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Abstract

In this paper, a neural inverse model controllerathieve maximum power tracking for wind energy \@gion
systems (WECS's) employing a double- fed inducgienerator (DFIG) is proposed. Changes on the fiimgle of the
inverter can control the operation point of theayator. This purpose complies with a neural netwdiK) controller.
Its feasibility and effectiveness are demonstraedimulation results of a typical turbine/genergtair.
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1. Introduction

Motivated by the high dependence of global econsnoie fossil fuels and concerns about the
environment, increasing attention is being paiclternative methods of electricity generation [1].
Clean renewable energy sources such as solar amt] haave been developed over recent years.
Wind is now on the verge of being truly competitivéh conventional sources. The cost, weight,
and maintenance needs of mechanical gearing betiveamind turbine and the electrical generator
pose a serious limitation to the further increas®JECS's power ratings [2]. Control plays a very
important role in modern WECS's. In fact, wind tngbcontrol enables a better use of the turbine
capacity as well as the alleviation of aerodynaamd mechanical loads, which reduce the useful life
of the installation [1]. The main drawback is thta resulting system is highly nonlinear and tlaus,
nonlinear control strategy is required to place slistem in its optimal generation point. Among
others, adaptive PID control [3, 4], predictive woh[5], and fuzzy systems [6, 7, and 8] have been
proposed as feasible control alternatives.

Nowadays, considerable attention has been focusads® of artificial neural network in system
modelling and control applications. The NN has salv&ey features that make it suitable for
controlling nonlinear system. These features inelpdrallel and distributed processing, as well as
efficient nonlinear mapping between inputs and otgtpvithout an exact system model [2]. The most
successful topologies for this purpose are mubilgyerceptron (MLP) [9]. A neural network-based
structure for WECS's is proposed in [10]. Moreower3, 10, and 11] an adaptive controller using
NN is suggested for wind turbine control. This pagescribes the principles of the NN control
scheme and shows simulation results.

This paper is organized as follows: Section Il desithe model of the system to be controlled. It
consists of a wind turbine linked to an inducti@mund rotor electric generator. Section IIl deals
with the novel proposed controllers strategies.ti®@cV shows the simulation results. Finally,
Section V resumes the conclusions.
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2. Wind Energy Conversion Systems

Since the inception of the wind energy technolaggchines of several types and shapes were
designed and developed around different parts efwbrld. WECS's are usually found in two
schemes: fixed-speed, and variable-speed. FixeedspéECS's operate with optimum conversion
efficiency only at a single wind speed. In ordemiake a better use of the turbine, variable-speed
WECS's were subsequently developed [1].

2.1 Wind Turbine Characteristics

In this section, we present the application of witibine. Most of today's commercial machines
are horizontal axis wind turbine (HAWT).

Commonly, the output mechanical power and the ®rdaveloped by the wind turbine are
expressed in terms of non-dimensional powgg) and torqueg) coefficients as follows [1]:

1
P== PIR?C V. (1)
_1 3 2
Ti =5 PR CQVy,” 2
WhereC, andCq, satisfy
C
co=C%/. 3)

The two coefficients are given as a nonlinear fiamcof the parameter

p) =6«%w. 4)

Wherep is the air densityR is the radius of the turbin&/, is the wind speed, and is the
rotational speed. Usuallg, is approximated as, =a + 8A* +A°*; whereo, § andy are constructive
parameters for a given turbine. Fig. 1 depictsafC, versus turbine speed curves, with as a
parameter. It can be seen tRat. , the maximum value fdt,, is constant for a given turbine. That
value, when replaced in (1), gives the maximum wufpower for a given wind speed. This
corresponds to an optimal relationshig,f betweenvo andv,,. Fig. 2 shows the torque/speed curves
of a typical wind turbine, witlv, as a parameter. Superimposed to those curve® isuttve of
Comex . It can be seen that the maximur@, (and thus, maximum generated power) and the
maximum torque are not obtained at the same sp@ptiimal performance is achieved when the
turbine operates at th€ymax condition. This will be the control objectivetims paper [10].

2.2 Induction Generators and Sip Power Recovery

There are basically two variable-speed WECS's:dDideive synchronous generator and Double
fed (wound rotor) induction generator (DFIG).

In DFIG, the stator winding is directly connectedthe grid. However, the rotor winding is fed
through a rectifier and inverter known as statiarder drive which can change the electrical
frequency as desired by the grid. Variations onfilieg angle ¢) of the inverter can control the
operation point of the generator. Typical configiomraof such a system is shown in Fig. 3.

The torque developed by the generator/Kramer ariwebination is [3]:

41



Bayat et al.

3RegVs”
Ty = . (5)
Req /2 2
sws[(Rs+ 912 4 (Xg + X,) }
0.16
0.14}
0.12f
Vw = 13 m/s
0.1F 12
§ 0.08 10 H
O 0081
s 9
0.06f
0.04
0.02f
CO 100 260 360 560 660 760 860

400
Turbine Speed (rpm)

Fig. 1. Power coefficient, versus turbine speed [10]
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Fig.2. Torque/speed curves (solid) of a typicalduiarbine. The curve d@yw.x is also plotted
(dotted) [10].

Where
Req = f(5,0). (6)
and
Rs Stator resistance;
Xs Stator dispersion reactance;
X Rotor dispersion reactance;
s Synchronous pulsation;
o firing angle;
S slip.

(All values referred to the rotor side).

2.3 Turbine- Generatore Mode

The dominate dynamics of the whole system (turpuise generator) are those related to the total
moment of inertia. Thus, ignoring torsion in thafshgenerator's electric dynamics, and other liighe
order effects, the approximate dynamic model ofsigtem is:

Jw' =T (wVy) ~Tg (w,0) (7)

Wherel is the total moment of inertia. Regarding (2) &) the system model becomes:
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. 11 a3
w =— (= prR°CpV,
J(Zp QVw

) 3ReqVs" ) (8)

sws[(Rs Reay2 (x4 xr)z}

Where Ry depends nonlinearly on the control actms(a) according to (6)C,, 4, andV,, also
depend orw in a nonlinear way (3). Moreover, it is well knowhmat certain generator parameters,
such as wound resistance, are strongly dependerfaaiars such as temperature and aging.
Therefore, a nonlinear control strategy seems atrgctive. Its objective is to place the turbinets
maximum generation point in despite of wind gustd generator's parameter changes. Thus, the
proposed control strategy consists of changingp produce a generator's torque that this torque
settles the turbine on tlagy, Tiop [10].
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Fig.3. Basic Power Circuit of a DFIG

3. Proposed Control Strategy

This section presents a description of algorithmésthe architecture of NN controller.

Nowadays, considerable attention has been focused® of NN in system modelling and control
applications. One of the simplest approaches feritplementation of the neuro-controller is the
direct inverse model control approach. The prirecidthis is that if the process can be descrilyed b

y(t+1) = F[y(), y(t-2),...,y(t —n+1),

u(t), u(t =1),....u(t - m+1)] ©)

Where y [ denotes the outputy (10 is the inputt is the discrete time inder,andm are non-
negative integers arfe(.) is a non-linear function.

The task is to learn how to control the plant dégctin (9) in order to follow a specified referenc
Yd(t), minimizing some norm of the error:

et) =y, (0 - y(©). (10)

A network is trained as the inverse of the process:

u(t) = F [yt +1), y(t),...,y(t —n+1),

u(t=2),...,u(t - m+1)] (11)
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Before considering the actual control system, &ergse model must be trained. Two strategies for
obtaining the inverse model are existed: geneaahitrg and specialized training. First architecture
used in this paper.

The network used for identification of an inversedal of the WECS is a two-layer feed-forward
neural network with the error back-propagationneag algorithm that consists of input, one hidden
and output layers is depicted in Fig. 4. In thich#ecture, we calculate the variation
Au(t) = u(t) —u(t -1 andAy(t) = y(t) — y(t — 1).The activation function for all neurons is unipola
sigmoid and, thus signals normalized. Thgt + fedfure output variation will allow us achieve a
one- step predictive control.
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Figure 5. Closed loop block diagram
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Fig.5. Structure of multi-layer neural networks

For this case studyyt) is rotor speedv; and control signali(t) is cos(a). A NN, as mentioned,
includes 6 neurons in input layer, and 7 neuronsididen layer. Random inputs will be applied to
the model to generate the training data. The wgightl biases are initialized with random alue of
uniform distribution between -1 and 1. The adaptagain is chosen 0.02.

When the identification model is completed, the Wdhtroller will be used for the purpose of
tracking the desired set point by inserting theirddsoutputyy(t+1), instead of the output(t+1).
This controller can be implemented directly witle ghreviously identified plant model as shown in
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Fig. 5. The network output signal, after havingrbee- normalized and multiplied by a k gain, is
added to the applied control at the previous samggdime. The k gain value has an influence over
the closed-loop stability. We set it 0.2. The syesidte error is nil thanks to the presence ofnate

control.

4. Simulation Results

In this section, NN controller is implied to the WWE’s and results are depicted. In Fig. 6, a step
sequence of step-shaped wind gusts is appliedetaytstem. The resulting evolution of the closed
loop converges rapidly to the desired optimal rotetl speed. Variation afos(a), control signal is

shown in Fig. 7.
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Fig.8. System response on torque/speed coordirfatdbe same input sequence of Fig. 6.
developed torque (points) converges to the maxiargle curve, ensuring optimal operation.
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Moreover, Fig. 8 depicts the turbines developeduerversus rotational speed for the same input
sequence. In addition, the turbine characteristives are displayed (dashed line).It can be sesn th
the torque trajectories of the controlled systemveoge to the points belonging to the maximum
torque curve. The proposed controller can be efiity implemented in signal processors.

5. Conclusions

This paper discussed the application of NN in tmplementation of off-line controllers for
WECS's. A NN controller was developed to perforra ¢iptimal power control of wind generation
systems. The utilized approach, based on a MLBwaell fast convergence to a nonlinear dynamic
behavior. The system performance was studied bylatran to validate the concepts and principles.
Simulation results indicated that the proposed rotlet could realize stable tracking control for
WECS's. It was strongly robust for system distidrut The presented algorithm is universal and can
be applied to other systems.

References

[1] F. D. Bianchi, H. De Battista and R. J. Man¥¥nd Turbine Control Systems Principles,
Modelling and Gain Scheduling Design .Springer-Verlag London Limited 2007.

[2] M. N. Eskander, “Neural network Controller for aip@nent magnet generator applied n a wind
energy conversion systems,” 2002.

[3] M.Sedighizadeh and A.Rezazadeh, “Adaptive PID abrdf wind energy conversion systems
using RASPI mother wavelet basis function Netwdrk;oceeding of World Academy of
Science, Engineering and Technology, vol. 27, February 2008.

[4] M.Sedighizadeh and A.Rezazadeh, “Adaptive PID cdetr based on reinforcement learning
for wind turbine control,” Proceeding of World Academy of Science, Engineering and
Technology, vol. 27, February 2008.

[5] M. Bayat, H. K. Karegar, “Application of Predictiv€ontrol in DFIG Wind Turbines”
unpublished.

[6] P. Simoes, B. K. Bose, and R. J. Spiegel, “Fuzgyclbased intelligent control of a variable
speed cage machine wind generation systdiBEE Trans. Power Electron., vol. 12, no. 1, Jan.
1997.

[7] Z. Chen and S. A. Gomez and M. McCormick, “A Fuzagic controlled power electronic
systems for variable speed wind energy conversistess,”.

[8] K. Narendra and K. Parthasarathy, “ldentificatiamd acontrol of dynamical systems using
neural networks,TEEE Trans. Neural Networks, vol. 1, Mar. 1990.

[9] S. Haykin,Neural Networks, a Comprehensive Foundation. New York: Macmillan, 1994.

[10] M. A. Mayosky, G. I. E. Cancelo, “Direct adaptiventrol of wind energy conversion
systems using Gaussian network&EE Trans. Neural Networks, vol. 10, no. 4, July 1999.
[11] M. Sedighizadeh, M. Bayat, A. Rezazadeh, “Nonlineexdel identification and adaptive

control of variable speed wind turbine using reentmeural network,” unpublished.

46



