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Abstract

A multi-objective optimization based graphical procedure to derive a reduced order (rth-order) approximant for
given (stable) SSO linear continuous-time system is presented. In this method, stability and the first r time
moments/Markov parameters are preserved as well as the errors between last r time momentsMarkov
parameters of the system and those of the model are minimized. The method is useful as it alleviates the
problems of deciding the values of number of error functions to be minimized and values of weights on the
errorsin arriving at good approximants.
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1. Introduction

The usefulness of techniques for deriving low-ordpproximations of high-order systems
has already been accepted due to the advantagesdoted computational effort and
increased understanding of the original system s€guently, a large number of time-domain
and frequency-domain systems. Simplification tegbhes have been developed to suit
different requirements. Amongst them, a frequenmyain method is Padé approximation in
which 2 terms of the power series expansion (time momdaikiov parameters) are fully

retained in low-order rth-order) modeG, (s) of the high-order rith-order) transfer

functionG, (s). The Padé approximation does not guarantee th#itst@f the reduced-order

model. To overcome the problem of stability, sevstable reduction methods such as Routh
approximation, the Hurwitz polynomial approximatighe stability equation method and
the method using Michailov stability criterion habeen proposed. Recently, geometric
programming based (computer-oriented) methods Blifakr the solution of the Routh-Padé
approximation problem are presented. In these mdsthérst r time moments/Markov
parameters are fully retained and the weighted stisgjuares of the errors between a set of
subsequent time moments/Markov parameters of tkeesyand those of the model are
minimized while preserving stability. These methbdse the drawback that the question of
finding some means (free of hit and trial) of diéng the values of the number of time
moments/Markov parameters (say to be matched or near-matched and the weights to
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correspond to assured substantial improvemangystem approximation as well as the

guestion of establishing the existence of sualues are left unresolved.
In this note, a nonlinear programming, Vector batéd Genetic Algorithm (VEGA) based

graphical procedure for the solution of Routh-Paggroximation problem is presented. The
method is essentially a multi-objective optimizatigrocedure in which not only stability is

preserved and the firstterms of the power series expansion@®f s &ré¢ fully retained but
also the errors between lastime moments/Markov parameters of the system hodet of
the model are minimized.

2. Model reduction problem viewed as a non-lineaoptimization problem and review of
the existing methods

The system under consideration for ready referecsproduced here:

G, iétals Y+a,8"* +...+a, )
s"+bs" +...+b
£ +t,Ss+.+t 8"+ 2)
(expansion around=0 )
Mys™ +M,s? +..+M s +... 3)

(expansion aroung= 0

Assume that a reduced ordertii-order) model of the form

ST+4,8 P +..+4

G, (9= % 2> ~—,r<n (4)
s' +bls +...+b
t+t,s+..+t s"H+ (5)
MstHMLs 2+ + M ST+ (6)

is required.
3. Formulation of the Multi-Objective Optimization Problem (MOOP)

It is easy to verify that the following equationddhtrue:

a
§=1" o ™
5 |I§, 16r+]—1j6r_1 i=23...
=
:6 =0fori=r+1r+2..)
a i=1
SM b, i=23. (8)

j=1

Ofor|<0b lb =0fori<-1)
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We seek a stable model for whickquations given by

-t =0 i=1../ o)
M,-M; =0 j=1..r-A
are satisfied, which implies, from (7),
& = thbr—iﬂ' =1
j=1 . veey (10)
A~ j=L...r=A

There exist an infinite number of stable modelsvibich (10) is satisfied. This arbitrariness
in stability preservation can be exploited to miiziensquare of the errors of matching of next
r time-moments and Markov-parameters of the systémmtivose of the model (a total af

terms). This problem is converted to MOOP and VEGAIsed to generate Pareto-optimal

solutions by minimizing objective functioms,, , z",,, given by:

A

t
Z = @-25)?
AI(?T k=14...m;l=2.r-m (12)
2! = L)’
™ Mr—/l+l

using (8) subject to. (9), (11) takes the form

21 () = f(fal,faz,...,p)} =1 ledrom 12)
ZrN—l/\+| (b) = f(bl’bZ""’br)

4. Formulation of the Stability Constraints

Now the denominator polynomial of (4) can be expeésas:

s +d,st+(d, +d, +...+d.)s +d,(d, +d, +...+d,
+[d,(d, +d +..+d ) +d,(d, +d, +...+d.)+d,(d, +d, +..+d ) +... (13)
+d,,d, 8" +...+ dy g,

which is constructed by taking the coefficientshad first two rows of the Routh array with
the elements of its first column given by:

d,,d,,d,d;,d,d,,d,d,0s, ... 0y, Ogq -, 0, (14)
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whereq =1 for r even andq =0 for r odd. By setting:

d,bt= +d,+...+d, )byt =1,
d;by JZ( 2 ) (15)
dl( 3+d +. + ) _1_1 ( 1+q 3+q dr 2d )b_l_l
is matched with the denominator polynomial of thedel in (4), namely, with
b +b_s+..+bs "+ (16)

and the necessary and the sufficient condition aliahe roots of (16) be strictly in the left
half plane is

>0 a7)

which, of course, implies
b, >0,b, >0,...,b, >0. (18a)

Note that, for a givem, b i=1..r, can easily be expressed in termsaof i=1..r, by

constructing an inverse Routh array (i.e., with él@ment of its first column given by (14)).
Thus, pertaining to= 4, (15) becomes

A~

61 = al, 62 = dA3 + a3 + &4, 63, = al(d3 + dA4) , 64 = a2&4 (18b)

5. Problem statement

The problem is to minimize (12) subject to (15) &hd), (18).

6. Application of VEGA

The vector evaluated genetic algorithm (VEGA) [1gl]proposed herein for solving the
above stated problem. VEGA is the simplest possihldti-objective GA [14] and is
straightforward extension of a single-objectiveession of multi-objective optimization.
Since a number of objectives (say Q) have to belledn GA population is divided at every
generation into Q equal subpopulations randomlghEsubpopulation is assigned a fitness
value based on different objective function. Aeach solution is assigned a fitness value, the
selection operator restricted among solutions ahesubpopulation, is applied until the
complete subpopulation is filled [14].
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7. Examples

The step-by-step procedure to obtain reduced-araetel is explained with the help of the
examples presented below.

Example 1

Consider a stable third-order system [22]

8s® +6s+2
s +4s® +55+2
(t, =1t, = 05,t, = 075
M, =8 M, =-26M, = 66).

G,(s) = (19)

Suppose a second-order approximant@) is required. The system considered in this
example is critically damped. For obtaining bettruced-order model of this type of the
system, equal number of time-moments and Markowarpaters of the system are to be
retained or near-retained in the model. The RouithePapproximants can systematically be
arrived at, by following steps given below:

Step 1:From the requirement of the finsterms matching (witd =1), one has

“ :tle}: {‘i‘z D (20)
a =M, a =8
Step 2:From (8) together with (9), one obtains
o — (_Rh S -1
EZ - ( ?1 +8)Ab2 (21)
M, = b, —8b,

b = %} (22)
b, = d,

Step 3:Using (22), objective function (12) and (17a) take following forms respectively
(for m=1)

f 8d;* -d,d;*
Zt = 1__2 2 = 1_ 2 1¥2 2
2 ( t) ( 05 ) (23)
M d, -8d
' = Q-5 = )
M, -26
subject to c:onstraintsi1 >0, 62 >0. (24)
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Step 4:The problem is to minimize (23) subject to (24)li6wing VEGA [14] parameters
has been used to obtain the optimal valued, @ndd, (refer Tablel)

Solution h

2.951056
2.951056
4.451056
3.951056
4.201056
3.951056

OO WNPE

z107*

£

B00—

600—

400 —

200 —

Table 1. Assigned Fitness

b

5.201056
4.951056
4.951056
4.951056
5.201056
4.951056

f

0.0886436
1.0806434
0.1880176
0.403972
0.212369
0.40397

1 Partition

0.08527766 1
0.07975278 1
0.0320378
0.000693
0.00857
0.000693

Graphical Verification of VEGA
{Third order to second order)

Partition 1

a.ttitinn 7
4 !
¥ ull | ¥

| v |

20 40

&0 a0

100

>
120 2102

NNDN R

Assigned
Fitness
0.886436
1.0806434
0.1880176
0.000693
0.00857
0.000693

Fig 1. Graphical verificatiby VEGA (Third order to second order)

d’=3951056, dJ=4.951056

and using (22)ﬁland 62 are evaluated as

b, =3.951056 b, =4.951056

Step 5:From (20), the numerator parameters of the maadteldut to be

(25)

(26)
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4,=8 4a,=4951056 (27)

Step 6:Thus, the model is identified as
2 8s+4.951056
G,(s)=— (28)
s +3.951056 + 4951056

On the other hand, by applying the method of [B2]hodel is obtained as

0.7477+10

G, (s) =
2(8) s? +0.24775+ 10

(29)

Step Response

System
_ _ _ Model |
Model

Amplitude

o 1 1 1 1 1
u} 1 2 3 4 = =1

Time (sec)

Fig. 2. Step response of system &b@8 models (28) and (29)

The integral square error (ISE) is given|B§ :J'[y(t) - y(t)]?dt , which can be calculated
0

using Parseval's theorem of the overall time respaoof system & model, wherg(t) and

y(t) denote output response Gf, s (ahd ér (s) corresponding to (28) and (29) are focus to

be 0.1404 & 29.8684 respectively, confirming thelmability of the present technique to
realize improvement in system approximation. Thebfams of finding the values afi and
weights (v ) are also eliminated in arriving at (28).
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Example 2

Suppose for a fourth-order system given by Lepsaidy/Viaro [21]:

267s® +527s* + 385 +100
s* +4s° +6s* +4s+1
¢, =100 t,=-1 t,=-13t,= 9
M, =267, M, =-541 M, =947, M, =
a second-order approximant is to be obtained.
Step 1:From (10),

G,(s) =

?2 = tlbz} _ 6:12 = ]_OGSZ
a a, = 267.

Step 2:From (8) together with (9), one obtains (takimg=1):

f,=t,M, =M., =t,,f, = (100, +267)b;*,

M, =t,b, —M,b, =100, - 267b,.

Step 3:The problem, using (11) and (15) is stated as:

%= 0-2)°
Minimize 2|\7|
2 =01-—2
> = Mz)

subject to constraintei1 >0 and az > 0.

Table 2. Assigned Fitness

Solution b b, fi b
1 3..051056 2.851056 1.011875 0.0004497892
2 3..051056 2.851056 1.011875 0.0004497892
3 2.971056 3.201056 0.139134 0.0157215672
4 2.751056 3.451056 0.71135388078496968
5 2.951056 3.951056 0.2764348 0.0750186 1
6 2.951056 3.951056 0.2764348 0.0750186 1

(30)

(31)

(32)

(33)

Assigned
Fitness
0.000449789
0.000449789
0.015721567
0.71135388
0.2764348
0.2764348
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A Graphical Verification of VEGA
(fourth order to second order)

x10*

f2

80C — Partition 1

€S0l.5,6
'

60C —

400 —

107 >
800 f, X

Fig 3. Graphical Verification of VEGA (fourth ordey second order)

Step 4:The VEGA converges to the following optimal solutio

d, =b, = 3051056 d, =b, = 2851056 (34)
Step 5:From (21) the numerator parameters turns out as

a, = 267, a, =2.851056 (35)
and the second order model of the form:

G.(9) = 267s+ 2851056
2 s? +3.05105¢s + 2.85105¢

(36)

For comparison, the model as obtained by techniquespschy and Viaro [21] is presented
below:

267s+32182
s? +3.1736s+3.218:

However, the ISE which is corresponding to (36) é3i) are respectively 1.446 and 3.128,
reveals that (36) is an improvement over (37)

G,(s) = (37)

40



8. Conclusions

In this paper, the problem of finding Routh-Padé rapipnants has been viewed as a multi-
objective optimization problem. It is shown thasing Pareto Optimality and VEGA, the
denominator of the model can be chosen sdoasinimize errors between therQ)th and
the subsequent time moments and Markov parametetie model and the corresponding
time moments and/or Markov parameters of theegysthile preserving stability.
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