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Abstract   
 
Metaheuristic search techniques strongly employ randomized decisions while searching for solutions to 
structural optimization problems. These techniques play an increasingly important role for practically solving 
hard combinatorial problems from various domains. Over the past few years there has been considerable 
success in developing metaheuristic search algorithms as well as randomized systematic search methods for 
obtaining solutions to discrete programming problems. This paper examines minimum weight design of pin-
jointed geodesic steel domes using seven metaheuristic search techniques; namely, simulated annealing, genetic 
algorithms, evolution strategies, particle swarm optimizer, tabu search, ant colony optimization and harmony 
search methods. The optimum design problem of geodesic steel domes is formulated according to design 
limitations stipulated by ASD-AISC (Allowable Stress Design Code of American Institute of Steel Institution). 
The minimum design loads and combined load effects are established as specified by ASCE 7-98 (Minimum 
Design Loads for Buildings and Other Structures, American Society of Civil Engineers). A numerical example is 
presented, where seven metaheuristic methods are implemented to achieve minimum weight design of a 130-
member geodesic steel dome subjected to a total of eight combined load cases of dead, live, snow and 
temperature loads.      
 
Keywords: structural optimization, discrete optimization, metaheuristic search techniques, minimum weight 
design, geodesic steel domes. 
 
 
1. Introduction 
 
The field of structural optimization is a relatively new area undergoing rapid changes in 
methods and focus. Until recently there was a severe imbalance between enormous amount 
of literature on the subject and paucity of applications to practical design problems. There is 
still no shortage of new publications, but there are also exciting applications of the methods 
of structural optimizations in the civil engineering, machine design and other engineering 
fields. As a result of the growing pace of applications, research into structural optimization 
methods is increasingly driven by real-life problems.  

Structural optimization when first emerged has attracted a widespread attention 
among designers. It has provided a systematic solution to age-old structural design problems 
which were handled by using trial-error methods or engineering intuition or both. Structural 
optimization provides tools for structural designers to determine the optimum topology or the 
optimum geometry and/or optimum cross sectional dimensions for the members of a 
structure. Application of mathematical programming methods to structural design problems 
has paved the way in developing a design procedure which was capable of producing 
structures with cross-sectional dimensions [1]. In the last four decades vast amount of 
research work has been conducted in structural optimization which covers the field from 
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optimum design of individual elements to rigid frames and finite element structures. 
However, due to the fact that mathematical programming techniques deal with continuous 
design variables, the algorithms developed has provided to designer cross-sectional 
dimensions that were neither standard nor practical [2-4]. The reality of the practice is that 
there are certain steel sections produced by steel mills that are available for a designer to 
choose from in the case of steel structures and there are practically accepted dimensions for 
the beams and columns among which the selection can be carried out in a reinforced concrete 
structure due to architectural reasons. Hence, the structural designer finds himself/herself in a 
restricted area where only discrete values are available when it comes to make a decision 
what sections he/she has to select for the members of a steel or reinforced concrete frame. 
Consequently, the discrete structural optimization algorithms developed thus far utilizing the 
mathematical programming methods has not found widespread applications in practical 
design of structures. Naturally this has led the researches to seek better algorithms for the 
solution of discrete optimum design problems. 

The recent novel and innovative metaheuristic search techniques emerged make use of 
ideas inspired from the nature and they do not suffer the discrepancies of mathematical 
programming based optimum design methods. The basic idea behind these techniques is to 
simulate the natural phenomena, such as survival of the fittest, immune system, swarm 
intelligence and the cooling process of molten metals through annealing into a numerical 
algorithm [5-13]. These methods are non-traditional stochastic search and optimization 
methods, and they are very suitable and effective in finding the solution of combinatorial 
optimization problems. They do not require the gradient information of the objective function 
and constraints and they use probabilistic transition rules not deterministic ones. The optimum 
structural design algorithms that are based on these techniques are robust and quite effective 
in finding the solution of discrete programming problems. There are large numbers of such 
metaheuristic techniques available in the literature nowadays. A detailed review of these 
algorithms as well as their applications in the optimum structural design is carried out in Saka 
[14].  

In the present study, the optimum design of pin-jointed geodesic steel dome structures 
is investigated using seven metaheuristic search techniques; namely simulated annealing [15], 
evolution strategies [16], particle swarm optimizer [17], tabu search method [18], ant colony 
optimization [19], harmony search method [20] and simple genetic algorithm [21]. Domes are 
arched shaped space structures that may be built in different patterns (such as geodesic, 
lamella, schwedler, grid, ribbed, etc.) using one or more layers of elements. These systems 
offer very economical and viable solutions for covering large spaces, especially when no 
internal supports (such as column, stud or cable) are preferable in the structural design. In the 
paper the optimum design problem of geodesic steel domes is formulated, where design 
limitations including strength and serviceability requirements are imposed according to ASD-
AISC [22] specification. The design loads and combined load effects for these systems are 
computed according to the minimum load requirements as specified by ASCE 7-98 [23]. A 
single numerical example is demonstrated, where a 130-member geodesic steel dome with 
eight member groups (design variables) is sized for minimum weight using standard pipe 
sections by conducting three independent runs with each of the seven optimization techniques 
abovementioned. The convergence rates and reliabilities of the techniques in attaining the 
optimum design of the structure are compared, and the results are discussed extensively.      
  
     
2. Optimum Design Problem Of Geodesic Steel Domes 
 
The design of steel dome structures requires the selection of members from a standard steel 
pipe section table such that the dome satisfies the strength and serviceability requirements 
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specified by a chosen code of practice, while the economy is observed in the overall or 
material cost of the dome. For a pin-jointed geodesic steel dome which consists of mN  
members grouped into dN  design variables, this problem can be formulated as follows.  
 
2.1. Objective Function 
 
Find a vector of integer values I  (Eqn. 1) representing the sequence numbers of standard 
sections in a given section table   
 

 [ ]
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to generate a vector of cross-sectional areas A  for mN  members of the dome (Eqn. 2)   
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where W  refers to the weight of the dome; mA mmL ρ,  are cross-sectional area, length and 
unit weight of the m-th dome member, respectively. 
 
2.2. Design Constraints 
 
The structural behavioral and performance limitations of pin-jointed geodesic steel domes can 
be formulated as follows: 
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In Eqns. (4-6), the functions mg , ms  and kj ,δ  are referred to as constraints being 

bounds on stresses, slenderness ratios and displacements, respectively; mσ  and allm )(σ  are the 
computed and allowable axial stresses for the m-the member, respectively; mλ  and allm )(λ  are 
the slenderness ratio and its upper limit for m-th member, respectively; jN  is the total number 
of joints; and finally kjd ,  and allkjd )( ,  are the displacements computed in the k-th direction of 
the j-th joint and its permissible value, respectively. In the present study, these limitations are 
implemented according to ASD-AISC [22] code provisions. 
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Accordingly, the maximum slenderness ratio is limited to 300 for tension members, 
and it is taken as 200 for compression members. Hence, the slenderness related design 
constraints are formulated as follows: 
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where, mK  is the effective length factor of m-th member ( 1=mK  for all members), and mr  is 
its minimum radii of gyration.  

The allowable tensile stresses for tension members are calculated as in Eqn. (8): 
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where yF  and uF  stand for the yield and ultimate tensile strengths, and the smaller of the two 
formulas is considered to be the upper level of axial stress for a tension member.  

The allowable stress limits for compression members are calculated depending on two 
possible failure modes of the members known as elastic and inelastic buckling, Eqns. (9-11).   
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In Eqns. (9-11), E  is the modulus of elasticity, and cC  is referred to as the critical 

slenderness ratio parameter. For a member with cm C<λ , it is assumed that the member 
buckles inelastically, and its allowable compression stress is computed according to Eqn. 
(10). Otherwise ( cm C≥λ ), elastic buckling of the member takes place, in which case the 
allowable compression stress is computed as to Eqn. (11).         
 
 
3. Design Loads and Combinations 
 
For the design of structural systems, it is assumed that the structures are exposed to various 
gravity (e.g., dead, snow) and lateral (e.g., wind, earthquake) loads during their service life. 
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The structures must be proportioned to safely accommodate these loads or their combined 
effects without any failure, cracking or excessive deformation. Amongst a variety of different 
loadings, the most critical load cases that must be strictly considered in the design of dome 
structures appear to be dead, snow, wind as well as temperature induced loads. In the study, 
the minimum values for these loads are computed according to the provisions of ASCE 7-98 
[23], which is explained in the following subsections.      
 
3.1. Dead Load 
 
The dead load includes the weight of the members, joints, cladding and other components of 
domes acting with gravity on the foundations below.  
 
3.2. Snow Load 
 
In ASCE 7-98 [23], snow loads are categorized into three groups as ground snow loads, flat-
roof snow loads and sloped-roof snow loads. Because of the arched shape geometry of a dome 
structure, the sloped-roof snow load values are adopted here and the design snow load fp  is 
computed using the following equation in ASCE 7-98 [23]:  
 

gtesf IpCCCp 7.0=                                                   (12) 
 

where sC  is the roof slope factor, eC  is the exposure coefficient, tC  is the temperature factor, 
I  is the importance factor, and gp  is the ground snow load.  
 
3.3. Wind Load 
 
ASCE 7-98 [23] recommends three different approaches for calculation of wind loads referred 
to as (i) simplified procedure, (ii) analytical procedure and (iii) wind tunnel procedure. In the 
present study, wind loads acting on dome structures are computed in accordance with the 
analytical procedure. In this approach, the velocity pressure is first computed using the 
following equation in the specification  
 

IVKKKq dztzh
2613.0=                                                (13) 

 
where hq  (in N/m2) is the velocity pressure evaluated at mean roof height, zK  is the velocity 
exposure coefficient, ztK  is the topographic factor, dK  is the wind directionality factor, V  
(in m/s) is the basic wind speed, and I  is the importance factor.  

Next, the design wind pressure is computed considering a combined effect of internal 
and external pressures acting on the roof, as follows:   
 

)( pihphw GCqGCqp −=                                               (14) 
 

where wp  is the design wind pressure, G  is the gust effect factor (taken as 0.85), pC  is the 
external pressure coefficient, and )( piGC  is the internal pressure coefficient. The first term in 
Eqn. (15) considers the effect of external pressure, whereas the second term accounts for the 
effect of internal pressure.  
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3.4. Temperature Changes 
 
It is known that temperature changes may create significant additional axial stresses in the 
members. Hence it is essential to take into account the effects of temperature induced loads by 
applying a positive and negative change in temperature of the entire dome system.  
 
3.5. Load Combinations 
 
For the design purpose, the dome is subjected to a total of eight combined load cases 
considering various combinations of dead load (DL), snow load (SL), wind load with external 
pressure (WEP), wind load with positive internal pressure (WIP), wind load with negative 
internal pressure (WIN), positive temperature change (TP) and negative temperature change 
(TN). These combined loads cases are listed below. It is important to highlight that some of 
the combined load effects are reduced by combination factors in compliance with allowable 
stress design requirements. 
 

(i) DL + SL  
(ii) DL + TP 
(iii) DL + TN 
(iv) D + WEP + WIP 
(v) D + WEP + WIN 
(vi) D + 0.75 (WE + WIP) + 0.75SB 
(vii) D + 0.75 (WE + WIN) + 0.75SB 
(viii) D + 0.75TN + 0.75SLB 

 
 
4. Metaheuristic Search Techniques: An Overview 

 
A combinatorial optimization problem requires exhaustive search and effort to determine an 
optimum solution which is computationally expensive and in some cases may even not be 
practically possible. Metaheuristic search techniques are established to make this search 
within computationally acceptable time period. Amongst these techniques are simulated 
annealing (SA), evolution strategies (ESs), particle swarm optimizer (PSO), tabu search 
method (TS), ant colony optimization (ACO), harmony search method (HS), genetic 
algorithms (GAs) and others. All of these techniques implement particular metaheuristic 
search algorithms that are developed based on simulation of a natural phenomenon into 
numerical optimization procedure. They have gained a worldwide popularity recently and 
have proved to be quite robust and effective methods for finding solutions to discrete 
programming problems in many disciplines of science and engineering, including structural 
optimization.  

Simulated annealing (SA), which is a well-known member of metaheuristic search 
techniques, searches for minimum energy states using an analogy based upon the physical 
annealing process. In this process, a solid initially at a high energy level is cooled down 
gradually to reach its minimum energy and thus to regain proper crystal structure with perfect 
lattices. The idea that this process can be simulated to solve optimization problems was 
pioneered independently by Kirkpatrick et al. [15] and Cerny [24], establishing a direct 
analogy between minimizing the energy level of a physical system and lowering the cost of an 
objective function. Successful applications of SA in discrete structural optimization problems 
have been reported in a number of early works in the literature, such as Refs. [25-27]. The 
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enhancement of the technique is accomplished in some recent publications, such as Refs. [28, 
29] for accelerating its search capability in complex design domains.        

The most well known stream of evolutionary algorithms is genetic algorithms (GAs), 
which have been initially pioneered by Holland [30]. These algorithms are based on the 
evolutionary ideas of natural selection and genetics mechanism. The first application of the 
technique in optimum structural design is presented by Goldberg and Samtani [31], where the 
weight minimization of the classical 10-bar truss is accomplished with GAs. Today, many 
variations and extensions of the technique have been proposed, and successful applications of 
the technique are accumulated in a vast amount of discrete and continuous optimization 
literature [32-36]. In the present study, a genetic algorithm with standard components referred 
to as simple genetic algorithm (SGA) has been implemented due to its generality and wide 
acceptability.  

Evolution strategies (ESs) are another promising representative of evolutionary 
algorithms. The fundamentals of the technique were originally laid in the pioneering studies 
of Rechenberg [16]. They were first developed in a rather simple form known as ES)11( −+  
that implements on the basis of two designs; a parent and an offspring individual. Today, the 
modern variants of ESs are accepted as ES)( −+ λµ  and ES),( −λµ , which were developed 
by Schwefel [37]. Both variants employ design populations consisting of µ  parent and λ  
offspring individuals, and are intended to carry out a self-adaptive search in continuous design 
spaces. The extensions of these variants to solve discrete optimization problems were put 
forward in Refs. [38-40]. A literature survey turns up several publications reporting a very 
successful use of this method in discrete optimum design of structural systems [41, 42].   

Particle swarm optimization is a population based metaheuristic search technique 
inspired by social behavior of bird flocking or fish schooling. This behaviour is concerned 
with grouping by social forces that depend on both the memory of each individual as well as 
the knowledge gained by the swarm [17, 43]. The procedure involves a number of particles 
which represent the swarm being initialized randomly in the search space of an objective 
function. Each particle in the swarm represents a candidate solution of the optimum design 
problem. The particles fly through the search space and their positions are updated using the 
current position, a velocity vector and a time step. The successful applications of this 
technique have also been reported in the field of structural optimization, especially in 
size/shape optimum design of skeletal structures. Amongst some recent applications are Perez 
and Behdinan [44], He et al. [45] and Fourie and Groenwold [46].  

Tabu search (TS) is another metaheuristic method, which was first developed by 
Glover [18]. The method implements a simple yet an efficient iterative based local search 
strategy for solving combinatorial optimization problems. At each step a number of candidate 
solutions are sampled in the close vicinity of the current design by perturbing a single design 
variable called a move. The best candidate is chosen and replaced with the current design 
even if it offers a non-improving solution, and the move leading to this candidate is 
recognized as a successful move. To protect the search against cycling within the same subset 
of solutions, information regarding most recently visited solutions is collected in a list 
referred to as tabu list. A candidate is allowed to replace the current design provided that its 
move is not in tabu list; otherwise the search is preceded with the current solution. The 
method has been mostly employed for weight minimization of structural systems in the 
literature, such as Bland [47], and Kargahi et al. [48].  

Ant colony optimization technique is inspired from the way that ant colonies find the 
shortest route between the food source and their nest. Ants being completely blind individuals 
can successfully discover as a colony the shortest path between their nest and the food source. 
They manage this through their characteristic of employing a volatile substance called 
pheromones. When finding food, the ants deposit pheromones on the ground while traveling, 
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which is used by other ants in the colony as a guide to find the food sources. Ant colony 
optimization was developed by Colorni et al. [49] and Dorigo [50] and used in the solution of 
traveling salesman problem. The optimum structural design applications of the technique have 
been presented in Camp et al. [51], Aydoğdu and Saka [52]. 

Harmony search method is based on natural musical performance processes that occur 
when a musician searches for a better state of harmony. The resemblance, for example 
between jazz improvisation that seeks to find musically pleasing harmony and the 
optimization is that the optimum design process seeks to find the optimum solution as 
determined by the objective function. The pitch of each musical instrument determines the 
aesthetic quality just as the objective function is determined by the set of values assigned to 
each design variable. The recent applications of HS algorithm in structural optimization 
reveal that it is a very powerful technique for relatively small-to-medium scale discrete 
optimization problems [53-56]. An enhancement of the technique is proposed in Hasançebi et 
al. [57] for larger scale problems, where an adaptive change of its parameters is facilitated for 
establishing the most advantageous search automatically by the algorithm.  

It should be underlined that there is no a unique formulation or a standardized 
algorithm used to implement any of the metaheuristic search techniques mentioned above. 
Rather, each technique has been devised in various algorithmic forms and has numerous 
extensions and modifications. In this study the algorithms to implement the techniques are 
selected on the basis of their generalities and reported performances in the published 
literature. The implementation specifics and detailed outlines of these algorithms can be 
found in Hasançebi et al. [58] with complete parameter sets and enhancements proposed to 
accelerate their performances. 
 
 
5. Numerical Example  
 
Figure 1 shows plan, elevation and 3-D views of a geodesic steel dome with a base diameter 
of 20 m (65.6 ft) and a total height of 4 m (13.1 ft). The structure consists of 51 joints and 130 
members that are grouped into 8 independent size design variables. The size variables are to 
be selected from a database of 37 pipe (circular hollow) sections issued in ASD-AISC [22] 
standard section tables. The stress and stability limitations of the members are calculated 
according to the provisions of ASD-AISC [22], as explained in Section 2. The displacements 
of all nodes are limited to 5.55 cm (2.18 in) in any direction. The following material properties 
of the steel are used: modulus of elasticity (E) = 29000ksi (203893.6MPa) and yield stress 
( yF ) = 36ksi (253.1MPa).    

The design loads and combined loads effects are applied on the dome as explicated in 
Section 3. A sandwich type aluminum cladding material is used to cover the dome surface, 
resulting in a uniform dead load pressure of 200 N/m2, including the frame elements used for 
the girts (Figure 2a). The design snow load is computed by using the following parameter 
values in Equation (12): 0.1=sC , 9.0=eC , 0.1=tC , 1.1=I  and =gp 1.1975kN/m2 
(25.0lb/ft2),  which results in a uniform design snow pressure of fp = 830 N/m2

 (17.325 lb/ft2) 
as displayed in  Figure 2(b).  

The design wind load is calculated on the basis of an assumed basic wind speed of 
40=V m/s (90mph), and the other quantities in Equation (13) are set to the following 

parameter values: 07.1=zK , 85.0=dK , 087.1=ztK , 15.1=I , and 40=V m/s (90mph), 
resulting in a velocity pressure of 115.1=hq kN/m2 (23.285 lb/ft2). To calculate external 
wind pressure by Equation (14), the dome is divided into three parts; a windward quarter, a 
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centre half and a leeward quarter as recommended by ASCE 7-98 [23].  The external pressure 
coefficient pC  is then calculated for each part considering rise-to-span ratio of the dome, as 
follows: 0105.0=pC  for windward quarter, 907.0−=pC  for centre half and 5.0−=pC  for 
leeward quarter (Figure 2c). On the other hand, piGC  is taken as –0.18 and +0.18 in the 
second and third load cases over the entire internal surface to take into account the suction 
and uplift effects of the internal pressure, respectively (Figures 2d and e). The net pressure 
acting on different parts of the dome is obtained by combining internal and external wind 
pressures as per Eqn. (14). Finally, the effects of temperature induced loads are taken into 
account by applying ± 20 degree change in the temperature of entire dome system. 
 

 

 

 

 

 

 

 

 

 

            

 

                                                                                      

 
                                                            

                                                 

                                                                  
 
 
 
 
 
 

 
 
                                                                                                         
                                                                                                           
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. 130-member geodesic steel dome a) 3D view b) top view c) side view. 
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Figure 2. Loads acting on 130-member geodesic steel dome a. dead load, b. snow load, c. 

wind external pressure, d. wind negative internal pressure and e. wind positive 
internal pressure. 
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The dead and snow loads represent gravity forces that can easily be applied on the 
joints of the dome. Nevertheless, accurate representation of wind loads in structural model is 
somewhat more difficult since these forces must act perpendicular to dome surface, whereas 
the surface angle vary from point to point due to arched shape of the system. To be able to 
apply wind forces as accurately as possible, the triangular areas between truss members on 
dome surface are modeled using weightless shell elements as depicted in Figure 1(b), and the 
wind forces are acted on these mesh elements as surface pressure loads. During the analysis of 
the dome, these surface loads are transmitted to joints as point loads and the displacement and 
force response calculations are obtained accordingly.    

The minimum weight design of the dome is sought by conducting three independent 
runs with each of the seven optimization techniques due to their stochastic natures. The 
number of structural analyses is taken as 10,000 in each run and for each technique to make 
sure that all the techniques are given the equal opportunity to grasp the global optimum, and 
that it is not a restraint for not being able to reach the global optimum. The results are 
tabulated in Table 1. The second through fourth rows in this table represent the minimum 
feasible weight designs attained by each technique in its three runs, and the averages of these 
three runs are displaced in the last row to indicate overall performances of the techniques.    
 
 

Table 1. The minimum weight designs (in lb) obtained for 130-member geodesic steel 
dome using metaheuristic search techniques.  

 
Designs of three 
different runs SA ESs PSO HS TS  ACO SGA 

First Run 5438.97  5438.97  5438.97  5438.97  5438.97  5608.19 5787.28 

Second Run 5438.97  5438.97  5438.97  5475.46 5495.03 5438.97  5438.97  

Third Run 5438.97  5438.97  5438.97  5438.97  5438.97  5438.97  5968.03 

Average of  
Three Runs 5438.97  5438.97  5438.97  5451.13 5457.66 5495.38 5731.42 

 
 

Table 2. The optimum design of 130-member geodesic steel dome. 
 

Size 
Variable 

Ready 
Section 

Area, in2 
(cm2) 

1 P2.5 1.70 (10.97) 

2 P2 1.07 (6.90) 

3 P2 1.07 (6.90) 

4 P2 1.07 (6.90) 

5 P2 1.07 (6.90) 

6 P2 1.07 (6.90) 

7 P2 1.07 (6.90) 

8 P1.5 0.799 (5.16) 

Weight  5438.97 lb (2467.05 kg) 
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It is observed from Table 1 that SA, ESs and PSO techniques located the same 
solution with a design weight of 5438.97 lb (2467.05 kg) in each of their three runs. This 
solution is given in Table 2 with pipe section designations attained for each size design 
variable, and is considered to be the optimum solution of the problem reached in the present 
study. The fact that the same solution is attained in each run by SA, ESs and PSO evinces 
high convergence reliabilities of these techniques in optimum structural design applications. 
On the other hand, HS, TS and ACO techniques have identified the optimum solution two 
times out of three runs, indicating that these techniques are more susceptible to performance 
variations associated with stochastic behaviour. As compared to other techniques, SGA has 
exhibited a substandard performance, being able to identify the optimum solution only once 
and relatively poorer solutions are produced by the algorithm at other two times.  
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Figure 3. The design history graph with metaheuristic search techniques obtained for 130-

member geodesic steel dome. 
 
 
The design history graph is plotted in Figure 3, which demonstrates the improvement 

of the feasible best design during search process with all the techniques in their best 
performances. The term “best performance” is used to refer to the best run of the algorithm 
with the minimum design weight attained or to the run where the fastest convergence of the 
algorithm is achieved if the optimum solution is located in more than one runs. It is seen from 
Figure 3 that amongst all the techniques the optimum solution is attained earliest by ESs 
within the first 2,000 design cycles. TS method also shows a fairly rapid and linear progress 
towards the optimum, identifying the optimum solution before performing 4,000 design 
cycles. Another promising performance in terms of convergence rate is exhibited by ACO 
method, in which case the optimum solution is attained after carrying out approximately 
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5,500 design cycles. PSO, HS and SA methods display a rather slow and gradual convergence 
in the course of optimization process, and get to locate the optimum solution between 7,000-
8,000 design cycles. Despite an encouraging performance of SGA in the early stages, the 
convergence rate of the technique has downgraded with increasing number of design cycles 
and the optimum solution could only be obtained after 9,000 design cycles with SGA.            

 
 
6. Conclusions 
 
The optimum design of pin-jointed geodesic steel domes is investigated in conjunction with 
seven metaheuristic search techniques, which have emerged recently as robust and promising 
tools for successfully handling discrete programming problems encountered in structural 
optimization. The optimum design process is implemented in conformity with design 
requirements and specifications prescribed for these systems in actual design practice. 
Accordingly, the functional and structural requirements of the geodesic dome structures, such 
as allowable stress levels, acceptable deflections, service loads, etc., are enforced according to 
chosen codes of practice, namely ASD-AISC [22] and ASCE 7-98 [23].  

The performance of the metaheuristic search techniques in finding optimum solutions 
to the problems of interest is numerically scrutinized in conjunction with a 130-member 
geodesic steel dome design example. All the techniques could manage to find the optimum 
solution in at least one of the three independent runs conducted. ESs, SA and PSO can be 
characterized as methods that have high convergence reliabilities since they found the same 
solution (the optimum) in all of their three runs. On the other hand, performance variations 
are observed for TS, ACO and HS methods associated with their stochastic nature. ESs, TS 
and ACO method come into prominence in terms of their satisfactory convergence rates, 
whereas a steady convergence attribute has been observed with PSO, HS and SA methods. 
Finally, SGA exhibited a satisfactory performance neither in terms of convergence reliability 
nor its convergence rate.   
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