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Abstract 
 
Static analysis of a functionally graded (FG) simply-supported beam subjected to a uniformly distributed load 
has been investigated by using Ritz method within the framework of Timoshenko and the higher order shear 
deformation beam theories. The material properties of the beam vary continuously in the thickness direction 
according to the power-law form. Trial functions denoting the transverse, the axial deflections and the rotation 
of the cross-sections of the beam are expressed in trigonometric functions. In this study, the effect of various 
material distributions on the displacements and the stresses of the beam are examined. Numerical results 
indicate that stress distributions in FG beams are very different from those in isotropic beams. 
 
Keywords: Beams, functionally graded materials, Timoshenko beam theory, the higher order shear deformation 
theory, Ritz method. 
 
 
1. Introduction 
 
In material sciences, a functionally graded material (FGM) is a type of material whose 
composition is designed to change continuously within the solid. The concept is to make a 
composite material by varying the microstructure from one material to another material with a 
specific gradient. This enables the material to have good specifications of both materials. If it 
is for thermal or corrosive resistance or malleability and toughness, both strengths of the 
material may be used to avoid corrosion, fatigue, fracture and stress corrosion cracking. The 
transition between the two materials can usually be approximated by means of a power series. 
The aircraft and aerospace industry and the computer circuit industry are very interested in the 
possibility of materials that can withstand very high thermal gradients. This is normally 
achieved by using a ceramic layer connected with a metallic layer. The concept of FGM was 
first considered in Japan in 1984 during a space plane project. The FGM materials can be 
designed for specific applications. For example, thermal barrier coatings for turbine blades 
(electricity production), armor protection for military applications, fusion energy devices, 
biomedical materials including bone and dental implants, space/aerospace industries, 
automotive applications, etc.  
 
Static and dynamic analyses of FGM structures have attracted increasing research effort in the 
last decade because of the wide application areas of FGMs. For instance, Sankar [1] gave an 
elasticity solution based on the Euler-Bernoulli beam theory for functionally graded beam 
subjected to static transverse loads by assuming that Young’s modulus of the beam vary 
exponentially through the thickness. Chakraborty et al. [2] proposed a new beam finite 
element based on the first-order shear deformation theory to study the thermoelastic behavior 
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of functionally graded beam structures. In [2], static, free and wave propagation analysis are 
carried out to examine the behavioral difference of functionally graded material beam with 
pure metal or pure ceramic. Chakraborty and Gopalakrishnan [3] analyzed the wave 
propagation behavior of FG beam under high frequency impulse loading, which can be 
thermal or mechanical, by using the spectral finite element method. Aydogdu and Taskin [4] 
investigated the free vibration behavior of a simply supported FG beam by using Euler-
Bernoulli beam theory, parabolic shear deformation theory and exponential shear deformation 
theory. Zhong and Yu [5] presented an analytical solution of a cantilever FG beam with 
arbitrary graded variations of material property distribution based on two-dimensional 
elasticity theory. Ying et al. [6] obtained the exact solutions for bending and free vibration of 
FG beams resting on a Winkler-Pasternak elastic foundation based on the two- dimensional 
elasticity theory by assuming that the beam is orthotropic at any point and the material 
properties vary exponentially along the thickness direction. Kapuria et al. [7] presented a 
finite element model for static and free vibration responses of layered FG beams using an 
efficient third order zigzag theory for estimating the effective modulus of elasticity, and its 
experimental validation for two different FGM systems under various boundary conditions. 
Yang and Chen [8] studied the free vibration and elastic buckling of FG beams with open 
edge cracks by using Euler-Bernoulli beam theory. Li [9] proposed a new unified approach to 
investigate the static and the free vibration behavior of Euler-Bernoulli and Timoshenko 
beams. In a recent study by Yang et al. [10], free and forced vibrations of cracked FG beams 
subjected to an axial force and a moving load were investigated by using the modal expansion 
technique. Kadoli et al. [11] studied the static behavior of a FG beam by using higher order 
shear deformation theory and finite element method. Benatta et al. [12] proposed an analytical 
solution to the bending problem of a symmetric FG beam by including warping of the cross-
section and shear deformation effect. Sallai et al. [13] investigated the static responses of a 
sigmoid FG thick beam by using different beam theories. Sina et al. [14] used a new beam 
theory different from the traditional first-order shear deformation beam theory to analyze the 
free vibration of a FG beams. Şimşek and Kocatürk [15] have recently investigated the free 
and forced vibration characteristics of a FG Euler-Bernoulli beam under a moving harmonic 
load. Şimşek [16] studied the dynamic deflections and the stresses of an FG simply-supported 
beam subjected to a moving mass by using Euler-Bernoulli, Timoshenko and the higher order 
shear deformation theories by considering the centripetal, inertia and Coriolis effects of the 
moving mass. 
 
As it is known, Timoshenko beam theory (TBT) or the first order shear deformation theory in 
which straight lines perpendicular to the mid-plane before bending remain straight, but no 
longer remain perpendicular to the mid-plane after bending. In TBT, the distribution of the 
transverse shear stress with respect to the thickness coordinate is assumed constant. Thus, a 
shear correction factor is required to compensate for the error because of this assumption in 
TBT. However, studies in the literature show that TBT gives satisfactory results and it is very 
effective to investigate behavior of beams and plates. The higher order shear deformation 
theory (HOSDT) or the third order shear deformation theory which assumed parabolic 
distribution of the transverse shear stress and strain with respect to the thickness coordinate 
was proposed for beams with rectangular cross-sections by Reddy [17]. Consequently, zero 
transverse shear stress condition of the upper and lower fibers of the cross-section is satisfied 
without a shear correction factor in HOSDT. 
 
The aim of this paper is to investigate the static analysis of a functionally graded simply-
supported beam under a uniformly distributed load by Ritz method. It is assumed that material 
properties of the beam vary continuously in the thickness direction according to the power-
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law. In this study, various material distributions on the displacements and the stresses of the 
FG beam are examined. 
 
2. Theory and Formulations 
 
A functionally graded simply-supported beam of length L, width b, thickness h, with co-
ordinate system ( )Ox y z  having the origin O is shown in Fig.1. The beam is subjected to a 

uniformly distributed load, q . 
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Fig. 1. A functionally graded simply-supported beam subjected to a uniformly distributed 

load. 
 
In this study, it is assumed that the FG beam is made of ceramic and metal, and the effective 
material properties of the FG beam, i.e., Young’s modulus E , Poisson’s ratio υ  and shear 
modulus G  vary continuously in the thickness direction (z  axis direction) according to 
power-law form introduced by [18]  
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where k  is the non-negative variable parameter (power-law exponent) which dictates the 
material variation profile through the thickness of the beam, m  and c  stand for metal and 
ceramic constituents, respectively. 
 
It is clear from Eqs. (1-3) that  
 

cE E= ,  cυ υ= ,  cG G=   at  / 2z h= −      (4a) 

mE E= ,  mυ υ= ,  mG G=   at  / 2z h=      (4b) 

 
Fig. 2 shows variation of the modulus of elasticity through the thickness of the beam.  
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Fig. 2. Variation of the modulus of elasticity through the thickness of the FG beam. 
 
Based on the higher order shear deformation theory, the axial displacement, xu , and the 

transverse displacement of any point of the beam, zu , are given as [17] 

 

( ) ( ) ( ) ( ) ( )( )3
0 0,,x xu x z u x z x z w x xφ α φ= + − +    (5a) 

( ) ( )0,zu x z w x=      (5b) 

 
where 0u  and 0w  are the axial and the transverse displacement of any point on the neutral 

axis, φ  is the rotation of the cross-sections, 24/(3 )hα = , and ,( ) x  indicates the derivative 

with respect to x . The strain-displacement relations are given by 
 

  ( )3
, 0, , , 0,xx x x x x x xxu u z z wε φ α φ= = + − +     (6a) 

   ( ) ( )2
, , 0,1 3xz x z z x xu u z wγ α φ= + = − +     (6b) 

 
where xxε  and xzγ  are the normal and the shear strain, respectively. By assuming that the 

material of FGM beam obeys Hooke’s law, the stresses in the beam become 
 

       ( )xx xxE zσ ε=       (7a) 

       ( )xz xzG zτ γ=       (7b) 

 
where xxσ  and xzγ  are the axial normal and the shear stresses. The strain energy of the beam 

at any instant in Cartesian coordinates is given as 
 

( )
0

1
d d

2

L

i xx xx xz xz

A

U A xσ ε τ γ= +∫ ∫      (8) 

 
where A  is the area of the cross-section of the beam. Substituting Eqs. (6, 7) into Eq. (8) 
leads to 
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  (9) 

 
where 

 

( ) ( )( )2 3 4 6, , , , , 1, , , , , dxx xx xx xx xx xx

A

A B D E F H E z z z z z z A= ∫   (10a) 

( ) ( ) ( )2 4, , 1, , dxz xz xz

A

A D F G z z z A= ∫    (10b) 

 
Potential of the uniformly distributed load is given below 
 

          ( ) ( )0

0

d
L

eU q x w x x= −∫       (11) 

 
Therefore, the total potential energy of the problem can be written as  
 

         i dU UΠ = +                    (12) 

 
The boundary conditions of the simply-supported beam are given by 
 

      ( )0 0u x =  at 0x = ,   ( )0 0w x =  at 0 ,x L=     (13) 

 
As it is known, when some expressions satisfying kinematic boundary conditions are selected 
for ( )0w x , ( )0u x  and ( )xφ  then by using the principle of the minimum potential energy, the 

natural (dynamic) boundary conditions are also satisfied. The displacements ( )0w x , ( )0u x  

and rotation ( )xφ  are expanded by the following series which satisfy the kinematic boundary 

conditions in Eq. (13); 
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( ) ( )0
1

N

n n
n

u x B xψ
=

=∑      (14b) 

( ) ( )
1

N

n n
n

x C xφ ϕ
=

=∑       (14c) 

 
where nA , nB  and nC  are the unknown coefficients to be determined, ( )n xθ , ( )n xψ  and 

( )n xϕ are the space-dependent functions (admissible functions) which are chosen in this 

study from the trigonometric functions, and given as follows: 
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By introducing the following definitions, 

 
      n nq A=    1 2, ,n , ..... N=   (16a) 

      n n Nq B −=    1, , 2n N ..... N= +   (16b) 

     2n n Nq C −=    2 1, , 3n N ..... N= +   (16c) 

 
and after substituting Eqs.(14a, b, c) into Eq. (12) and then using the principle of the 
minimum potential energy given by Eq. (17) 
 

       0
nq

∂ Π =
∂

 1, 2 , , 3n .... N=   (17) 

 
yields the following system of equations 
 

1 2 3× × ×

4 5 6× × ×

7 8 9× × ×

K K K A f

K K K B 0

C 0K K K

N N N N N N

N N N N N N

N N N N N N

                
          =                             

   (18) 

 
where [ ] [ ]1 9K , ..., K  are the stiffness matrices of the beam, f  is the generalized load vector 

generated by the uniformly distributed load. It is also note that TBT is a special case of 
HOSDT and the equations of equilibrium for TBT are obtained by taking 0α =  and 

xz s xzA k A=  in Eq. (18). 

 
3. Numerical Results 
 
In numerical results, the static responses of an FG simply-supported beam are investigated. 
Functionally graded material (FGM) of the beam is composed of Aluminum 
( Al; 70 GPa , =0.3m mE ν= ) and Zirconia ( 2Zr O ; 200 GPa , =0.3c cE ν= ) and its properties 

changes through the thickness of the beam according to the power-law. The bottom surface of 
the FG beam is pure Zirconia, whereas the top surface of the beam is pure Aluminum. The 
width and the thickness of the beam are kept constant as 0.1 mb =  and 0.1 mh = , 
respectively. The length of the beam is taken as 0.3 mL = , 0.4 mL =  and 1.6 mL =  for 
three different values of slenderness ratio, / 3, 4, 16L h = . The shear correction factor is 

considered as 5 / 6sk =  for TBT. The axial and the transverse displacements of the beam are 

normalized by the static deflection, 4
static Al384w 5qL / E I= , of the fully aluminum beam 
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under the uniformly distributed load. The axial normal stresses, xxσ , are calculated at the 

midpoint of the beam ( / 2x L= ), and the shear stresses, xzτ , are evaluated at the left support 

of the beam ( 0x = ), and the normal and the shear stresses are normalized by 

( ), ,xx xz
xx xz

A A

qL qL

σ τσ τ  
=  
 

. In this study, the compressive and the tensile normal stresses are 

represented by positive and negative signs, respectively. Also, it is seen that the numerical 
accuracy of the responses is satisfactory when the number of terms in the displacement 
functions is set to 14N = . 
 
In Table 1, maximum non-dimensional deflections of the beam are presented for various 
values of power-law exponent and for / 4, 16L h = . It is seen from Table 1 that as the value of 
the power-law exponent increases, the deflections of the beam decrease. This is due to the fact 
that an increase in the power-law exponent yields a decrease in the bending rigidity of the 
beam, as also seen by inspecting Fig. 2. As would be expected, the deflection of the full 
aluminum beam is maximum whereas it is minimum for the full Zirconia beam. Note also that 
the deflections of TBT and HOSDT are very close to each other. As is known, shear 
deformation effect plays an important role on the responses of the short beams, and the 
displacements of the shear deformable beam theories are larger than those of Euler-Bernoulli 
beam theory. This effect is clearly seen for full metal beam with / 4L h = .  
 
Table 1. Maximum non-dimensional transverse deflection of the beam for various values of 

power-law exponent 
 

Maximum non-dimensional transverse 
deflection Power-law exponent Theory 

/ 4L h =  / 16L h =  

TBT 1.13002 1.00812 0k =  (Full metal) 
HOSDT 1.15578 1.00975 

TBT 0.84906 0.75595 
0.2k =  

HOSDT 0.87145 0.75737 
TBT 0.71482 0.63953 

0.5k =  
HOSDT 0.73264 0.64065 

TBT 0.62936 0.56615 
1k =  

HOSDT 0.64271 0.56699 
TBT 0.56165 0.50718 

2k =  
HOSDT 0.57142 0.50780 

TBT 0.49176 0.44391 
5k =  

HOSDT 0.49978 0.44442 
TBT 0.39550 0.35284 

Full ceramic 
HOSDT 0.40452 0.35341 
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Fig.3. Non-dimensional transverse displacements along the length of the beam for a) / 4L h =  

b) / 16L h = . 
 
Figs. 3 and 4 show the non-dimensional transverse and the axial displacements along the 
length of the beam, respectively. As stated before, when the power-law exponent is increased, 
the displacements of the FG beam are decreased. The axial displacements of the full metal 
and full ceramic beams are zero and coincide with each other. Because, in full metal and the 
full ceramic beams (isotropic beams), there is no coupling between the bending and the 
stretching, namely 0xx xxB E= = . In contrast to transverse displacements, as seen from Fig. 4, 

firstly, the axial displacements increase with the increase in the power-law exponent, and then 
decrease with further increase in the power-law exponent. It is also to be noted that as the 
power-law exponent increases, the composition of the FG beam approaches to the 
composition of the full ceramic beam. 
 

      
Fig. 4. Non-dimensional axial displacements along the length of the beam for a) / 4L h =  b) 

/ 16L h = . 
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Fig. 5. Non-dimensional axial and shear stress distributions of the metal beam for / 3L h = . 
 
Fig. 5 displays the non-dimensional axial and the shear stress distributions of the full metal 
beam along the thickness of the beam. As seen from Fig. 5a, the normal stress distribution is 
not linear for HOSDT represented by black solid line. Also, the magnitude of the axial 
stresses of HOSDT is a little larger than those of TBT. The shear stress distribution is 
parabolic and the zero stress condition on the upper and the lower side of the cross-section is 
satisfied for HOSDT. Furthermore, the constant shear stress assumption of TBT is clearly 
seen from Fig. 5b. 
 
Fig. 6 shows the non-dimensional axial normal stress distributions of HOSDT for various 
values of power-law exponent. The most significant aspect of this figure is that the axial 
normal stress distributions of FG beams are much more different from those in isotropic 
beams. Although the magnitude of the axial compressive and the axial tensile stresses have 
the same magnitude in full metal and full ceramic beams (isotropic beams), the magnitude of 
the tensile stresses are greater than the magnitude of the compressive stresses in FG beams. 
The value of the axial stresses is not zero at the mid-plane of the FG beam. This indicates that 
the neutral plane of the beam moves towards the lower side of the beam for the FG beam. 
This is due to the variation of the modulus of elasticity through the thickness of the FG beam.  
 
 

      
 

Fig. 6. Non-dimensional axial stress distributions for various values of power-law exponent, 
a) / 4L h =  b) / 16L h = . 
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Fig. 7. Non-dimensional shear stress distributions for various values of power-law exponent, 
a) / 4L h =  b) / 16L h = . 

 
Fig. 7 shows the non-dimensional shear stress distributions along the thickness for various 
values of power-law exponent. The shear stresses of the full metal and the full ceramic beam 
coincide with each other, and they are symmetric about the mid-plane of the beam. Also, as is 
known from strength of materials, it can be observed from this figure that the value of the 
shear stresses is maximum on the neutral axis of the beam. The shear stress distributions are 
greatly influenced by the power-law exponent.  
 

4. Conclusions 
 
Static analysis of an FG simply-supported beam subjected to a uniformly distributed load is 
investigated within the framework of HOSDT and TBT by using Ritz Method. Trial functions 
denoting the transverse, the axial deflections and the rotation of the cross-sections of the beam 
are expressed in trigonometric functions. The material properties of the beam vary 
continuously in the thickness direction according to the power-law form. Numerical results 
show that the variation of the modulus of elasticity plays a major role on the stress 
distributions and the displacements of the FG beam. Also, in the design of structures, by 
choosing a suitable power-law exponent, the material properties of the FG beam can be 
tailored to meet the desired goals of minimizing stresses and displacements in a beam-type 
structure. 
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