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Abstract 
 
Large deflections were calculated for nonlinear Ludwick type cantilever beams made of Ludwick type 
rectangular cross-sectional material subjected to a moment at the free end, by employing approximate and 
numerical methods for trial functions satisfying boundary conditions. Adequately approximate results were 
obtained for calculations employing single and binominal constant, second and fourth degree polynomial type 
trial functions. Increasing number of constant term and degree of trial functions resulted in more approximate 
values. 
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1. Introduction 
 
A large deflection of bearer systems under different load conditions is a well-known subject 
and various studies had been conducted about the subject. Due to the importance of the issue, 
today studies still continue. In many cases encountered in different engineering practices, 
results obtained by linearization are satisfactorily approximate. However, well-known 
curvature expression for elastically curve is not linear and also real materials do not have 
linear stress-strain relationship. When this fact is considered, deflections could not be 
calculated with analytical methods. Instead, approximate and numerical methods should be 
employed. Large deflections of uniform and non-uniform, concentrated or distributed loaded 
linear elastic cantilever beams were investigated in many studies [1-8]. Prathap and Varadan 
investigated large deflections of cantilever beams made of Ramberg-Osgood type nonlinear 
material, subjected to concentrated load at the free end. Same problem was solved by Varadan 
and Joseph for cantilever beams, for moment at the free end. Large deflections of cantilever 
beams made of Ludwick type nonlinear material subjected to concentrated load at the free end 
were investigated by Lewis and Monasa [11]. Same authors [12], solved the same problem for 
the moment at the free end. Lo and Gupta [13] investigated large deflections of rectangular 
cross-sectional beams, for deflection problems. Their method was to consider material stress-
strain relationship as logarithmical beyond elastic limit. Lee [14] calculated large deflections 
of cantilever beams made of Ludwick type nonlinear material, for both uniform distributed  
load and concentrated load at the free end. Lately, Güven, Baykara and Bayer [15] calculated 
large deflections of free end of cantilever beams made of nonlinear Ludwick type bimodulus 
material (stress-strain relationship different for tension and compression) on which moment 
affecting on the free end. They defined these results in closed form and tabulated the 
numerical results depending on material constants.  
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2. Cantilever Beams Subjected to Moment at the Free End 
 
In this study, vertical and horizontal deflections of uniform cantilever beams for L length, 
Shown in Figure 1, was calculated by selecting trial function satisfying boundary conditions 
and thus employing various numerical methods and Euler-Bernoulli curvature expression. 
Beam was assumed to be thin and non-elongating. Both material and geometrical nonlinearity 
were also assumed. The objective of this study is to determine the effect of geometrical and 
material nonlinearity on the large deflections and, show the difference between large 
deflections calculated with different methods for different moment values. Deflections 
obtained by assumed trial functions was compared to Reference values in order to determine 
the efficiency of trial functions employed in the study. 
 
2.1. Methods and Formulation 
 
 

 
 
 

Fig. 1.  Uniform cantilever beam moment affected on the free end. 
 
 
In figure 1 ∆ is the horizontal deflection, δv  is the largest vertical deflection, M is the moment, 
ψ is the slope angle and s is the arc length.  
 
For trial functions y(x), two different assumptions satisfying y(0)=0 and y’(0)= 0 boundary 
conditions, were employed; 
 

2y(x) ax=            (1) 
 

2 4y(x) cx ex= +           (2) 
 
Stress-strain relationship for Ludwick type material is as shown in below, 
 

1

nBσ = ε            (3) 
 
Euler-Bernoulli curvature-moment expression for Ludwick type material,  
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In this expression, for rectangular cross-section, Kn is assumed to be; 
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For total arc length, equation which is shown below, is employed 
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when trial function (1) is written in the Equation (6), then arc length was 
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If this equation is integrated,  
 

2 22a 1 4a (L ) (L ) ArcSinh[2a(L )]
L

4a

+ − ∆ − ∆ + − ∆
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is obtained. When trial function (2) is written in the Equation (6), then arc length is; 
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Simpson method was employed for integration of Equation 9.  
 
If right side of the Equation 4 was employed and 2y(x) ax=  trial function in Equation 1 and 

2 4y(x) cx ex= +  trial function in Equation 2 were considered, error function was obtained as 
shown below; 
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Number of equations that should be obtained by weighted residual methods; depend on 
number of constant terms in the trial function, for calculation of large deflections. Constant 
terms in horizontal deflection and trial functions are unknown, thus, 2 equations for single 
constant term trial function and 3 equations for double constant term trial functions, are 
required. One of the equations is to be evaluated from arc length equation and other will be 
derived from other methods that were employed in the study. Equations obtained for single 
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constant term trial function was shown below only for Moments Method and Least-Squares 
Method.  
 
3. Moment Method 
 
If 2y(x) ax=  trial function from Equation 1 is employed and zero moment of error function in 
Equation 10 is integrated over the region according to moment method, then; 
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If 2 4y(x) cx ex= + trial function from Equation 2 is employed and zero and first moment of 
error function in Equation 11 is integrated over the region according to moment method, then 
equations shown below are obtained: 
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4. Least-Squares Method 
 
If trial 2y(x) ax=  function from Equation 1 is employed and multiplication of partial 
derivation of constant term with error function in Equation 10, is integrated over the region 
according to least-squares method, then equation shown below is obtained: 
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If trial 2 4y(x) cx ex= +  function from Equation 2 is employed and multiplication of partial 
derivations of constant terms with error function in Equation 11, are integrated over the 
region according to least-squares method, then equations shown below are obtained: 
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5. Galerkin Method 
 
Base functions in 2 4y(x) cx ex= +  trial function is assumed to be weight function and then 
multiplying error functions in Equation 11 with weight function gives the equations below; 
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6. Subregion Collocation Method 
 
When error function in Equation 11 is examined in two sub regions and equaled to zero, the 
equations shown below can be written; 
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7. Point Collocation Method 
 
In this method, error function in Equation 11 is equaled to zero in two points selected over the 
region. 
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is obtained.  
 
Vast majority of the integrations conducted in various methods, were executed according to 
Simpson method. By employing these equations and arc length equation, constant terms of 
trial function and horizontal deflection value, ∆ , are calculated by Newton method. y(L )− ∆  
value for x L= − ∆  condition in trial function gives largest deflection value at the free end.  
 
8. Numerical Results 
 

0.209σ = 66,1ε , [12]          (24) 
 
In Table 1, large deflections of a NP8 aluminum alloy cantilever beam which have the 
dimensions of 50,8 cm , 2,54 cm , 0,635 cm  by means of length, width and height 
respectively and behaving according to Equation 24, were given.  
 
σ, stress unit is ksi. During the construction of Table 1, instead of value of 66.1 ksi for B, unit 
conversion was carried out and 0.455 105 N/cm2  (0.455 GPa) was employed. Calculations in 
this study were conducted by Mathematica 5.2 software.  
 
In Table 1, large deflection values calculated with various methods for different moment 
values can be seen. It is also possible to observe the deviations of the calculated values 
according to these methods compared to Reference values and effect of number of selected 
constant terms over the approximation to Reference result.  
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Table 1. Comparison of horizontal and vertical deflections calculated various methods for 

cantilever beams subjected to a moment at the free end 
 

METHODS 
M 

(Ncm) 
2259,70 2485,67 2711,64 2937,60 3163,57 3389,54 3615,51 3841,48 3954,47 

REFERENCE  RESULTS 
∆ (cm) 0,0843 0,2096 0,4811 1,0315 2,0833 3,9848 7,2390 12,4836 16,0579 

δv (cm) 2,5321 3,9901 6,0345 8,8024 12,4168 16,9395 22,2809 28,0495 30,8381 

MOMENT 
METHOD (MM1) y(x)=ax2 

∆ (cm) 0,0846 0,2118 0,4924 1,0823 2,2846 4,6682 9,0190 15,3405 18,7747 

δv (cm) 2,5396 4,0167 6,1227 9,0711 13,1606 18,7508 25,8685 33,2645 36,4608 

Deviation for δv MM1 and Reference (%) 0,30 0,66 1,44 2,96 5,65 9,66 13,87 15,68 15,42 

MOMENT 
METHOD (MM2) y(x)=cx2+ex4 

∆ (cm) 0,0843 0,2097 0,4815 1,0328 2,0891 4,0226 7,4857 13,4778 17,2452 

δv (cm) 2,5333 3,9921 6,0372 8,8061 12,4226 16,9551 22,3534 28,2715 31,0832 

Deviation for δv MM2 and Reference (%) 0,05 0,05 0,04 0,04 0,05 0,09 0,32 0,79 0,79 

LEAST-SQUARE 
METHOD  

(LSM1) 
y(x)=ax2 

∆ (m) 0,0846 0,2116 0,4904 1,0619 2,1183 3,7225 5,6267 7,5517 8,4817 

δv (m) 2,5396 4,0167 6,1227 9,0711 13,1606 18,7508 25,8685 33,2645 36,4608 

Deviation for δv LSM1 and Reference (%) 0,30 0,66 1,44 2,96 5,65 9,66 13,87 15,68 15,42 

LEAST-SQUARE 
METHOD  

(LSM2) 
y(x)=cx2+ex4 

∆ (cm) 0,0843 0,2097 0,4815 1,0325 2,0862 3,9754 6,7543 9,4852 10,6736 

δv (cm) 2,5333 3,9920 6,0369 8,8043 12,4116 16,8702 21,5044 25,0277 26,3784 

Deviation for δv LSM2 and Reference (%) 0,05 0,05 0,04 0,02 -0,04 -0,41 -3,61 -12,07 -16,91 

GALERKIN 
METHOD (GM) 

y(x)=cx2+ex4 
∆ (cm) 0,0843 0,2097 0,4808 1,0259 2,0285 3,5789 5,1408 5,8826 6,0468 

δv (cm) 2,5332 3,9915 6,0326 8,7738 12,2246 15,9068 18,1679 17,3727 15,9357 

Deviation for δv GM and Reference (%) 0,04 0,04 -0,03 -0,33 -1,57 -6,49 -22,64 -61,46 -93,52 

SUBREGION 
METHOD       

(SM) 
y(x)=cx2+ex4 

∆ (cm) 0,0843 0,2097 0,4816 1,0331 2,0918 4,0377 7,5381 13,5203 17,2541 

δv (cm) 2,5333 3,9921 6,0375 8,8080 12,4330 17,0130 22,4948 28,4633 31,1569 

Deviation for δv SM and Reference (%) 0,05 0,05 0,05 0,06 0,13 0,43 0,95 1,45 1,02 

POINT 
COLLOCATION 

METHOD     
(PCM) 

y(x)=cx2+ex4 

∆ (cm) 0,0843 0,2097 0,4813 1,0309 2,0735 3,9105 6,8174 10,7048 12,8348 

δv (cm) 2,5332 3,9919 6,0364 8,8003 12,9609 16,7918 21,6928 26,3255 28,2676 

Deviation for δv PCM and Reference (%) 0,04 0,05 0,03 -0,02 4,20 -0,88 -2,71 -6,55 -9,09 
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9. Conclusions 
 
In this paper, large deflections of cantilever beams made of Ludwick type nonlinear material 
subjected to a moment at the free end, were investigated by employing polynomial, single and 
binominal termed approximate trial functions that satisfy boundary conditions.  
 
Single termed trial function assumed to be y(x)=ax 2 , is a very simplified expression. It is 
logic to think that this simple trial function would not give good results for calculated 
deflections for such a complex problem involving both geometrical and material non-
linearity. However, vertical deflection deviations are below %6 compared to Reference value, 
even decreasing to %0.3, for Moment and Least Squares Methods. Assuming trial function as 
y(x)=ax 2 , deflections were calculated by employing Moment and Least Squares Methods. 
When y(x)=ax 2   trial function employed for Galerkin, Subregion Collocation and Point 
Collocation Methods, beyond determined moment values, appropriate roots giving the 
constant terms and horizontal deflections, could not be obtained. Thus, calculations were not 
made for these three methods.  
 
For double termed trial function y(x)=cx 2 +ex 4 , best results were achieved by employing 
Moment and Subregion Collocation Methods for obtaining vertical deflection values that 
agree with Reference values. Minimum deviation for Moment method was %0.05 and 
maximum deviation was 0.79 and for Subregion Collocation Method minimum deviation was 
%0.05 and maximum deviation was %1.45. Other methods also were given deviations below 
%1, for vast majority of the moment values. However, for some massive moment values, 
deviations were too high for some methods and smaller for other methods, but increasing with 
the value of the moment.  
 
y(x)=cx 2 +ex 4   trial function is actually a simple polynomial. Approximation of calculated 
deflection values to %0 levels is really interesting and notable. Double constant termed trial 
function gives better results than single constant termed trial functions in aspect of calculated 
deflections. Increasing number of constant terms would give better results. However, 
increasing number of components of trial function would result in more complex equations, 
which would also complicate the calculations.  
 
Another important highlight is the close results of Point Collocation Method compared to 
Reference values. What makes this result interesting is the simplicity of method. The method 
gives the simplest results without employing any complex integration. For vast majority of the 
moment values, deviations are below %1 and decrease down to %0.02  
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