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 Abstract 
 
A multi-objective optimization based graphical procedure to derive a reduced order (rth-order) approximant for 
given (stable) SISO linear continuous-time system is presented. In this method, stability and the first r time 
moments/Markov parameters are preserved as well as the errors between last r time moments/Markov 
parameters of the system and those of the model are minimized. The method is useful as it alleviates the 
problems of deciding the values of number of error functions to be minimized and values of weights on the 
errors in arriving at good approximants. 
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1.  Introduction  
 
The usefulness of techniques for deriving low-order approximations of high-order systems 
has already been accepted due to the advantages of reduced computational effort and 
increased understanding of the original system. Consequently, a large number of time-domain 
and frequency-domain systems. Simplification techniques have been developed to suit 
different requirements. Amongst them, a frequency domain method is Padé approximation in 
which 2r terms of the power series expansion (time moments/Markov parameters) are fully 
retained in low-order (rth-order) model )(sGr  of the high-order (nth-order) transfer 

function )(sGn . The Padé approximation does not guarantee the stability of the reduced-order 

model. To overcome the problem of stability, several stable reduction methods such as Routh 
approximation, the Hurwitz polynomial approximation, the stability equation method   and 
the method using Michailov stability criterion have been proposed. Recently, geometric 
programming based (computer-oriented) methods [11-13] for the solution of the Routh-Padé 
approximation problem are presented. In these methods, first r time moments/Markov 
parameters are fully retained and the weighted sum of squares of the errors between a set of 
subsequent time moments/Markov parameters of the system and those of the model are 
minimized while preserving stability. These methods have the drawback that the question of 
finding some means  (free of hit and trial) of deciding the values  of the number of time 
moments/Markov parameters (say m) to be matched or near-matched and the  weights to  
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correspond  to  assured   substantial   improvement   in system  approximation as well  as  the 
question of establishing  the  existence  of  such  values are left unresolved. 
 In this note, a nonlinear programming, Vector Evaluated Genetic Algorithm (VEGA) based 
graphical procedure for the solution of Routh-Padé approximation problem is presented. The 
method is essentially a multi-objective optimization procedure in which not only stability is 
preserved and the first r terms of the power series expansion of )(sGn  are fully retained but 

also the errors between last r time moments/Markov parameters of the system and those of 
the model are minimized.  
 

2.  Model reduction problem viewed as a non-linear optimization problem and review of 
the existing methods 

The system under consideration for ready reference is reproduced here: 
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Assume that a reduced order (r th-order) model of the form 
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is required. 
 
3.  Formulation of the Multi-Objective Optimization  Problem (MOOP)  

It is easy to verify that the following equations hold true: 
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We seek a stable model for which r equations given by 
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are satisfied, which implies, from (7), 
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There exist an infinite number of stable models for which (10) is satisfied. This arbitrariness 
in stability preservation can be exploited to minimize square of the errors of matching of next 
r time-moments and Markov-parameters of the system with those of the model (a total of 2r 
terms). This problem is converted to MOOP and VEGA is used to generate Pareto-optimal 
solutions by minimizing objective functionst kz +λ , M

lrz +−λ  given by: 
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using (8) subject to. (9), (11) takes the form  
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4. Formulation of the Stability Constraints 

 
Now the denominator polynomial of (4) can be expressed as:  
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which is constructed by taking the coefficients of the first two rows of the Routh array with 
the elements of its first column given  by: 
 

                     rrqq ddddddddddddd ˆˆ...ˆˆ,...,ˆˆˆ,ˆˆ,ˆˆ,ˆ,ˆ
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where 1=q  for r  even  and  0=q  for  r  odd. By setting: 
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is matched with the denominator polynomial of the model in (4), namely, with  
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and the necessary and the sufficient condition that all the roots of (16) be strictly in the left 
half plane is 
 

                     0ˆ,...,0ˆ,0ˆ
21 >>> rddd  (17) 

 

which, of course, implies   

                     0ˆ,...,0ˆ,0ˆ
21 >>> rbbb .                                                         (18a) 

 

Note that, for a given r, ib̂  ri ,...,1= , can easily be expressed in terms of id̂ , ri ,...,1= , by 

constructing an inverse Routh array (i.e., with the element of its first column given by (14)). 
Thus, pertaining to r= 4, (15) becomes  
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ˆˆ db = , 4332
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5. Problem statement  

The problem is to minimize (12) subject to (15) and (17), (18).  

 
6. Application of VEGA 
 
 The vector evaluated genetic algorithm (VEGA) [14] is proposed herein for solving the 
above stated problem. VEGA is the simplest possible multi-objective GA [14] and is 
straightforward extension of a single-objective extension of multi-objective optimization. 
Since a number of objectives (say Q) have to be handled, GA population is divided at every 
generation into Q equal subpopulations randomly. Each subpopulation is assigned a fitness 
value based on different objective function. After each solution is assigned a fitness value, the 
selection operator restricted among solutions of each subpopulation, is applied until the 
complete subpopulation is filled [14].  
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7. Examples 
 
The step-by-step procedure to obtain reduced-order model is explained with the help of the 
examples presented below. 

 

Example 1 
 
Consider a stable third-order system [22] 
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Suppose a second-order approximant (2=r ) is required. The system considered in this 
example is critically damped. For obtaining better reduced-order model of this type of the 
system, equal number of time-moments and Markov parameters of the system are to be 
retained or near-retained in the model. The Routh-Padé approximants can systematically be 
arrived at, by following steps given below: 

Step 1: From the requirement of the first r terms matching (with 1=λ ), one has 
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Step 2: From (8) together with (9), one obtains 
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while (15) takes the following form 
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Step 3: Using (22), objective function (12) and (17a) take the following forms respectively 
(for m =1) 
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subject to constraints  0ˆ,0ˆ
21 >> dd . (24) 
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Step 4: The problem is to minimize (23) subject to (24). Following VEGA [14] parameters 
has been used to obtain the optimal values of 21

ˆ and ˆ dd  (refer Table1) 
 

 
 

Table 1. Assigned Fitness 
 
 

Solution      b1       b2 
 

      f1 
 

     f2  
 

 Partition 
 

Assigned 
Fitness 

1 2.951056 5.201056 0.0886436 0.08527766 1 0.886436 
2 2.951056 4.951056 1.0806434 0.07975278 1 1.0806434 
3 4.451056 4.951056 0.1880176 0.0320378 1 0.1880176 
4 3.951056 4.951056 0.403972 0.000693 2 0.000693 
5 4.201056 5.201056 0.212369 0.00857 2 0.00857 
6 3.951056 4.951056 0.40397 0.000693 2 0.000693 

 
 
 

                                         
                       Fig 1.  Graphical verification by VEGA (Third order to second order)        
                          
                                 

                                   951056.3ˆ
1 =∗d ,  951056.4ˆ

2 =∗d  (25) 

and using (22), 1̂b and 2b̂ are evaluated as 
 

         951056.31̂ =b ,  951056.4ˆ
2 =b  (26) 

 
Step 5: From (20), the numerator parameters of the model turn out to be 
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          ,8ˆ1 =a  951056.4ˆ2 =a  (27) 
 
Step 6: Thus, the model is identified as 
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On the other hand, by applying the method of [22] the model is obtained as 
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              Fig.  2.  Step response of system (19) and models (28) and (29) 
 

The integral square error (ISE) is given by ∫
∞

−=
0

2)](ˆ)([ dttytyISE , which can be calculated 

using Parseval’s theorem of the overall time response of system & model, where )(ty  and 

)(ˆ ty  denote output response of )(sGn  and )(ˆ sGr  corresponding to (28) and (29) are focus to 

be 0.1404 & 29.8684 respectively, confirming the applicability of the present technique to 
realize improvement in system approximation. The problems of finding the values of m  and 
weights ( iw ) are also eliminated in arriving at (28). 
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Example 2 

Suppose for a fourth-order system given by Lepschy and Viaro [21]: 
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a second-order approximant is to be obtained.  
Step 1: From (10), 
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Step 2: From (8) together with (9), one obtains (taking m =1): 
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Step 3: The problem, using (11) and (15) is stated as: 
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subject to constraints 0ˆ
1 >d  and 0ˆ

2 >d . 

 

Table 2.  Assigned Fitness 
       

 
Solution      b1     b2 

 
       f1 
 

        f2  
 

Partition  
 

Assigned 
Fitness 

      1 3..051056 2.851056 1.011875 0.000449789      2 0.000449789 
      2 3..051056 2.851056 1.011875 0.000449789      2 0.000449789 
      3 2.971056 3.201056 0.139134 0.015721567      2 0.015721567 
      4 2.751056 3.451056 0.71135388 0.078496968      1 0.71135388 
      5 2.951056 3.951056 0.2764348 0.0750186      1 0.2764348 
      6 2.951056 3.951056 0.2764348 0.0750186      1 0.2764348 
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                  Fig 3. Graphical Verification of VEGA (fourth order to second order) 

 

 
Step 4: The VEGA converges to the following optimal solution: 
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Step 5: From (21) the numerator parameters turns out as 

 

                    851056.2ˆ,267ˆ 21 == aa  (35) 

 

and the  second order model of the form:  
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For comparison, the model as obtained by technique of Lepschy and Viaro [21] is presented 
below: 
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However, the ISE which is corresponding to (36) and (37) are respectively 1.446 and 3.128, 
reveals that (36) is an improvement over (37) 
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8. Conclusions 
 
In this paper, the problem of finding Routh-Padé approximants has been viewed as a multi-
objective optimization problem. It is shown that, using Pareto Optimality and VEGA, the 
denominator of the model  can  be  chosen  so  as  to minimize errors between the (r+1)th and 
the subsequent time moments and Markov  parameters of  the model and the corresponding 
time moments  and/or  Markov parameters of the system while  preserving  stability. 
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