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Abstract

Static analysis of a functionally graded (FG) siyrplupported beam subjected to a uniformly distedubad
has been investigated by using Ritz method withénftamework of Timoshenko and the higher ordeashe
deformation beam theories. The material propertéthe beam vary continuously in the thicknessctime
according to the power-law form. Trial functionsndéing the transverse, the axial deflections arel ribtation

of the cross-sections of the beam are expressédgimnometric functions. In this study, the effe€tvarious
material distributions on the displacements and stesses of the beam are examined. Numerical tsesul
indicate that stress distributions in FG beams aeey different from those in isotropic beams.

Keywords: Beams, functionally graded materials, Timoshenkanb¢heory, the higher order shear deformation
theory, Ritz method.

1. Introduction

In material sciences, a functionally graded make@GM) is a type of material whose
composition is designed to change continuously iwithe solid. The concept is to make a
composite material by varying the microstructumrfrone material to another material with a
specific gradient. This enables the material toehgeod specifications of both materials. If it
is for thermal or corrosive resistance or mallegbiind toughness, both strengths of the
material may be used to avoid corrosion, fatiguagttire and stress corrosion cracking. The
transition between the two materials can usuallgy@oximated by means of a power series.
The aircraft and aerospace industry and the compirtiit industry are very interested in the
possibility of materials that can withstand verghithermal gradients. This is normally
achieved by using a ceramic layer connected witetallic layer. The concept of FGM was
first considered in Japan in 1984 during a spaemelbproject. The FGM materials can be
designed for specific applications. For examplerrial barrier coatings for turbine blades
(electricity production), armor protection for ntéry applications, fusion energy devices,
biomedical materials including bone and dental anfd, space/aerospace industries,
automotiveapplicationsgetc.

Static and dynamic analyses of FGM structures laétvacted increasing research effort in the
last decade because of the wide application afreB&bls. For instance, Sankfr] gave an
elasticity solution based on the Euler-Bernoullatmetheory for functionally graded beam
subjected to static transverse loads by assumiag¥Ybung’s modulus of the beam vary
exponentially through the thickness. Chakrabortyakt[2] proposed a new beam finite
element based on the first-order shear deformahieary to study the thermoelastic behavior



of functionally graded beam structures. In [2]tistafree and wave propagation analysis are
carried out to examine the behavioral differencduoictionally graded material beam with
pure metal or pure ceramic. Chakraborty and Gopalakan [3] analyzed the wave
propagation behavior of FG beam under high frequangulse loading, which can be
thermal or mechanical, by using the spectral fielement method. Aydogdu and Taskin [4]
investigated the free vibration behavior of a siynpupported FG beam by using Euler-
Bernoulli beam theory, parabolic shear deformatiwory and exponential shear deformation
theory. Zhong and Yu [5] presented an analyticalitssn of a cantilever FG beam with
arbitrary graded variations of material propertystdpution based on two-dimensional
elasticity theory. Ying et al. [6] obtained the etaolutions for bending and free vibration of
FG beams resting on a Winkler-Pasternak elastindation based on the two- dimensional
elasticity theory by assuming that the beam isatrtpic at any point and the material
properties vary exponentially along the thicknesgation. Kapuria et al. [7] presented a
finite element model for static and free vibrati@sponses of layered FG beams using an
efficient third order zigzag theory for estimatitige effective modulus of elasticity, and its
experimental validation for two different FGM syt under various boundary conditions.
Yang and Chen [8] studied the free vibration arabted buckling of FG beams with open
edge cracks by using Euler-Bernoulli beam theory9] proposed a new unified approach to
investigate the static and the free vibration beraef Euler-Bernoulli and Timoshenko
beams. In a recent study by Yang et al. [10], &neé forced vibrations of cracked FG beams
subjected to an axial force and a moving load werestigated by using the modal expansion
technique. Kadoli et al. [11] studied the statibdaor of a FG beam by using higher order
shear deformation theory and finite element metBashatta et al. [12] proposed an analytical
solution to the bending problem of a symmetric F€&arh by including warping of the cross-
section and shear deformation effect. Sallai efld] investigated the static responses of a
sigmoid FG thick beam by using different beam the=orSina et al. [14] used a new beam
theory different from the traditional first-ordenesar deformation beam theory to analyze the
free vibration of a FG beamSimsek and Kocaturk [15] have recently investigated ftiee
and forced vibration characteristics of a FG E@ernoulli beam under a moving harmonic
load. Simsek [16] studied the dynamic deflections and thesstes of an FG simply-supported
beam subjected to a moving mass by using Euleré@@dinTimoshenko and the higher order
shear deformation theories by considering the getal, inertia and Coriolis effects of the
moving mass.

As it is known, Timoshenko beam theory (TBT) or finst order shear deformation theory in
which straight lines perpendicular to the mid-pld®dore bending remain straight, but no
longer remain perpendicular to the mid-plane dfiending. In TBT, the distribution of the
transverse shear stress with respect to the thsskoeordinate is assumed constant. Thus, a
shear correction factor is required to compensatahfe error because of this assumption in
TBT. However, studies in the literature show thBil'Tgives satisfactory results and it is very
effective to investigate behavior of beams andeglaifhe higher order shear deformation
theory (HOSDT) or the third order shear deformatitveory which assumed parabolic
distribution of the transverse shear stress arainswith respect to the thickness coordinate
was proposed for beams with rectangular crossesecty Reddy [17]. Consequently, zero
transverse shear stress condition of the uppetcaaver fibers of the cross-section is satisfied
without a shear correction factor in HOSDT.

The aim of this paper is to investigate the statalysis of a functionally graded simply-
supported beam under a uniformly distributed loadRlz method. It is assumed that material
properties of the beam vary continuously in thekhess direction according to the power-



law. In this study, various material distributioms the displacements and the stresses of the
FG beam are examined.

2. Theory and Formulations

A functionally graded simply-supported beam of kng, width b, thicknessh, with co-
ordinate systen(Oxyz) having the origin O is shown in Fig.1. The beansubjected to a
uniformly distributed loadg .
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Fig. 1. A functionally graded simply-supported besubjected to a uniformly distributed
load.

In this study, it is assumed that the FG beam idarad ceramic and metal, and the effective
material properties of the FG beam, i.e., Youngadoius E, Poisson’s ratiav and shear
modulus G vary continuously in the thickness directiom @xis direction) according to
power-law form introduced by [18]

c()=(5.-8)2+3) + & @
U(Z):(Um—UC) ﬁ+%)k+uc 2)
G(z)=2(1E+UZ()Z)) )

where k is the non-negative variable parameter (power4aponent) which dictates the
material variation profile through the thicknesstioé beam,m and ¢ stand for metal and
ceramic constituents, respectively.

It is clear from Egs. (1-3) that

E=E., v=vu,, G=G, at z=-h/2 (4a)
E=E,, v=v,, G=G, at z=h/2 (4b)

Fig. 2 shows variation of the modulus of elastitiiyough the thickness of the beam.
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Fig. 2. Variation of the modulus of elasticity thgh the thickness of the FG beam.

Based on the higher order shear deformation thebey,axial displacement),, and the
transverse displacement of any point of the baaynare given as [17]

U (x 2= w( Y+ 2 Yo 2 w( ol ) (52)

u,(x 2= w( (5b)

where u, and w, are the axial and the transverse displacemennyfpaint on the neutral

axis, ¢ is the rotation of the cross-sections=4/(3n*), and () , indicates the derivative
with respect tox. The strain-displacement relations are given by

Eu=U Uy, + 20 ~a Z(g + W ) (6a)
Ve=u,,+u, =(1-307)(o+ w ) (6b)

where ¢, and y,, are the normal and the shear strain, respecti@lyassuming that the
material of FGM beam obeys Hooke’s law, the stregs¢he beam become

o, =E(2) &, (7a)
sz =C;(Z) yxz (7b)

where g,, and y,, are the axial normal and the shear stresses.tidia energy of the beam
at any instant in Cartesian coordinates is given as

L
U, = J. I(UXX EotTV ) dA dx (8)
0 A

N -

where A is the area of the cross-section of the beam. tlutirsy Eqs. (6, 7) into Eq. (8)
leads to
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where
(A Boo D B FrH )= [ E(3(1, 2, 2. 2, %, 9 d (10a)
(A, D, sz)ije(z)(l, 2, 2)d/ (10b)

Ue:—jq(x)w)(x)dx (11)

Therefore, the total potential energy of the probtan be written as
7=U, +U, (12)
The boundary conditions of the simply-supportedibeae given by
Uy(x)=0 atx=0, w,(x)=0atx=0,L (13)

As it is known, when some expressions satisfyimgRiiatic boundary conditions are selected
for w, (x), u,(x) and¢(x) then by using the principle of the minimum potehénergy, the

natural (dynamic) boundary conditions are alsosfiatl. The displacements (), u,(X)
and rotationw(x) are expanded by the following series which satisé/kinematic boundary
conditions in Eq. (13);

N

W, (x)=> A 6,(X (14a)
uy ()= B, (4 (14b)
o(x) = 'j C.¢.(% (14c)

where A,, B, and C, are the unknown coefficients to be determingg(x), ¢, (x) and

¢.(x)are the space-dependent functions (admissible im)t which are chosen in this
study from the trigonometric functions, and giverfalows:



8,(x) = sinn—lLTX , (15a)
2n-1
@, (x)= sin! L) s (15b)
. (x)= cosn%(, (15a)
By introducing the following definitions,
g, = A, n=12, ... N (16a)
g, = B.-n n=N+1, ..., 2N (16b)
0, =C.on n=2N+1, ...., 3N (16¢)

and after substituting Eqgs.(14a, b, c) into Eq.)(42d then using the principle of the
minimum potential energy given by Eq. (17)

o _y n=1,2,..., 3N (17)

0q,

yields the following system of equations

Kilu [Kelo [Ksluulia)
[Kedo [Kslun [Keluu|B =0 (18)
(Koo [Kal <]/t 1O

where[K,], ...,[K,] are the stiffness matrices of the bednis the generalized load vector

generated by the uniformly distributed load. Italso note that TBT is a special case of
HOSDT and the equations of equilibrium for TBT asbtained by takinga =0 and

A,=k,A,in Eqg. (18).

3. Numerical Results

In numerical results, the static responses of ansiiply-supported beam are investigated.
Functionally graded material (FGM) of the beam i®smposed of Aluminum
(Al; E, =70 GPa,v  =0.) and Zirconia ZrO,; E. =200 GPay, =0.) and its properties
changes through the thickness of the beam accotditige power-law. The bottom surface of
the FG beam is pure Zirconia, whereas the top serréd the beam is pure Aluminum. The
width and the thickness of the beam are kept cohsés b=0.1m and h=0.1m,
respectively. The length of the beam is takenLas0.3 m, L=0.4 m and L =1.6 m for
three different values of slenderness ratid,h=3, 4, 1€. The shear correction factor is

considered ak, =5/6 for TBT. The axial and the transverse displacemeithe beam are
normalized by the static deflectiom, . =5qL* /384E, I, of the fully aluminum beam



under the uniformly distributed load. The axial mat stressesg,,, are calculated at the
midpoint of the beamx=L/2), and the shear stresses,, are evaluated at the left support
of the beam x=0), and the normal and the shear stresses are npechaby

A A . . .
(T TXZ){UQ—XL,T(;;L]. In this study, the compressive and the tensilenab stresses are
represented by positive and negative signs, reispéct Also, it is seen that the numerical
accuracy of the responses is satisfactory whenntlmber of terms in the displacement
functions is set td\ =14.

In Table 1, maximum non-dimensional deflectionstlod beam are presented for various
values of power-law exponent and fo¥ h=4, 16. It is seen from Table 1 that as the value of

the power-law exponent increases, the deflectibtiseobeam decrease. This is due to the fact
that an increase in the power-law exponent yielde@ease in the bending rigidity of the
beam, as also seen by inspecting Fig. 2. As woeld)pected, the deflection of the full
aluminum beam is maximum whereas it is minimumtfer full Zirconia beam. Note also that
the deflections of TBT and HOSDT are very closeetich other. As is known, shear
deformation effect plays an important role on tlesponses of the short beams, and the
displacements of the shear deformable beam theamekarger than those of Euler-Bernoulli
beam theory. This effect is clearly seen for fulted beam withL /h=4.

Table 1. Maximum non-dimensional transverse datlaabf the beam for various values of
power-law exponent

Maximum non-dimensional transverse
Power-law exponent ~ Theory deflection
L/h=4 L/h=16
TBT 1.13002 1.00812
k=0 (Full metal) HOSDT 1.15578 1.00975
k=0.2 TBT 0.84906 0.75595
HOSDT 0.87145 0.75737
—05 TBT 0.71482 0.63953
HOSDT 0.73264 0.64065
k=1 TBT 0.62936 0.56615
HOSDT 0.64271 0.56699
k=2 TBT 0.56165 0.50718
HOSDT 0.57142 0.50780
k=5 TBT 0.49176 0.44391
HOSDT 0.49978 0.44442
Full ceramic TBT 0.39550 0.35284
HOSDT 0.40452 0.35341
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Fig.3. Non-dimensional transverse displacementsggaiibe length of the beam for By h=4
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Figs. 3 and 4 show the non-dimensional transvenskthe axial displacements along the
length of the beam, respectively. As stated befoten the power-law exponent is increased,
the displacements of the FG beam are decreasedaxiledisplacements of the full metal
and full ceramic beams are zero and coincide wattheother. Because, in full metal and the
full ceramic beams (isotropic beams), there is napting between the bending and the
stretching, namelyB,, = E_ =0. In contrast to transverse displacements, asfseenFig. 4,

firstly, the axial displacements increase with ith@ease in the power-law exponent, and then
decrease with further increase in the power-lawoagpt. It is also to be noted that as the
power-law exponent increases, the composition & BG beam approaches to the
composition of the full ceramic beam.
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Fig. 4. Non-dimensional axial displacements aldrgléngth of the beam for &)/ h=4 b)
L/h=16.
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Fig. 5. Non-dimensional axial and shear stressibigtons of the metal beam fdr/ h =3.

Fig. 5 displays the non-dimensional axial and theas stress distributions of the full metal
beam along the thickness of the beam. As seen Figmba, the normal stress distribution is
not linear for HOSDT represented by black solideliAlso, the magnitude of the axial

stresses of HOSDT is a little larger than thoseTBIiT. The shear stress distribution is
parabolic and the zero stress condition on the uapé the lower side of the cross-section is
satisfied for HOSDT. Furthermore, the constant ststi@ess assumption of TBT is clearly

seen from Fig. 5b.

Fig. 6 shows the non-dimensional axial normal stréistributions of HOSDT for various
values of power-law exponent. The most significagpect of this figure is that the axial
normal stress distributions of FG beams are muchendifferent from those in isotropic
beams. Although the magnitude of the axial comjwvesand the axial tensile stresses have
the same magnitude in full metal and full cerangarns (isotropic beams), the magnitude of
the tensile stresses are greater than the magnifuthe compressive stresses in FG beams.
The value of the axial stresses is not zero abtideplane of the FG beam. This indicates that
the neutral plane of the beam moves towards ther®ide of the beam for the FG beam.
This is due to the variation of the modulus of #tdy through the thickness of the FG beam.
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Fig. 6. Non-dimensional axial stress distributiémsvarious values of power-law exponent,
a)L/h=4b)L/h=16.
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Fig. 7 shows the non-dimensional shear stressilaisivns along the thickness for various
values of power-law exponent. The shear stressdsedill metal and the full ceramic beam
coincide with each other, and they are symmetrauathe mid-plane of the beam. Also, as is
known from strength of materials, it can be obsérfrem this figure that the value of the
shear stresses is maximum on the neutral axiseob&fam. The shear stress distributions are
greatly influenced by the power-law exponent.

4. Conclusions

Static analysis of an FG simply-supported beamesubgl to a uniformly distributed load is
investigated within the framework of HOSDT and TBy using Ritz Method. Trial functions
denoting the transverse, the axial deflectionsthedotation of the cross-sections of the beam
are expressed in trigonometric functions. The nmdteproperties of the beam vary
continuously in the thickness direction accordingtie power-law form. Numerical results
show that the variation of the modulus of elastigtlays a major role on the stress
distributions and the displacements of the FG bealso, in the design of structures, by
choosing a suitable power-law exponent, the mat@rnaperties of the FG beam can be
tailored to meet the desired goals of minimizingsses and displacements in a beam-type
structure.
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