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 Abstract 
 

 

There are many steady state models of polymer electrolyte membrane fuel cells (PEMFC). However, rarely the 
methods for parameter optimization of PEMFC stack model were discussed. In this paper an electrochemical-based 
fuel cell method is used and parameters of this PEMFC model are optimized by means of Particle Swarm 
Optimization (PSO). The target of this paper is to show how PSO apply for parameter optimization of fuel cells. At 
the end of paper the PSO test result are compared with Genetic Algorithm. 
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1. Introduction 
 
  Nowadays, because of air quality matters, the demand for clean energy has kept increasing. 
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is widely researched for power generation 
system. Fuel cells have various advantages compared to conventional power sources, such as 
internal combustion engines or batteries. Fuel cells eliminate pollution caused by burning fossil 
fuels; the only byproduct is water and if the hydrogen used comes from the electrolysis of water, 
then using fuel cells eliminates greenhouse gases. Fuel cells do not need conventional fuels such 
as oil or gas and can therefore eliminate economic dependence on politically unstable countries. 
Since hydrogen can be produced anywhere where there is water and electricity, production of 
potential fuel can be distributed. 

Two main modeling approaches can be found in literature. The first approach includes 
mechanistic models, which aim at simulating the heat, mass transfer and electrochemical 
phenomena encountered in fuel cells [1,2,3,4]. These models usually analyses specific 
components of the fuel cell stack, such as the anode, cathode, and membrane. The second 
approach deals with empirical or semi-empirical model equations, which are used to predict the 
effect of different input parameters on the voltage–current characteristics of the fuel cell. 
Generally, they are applied assumptions and approximations in PEMFC modeling thus there will 
be some errors between the models and the actual performance of them [ 5,6,7]. In spite of 
advances in PEM fuel cell modeling, the PEM fuel cell system is a complex nonlinear, multi-
variable system that is hard to model by conventional methods . In order to improve the accuracy 
of the models and make the models reflect the actual PEM fuel cell performance better, it is 
necessary to identify the parameters of the models using optimization techniques. In recent years, 
the evolutionary computation technique based on genetic algorithm (GA) or its variation has 
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attracted much attention in the investigation of fuel cell systems [8]. For example, the GA was 
proposed for improving the accuracy of the fuel cell model parameter identification [9]. 
Nevertheless, there are still some deficiencies in GA performance [10]. The degradation in 
efficiency is apparent in applications with highly epistatic objective functions, i.e. where the 
parameters being optimized are highly correlated. In this case, the crossover and mutation 
operations cannot ensure better fitness of offspring because chromosomes in the population have 
similar structures and their average fitness is high toward the end of the evolutionary process. As 
an alternative to GA, particle swarm optimization (PSO) [11] is a recently invented high-
performance algorithm. 

The focus of this work is to identify fuel cell model parameters using the PSO method 
through fitting the mathematical model to actual experimental data. 
 

2. Particle Swarm Optimization 
 
   Particle Swarm Optimization (PSO) is an extremely simple algorithm that seems to be effective 
for optimizing a wide range of functions. The swarm is typically modeled by particles in 
multidimensional space that have a position and a velocity. These particles fly through 
hyperspace and have two essential reasoning capabilities: their memory of their own best position 
(pbest) and knowledge of the global or their neighborhood's best (gbest). In a minimization 
optimization problem, problems are formulated so that "best" simply means the position with the 
smallest objective value. Members of a swarm communicate good positions to each other and 
adjust their own position and velocity based on these good positions. So a particle has the 
following information to make a suitable change in its position and velocity: 

• A global best that is known to all and immediately updated when a new best position is 
found by any particle in the swarm. 

• Neighborhood best that the particle obtains by communicating with a subset of the swarm. 
• The local best, which is the best solution that the particle has seen. 

  The particle position and velocity update equations in the simplest form that govern the PSO are 
given by: 
 

 
 

 
 

   In Standard PSO, the parameter c1 is set to zero. And when   
then r3 is also (temporarily) set to zero. As the swarm iterates, the fitness of the global best 
solution improves. The selection of coefficients in the velocity update equations affects the 
convergence and the ability of the swarm to find the optimum. It is highly dependent on 
stochastic processes, like evolutionary programming. The adjustment toward pbest and gbest by 
the particle swarm optimizer is conceptually similar to the crossover operation utilized by genetic 
algorithms. It uses the concept of fitness, as do all evolutionary computation paradigms.  
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3. Basic Operation Principle of a PEMFC Stack 

    A proton exchange membrane fuel cell transforms the chemical energy liberated during the 
electrochemical reaction of hydrogen and oxygen to electrical energy, as opposed to the direct 
combustion of hydrogen and oxygen gases to produce thermal energy. A stream of hydrogen is 
delivered to the anode side of the membrane electrode assembly. At the anode side it is 
catalytically split into protons and electrons. The newly formed protons permeate through the 
polymer electrolyte membrane to the cathode side. The electrons travel along an external load 
circuit to the cathode side of the MEA, thus creating the current output of the fuel cell. 
   Meanwhile, a stream of oxygen is delivered to the cathode side of the MEA. At the cathode 
side oxygen molecules react with the protons permeating through the polymer electrolyte 
membrane and the electrons arriving through the external circuit to form water molecules. 

   The electrochemical reactions occurring electrodes of a PEMFC are as follows:   
 

Oxidation half reaction in the anode:                                                      (1)   
                        

Reduction half reaction in the cathode:                                  (2) 
 

Total electrochemical cell reaction:  2                                             (3) 
 
   Electrochemical energy comes from last reaction.  We can assemble many single cells into a 
fuel cell stack system in order to provide the required amount of power [12]. 
     
 
3. Electrochemical Models of The Fuel Cell 

 
   In an electrochemical model the behavior of the voltage as the function of the current is 
presented; i.e. the polarization curve. It’s mentioned that the actual cell potential is decreased 
from its equilibrium potential because of irreversible losses. 
 The losses, originate usually from three sources:1) the activation overvoltage,2) ohmic loss and 
3) concentration overvoltage.   
 
  Vapor pressure for water mentioned as a function of the temperature: 
 

       
                                                                                    (4) 

  If the reactants are air and H2, then  
 

                                                                                                          (5) 

                                                      (6) 

 
  If the reactants are O2 and H2, then 
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                                                           (7) 

 
 
  In both reactive conditions 
 

                                                    (8) 

 

   Where ,  are anode and cathode inlet pressure terms in atm,  is  partial 
pressure at the cathode gas flow channel in atm effective partial pressure 
terms in atm and is temperature in Kelvin. A is the effective electrode area (cm2) and i is the 
cell current (A). 
 
The basic expression for the voltage for a single cell is:   
 

                                                                                  (9) 
 
   The reversible voltage of the cell ( ) is the potential of the cell obtained in an open 
circuit thermodynamic balance (without load). It can be defined via a Nernst equation in  
expanded form as (Mann et al., 2000) 
 

              (10) 
 
  The concentration of dissolved oxygen (CO,) in mol/cm3 at the gas/liquid interface can be  
defined by Henry's Law expression of the form 
 

                                                                          (11) 
 
  The activation overpotential is mentioned below : 
 

                                                              (12) 
 

is the equivalent resistance of the membrane and is calculated by: 
  

                                                                                                                          (13) 

 
   Where  is the specific resistivity of the membrane for the electron flow and  is the thickness 
of the membrane. The following numeric expression for the resistivity of the membranes is used 
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                                                                              (14) 

 
The ohmic loss follows the equation 
  

                                                                                       (15) 
 

can be determined by 
 

                                                                                           (16) 

 
is the maximum current value where fuel is used and applied at its maximum rate. 

Above,  ,  and  are the optimized parameters. 
 
the output voltage of a PEMFC stack can be determined by: 
 

                                                                      (17) 
 
n is the number of series cells which are connected in the stack, so  is the stack voltage. 
The Stack parameters are shown in Table 1. The upper and lower bounds of these parameters are 
given in Table 2. 
 
5. Objective Function 
 

A sum of the squared error between the output voltage of the PEMFC stack model and the 
experimental output voltage of the actual PEMFC stack can be served as an objective function for 
optimization to determine these model parameters 
 

                                                                           (18) 
 
Where y is the objective function, Vsm is the experimental data of stack voltage, Vs is output 
voltage of the model and J is the number of the experimental data point. 
 
6. Calculation and Simulation Results 
 
   A stack whose parameters and operational range are described in Table I is examined and the 
result are shown in table 3. PSO code is developed with MATLAB software. The parameter 
optimizations of PSO were compared to the solutions of the Genetic algorithm reported in 
[9].The contrast results are shown in table 3. From results it is clear that model output voltage 
agrees well with experimental data. PSO has many advantages: (1) it has convergence of this 
optimization problem, (2) it provides a stable and global optimization solution; (3) PSO is more 
accurate than GA as the results shown in table 3.  

Mainly errors are caused in the area of concentration loss and ohmic loss because Imax and 
RM are changed at the different operating condition. Error corrections can be implemented by 
other advanced control schemes. 
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Table 1. Stack parameters 
 

 Stack parameters   

Number of series cells 
n 

48 Stack temperature T (K) 
 

323 

Cell’s effective area A 
(cm2) 
 

62.5 pressure of hydrogen (atm) 1.47628 

thickness of  
membrane (cm) 

.0025 pressure of oxygen (atm) .2095 

maximum current  42 Anode relative humidity 
 

1 

 
 

Table 2. Bounds of model parameter 
 

Model 
parameter 

       

Upper 
bound 

-0.944 0.005 -0.0000954 0.000098 24 0.0008 0.5 

Lower 
bound 

-0.952 0.001 -0.00026 0.000036 14 0.0001 0.0136 

 

 
Table 3. Values of the optimized parameters 

 

Model 
parameter 

       y 

PSO -0.9479 0.0030 -0.0001 0.0002 20.5256 0.0003 0.1099 17.5675 
GA -0.94731 0.0030641 -0.0001939 0.000077134 19.767 0.00027197 0.023981 20.81 
 
 
7. Conclusions 
 
  An electrochemical steady state PEMFC model is developed in this paper. The model 
parameters are optimized globally by using PSO in the operating region, because traditional 
gradient-based optimization methods are difficult to solve this global optimization problem. 
According to the results, PSO is a good choice for parameter optimization because it has 
convergence of this optimization problem, it provides a stable and global optimization solution, 
and PSO is more accurate than GA. 
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