328-335
- Steel R G, Torrie J H & Dickey D A (1997). Principles and Procedure of Statistics: A Biometrical Approach. McGraw-Hill, New York
- TUIK (2008). Turkish Statistical Institute: Agriculture, Crop Production Statistics. Available: http://www.tuik.gov.tr
- Weiner J, Griepentrog H W & Kristensen L (2001). Suppression of weeds by spring wheat *Triticum* aestivum increases with crop density and spatial uniformity. *Journal of Applied Ecology* **38** (4): 784-790
- Yunusa I A M & Sedgley R H (1992). Reduced tillering spring wheats for heavy textured soils in a semi-arid Mediterranean environment. *Journal of Agronomy* and Crop Science 168 (3): 159-168
- Zadoks J C, Chang T T & Konzak C F (1974). A decimal code for the growth stages of cereals. *Weed Research* **14** (6): 415-421