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Abstract 

This paper presents elastic buckling and post-buckling analysis of an axially loaded isotropic beam-plate with 
an across-the- width delamination located at a given depth, subjected to in-plane compression. A simple 
analytical model for determining the global buckling load of the plate with delamination and the mode shape is 
developed, for various delamination depths and lengths.  The influence of applied load on the displacement for 
a given crack length and depth is studied in the post-buckling state where the non-linear large rotations are 
included. It is observed that the global buckling load for local delamination buckling increases with the 
increase in delamination depth from the upper surface, for a given delamination  length, and the buckling load 
decreases if delamination length increases for a given delamination depth. In the post buckling analysis the 
displacement increases as the applied load increases. 
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a : Spanwise location of crack 
b : Crack length 
đ3 : depth from the upper surface 
đ2 : depth from the lower surface 
đ: depth of beam 
l : Length of beam  
b = b /l (non-dimensional) 
a = a /l (non-dimensional) 
d2 = đ2/đ (non-dimensional) 
d3 = đ3/đ (non-dimensional) 
Pi : applied compressive load in ith region  
Di: flexural rigidity of ith region 
wi : transverse deflection of ith beam 
Aci : Area of cross-section of ith region 

 

1. Introduction 

The delamination phenomenon of composite materials is one of the most common modes of 
failure in composite structures and hence it plays a crucial role in assessing the compressive 
response of structures. The damage induced by such a phenomenon can significantly reduce 
the buckling strength of the composite.  
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A delamination in a laminated composite may buckle under compressive loads which causes 
high inter-laminar stresses at the delamination front and may grow under such conditions. 
The instability related delamination growth mechanism is a post-buckling process. This post- 
buckling behavior of a plate depends on the in-plane dimensions, the flexural and in-plane 
stiffness. The case of one-dimensional delamination is studied on the basis of Euler-Bernoulli 
theory of beam-plates in [1] and [2]. The deformation of delaminated composites under axial 
compression is analyzed in [3] using a onedimensional model which is based on the 
perturbation technique and accounts for transverse shear effects. Strain energy release rate 
was computed in [4] using system compliance relation and also by finite element approach. 
Chen studied the elastic buckling and post-buckling analysis of an axially loaded beam- plate 
having an across-the-width delamination by a variation principle [5]. Buckling analysis of 
delaminated composite plates by the application of differential quadrature method is given in 
[6]. A one-dimensional mathematical model was developed in [7] to analyze the buckling 
behavior of a two-layer beam of two different materials and having asymmetric delamination 
under clamped boundary conditions.  In the present analysis, a layered isotropic elastic beam-
plate of unit width and given length with a single delamination at a given depth  from the 
top surface of the plate is considered. The plate is assumed to be clamped on both the edges 
and subjected to an axial compressive force P at the clamped ends. The delamination is thin 
line segment and extends across the entire plate width.  The geometry of the one dimensional 
delaminated beam plate is shown in Fig. 1.  The co-ordinates used to develop the equations 
are the local co-ordinates with respect to individual region. In the present work an analytical 
technique for the determination of global buckling load for local delamination buckling and 
the mode shape are calculated using continuity conditions, boundary conditions and axial 
compatibility conditions. The influence of delamination depth and delamination length on the 
buckling load is studied. 

2. Global buckling load for local buckling in a delaminated beam 

The beam is considered to comprise of  four Euler beams -1, 2, 3, 4, regions 1 and 4 being the 
integral beams and region 3 and 2 being the delamination region above and below the crack 
respectively. The part above the delamination plane is referred to as the `upper' sub-laminate, 
and the part below it is referred to as the `lower' sub-laminate. The sections before and after 
delamination, where the plate is intact are referred to as the `base' laminate. Qi and Mi are the 
shear force and the bending moments of the ith region at the crack tip. 

 

The governing equations for buckling in the ith region is given by 
         

  

 
 

(1) 
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A general solution for all the beams is written as  
 
 

       
Where,   

 =      

 , are arbitrary constants. In the present analysis, the normalized applied load  
is given by, 

                                

 
Boundary conditions at the clamped edges are given by, 
 

        
 

             
 

 
 

 

Displacement continuity conditions at the delamination tip are given by, 

   

 

    

 

 
 

 
Slope continuity conditions at the delamination tip are given by   

       

 

 
 

 
 

 

(2) 

(3) 

(7,8) 

(4) 

(5) 

(6) 
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Shear force continuity conditions are given by, 

 
 

 
 

 
 

 

 
Continuity conditions  of bending moment  at the delamination tip are given by, 

    

 

)     

 

     

 

)      

 
Axial compatibility condition is given by, 

 

            
When buckling occurs, the non-linear terms do not have any contribution and hence the 
above equation reduces to:  
 

 

 
 
Qi and Mi are the shear force and the bending moments of the ith region at the crack tip. From 
the above equations (11-13) a 16x16 matrix of the form [A][X] = 0 is obtained. For a non-
trivial solution to exist, the determinant must vanish. Thus, equating |A|=0, the lowest Eigen 
value is obtained by solving  transcendental equation.  
 
 
3. Results of the buckling analysis 

The following data is obtained for the buckling load normalized with respect to Euler load. 
This is compared with other references and validation is confirmed. Table 1. gives the 
normalized buckling load for a central delamination for various values of crack length (b). 

(9) 

(10) 

(11) 

(12) 

(13) 
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For a fixed depth from the top surface (d3), as the  crack length  increases buckling load 
decreases and the buckling load increases as the crack moves away from the top surface.  
Table 2 gives the buckling load for a particular depth and different crack lengths and the 
results are in good agreement with the literature values [8.9,10]. The buckling load plot for 
various crack lengths (b) and different heights (d3) from the top surface is shown in Fig.2. 
 
 
 

Table 1: Normalized Buckling load for central delamination  

d3 b = 0.1 b = 0.3 b = 0.5 b = 0.7 b = 0.9 
0.1 0.979922 0.110943 0.039959 0.020396 0.012343 
0.2 0.999714 0.437109 0.158547 0.081221 0.049304 
0.3 0.999825 0.858225 0.346905 0.180355 0.110496 
0.4 0.999859 0.954327 0.567541 0.311104 0.194872 
0.5 0.999868 0.96383 0.689563 0.430967 0.293302 

 

 

Table 2: Comparison of buckling load for different crack lengths (d3= 0.2) 

      

 

 

4. Post-buckling solution and delamination mode shape   

The post-buckling case for the isotropic beam with the same assumptions as earlier will be 
dealt, considering the fact that the delamination is centrally located. Hence in the present 

Crack length 
(b) 

Present 
value 

Reference 
value[8] 

Reference 
value[9] 

Reference 
value[10] 

0.1 0.999714 0.99966 0.9997 0.99971 
0.3 0.437108 0.43712 0.4371 0.43711 
0.5 0.158546 0.15855 0.1585 0.15855 
0.7 0.081221 0.08122 0.0812 0.08122 
0.9 0.049304 0.04930 0.0493 0.04930 

(14) 
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case . The displacements are obtained from the governing buckling equation and 

they are given by, 

    

 

                

 

                       

           
 The amplitude , λ2 and λ3 are calculated for a given applied load P by using the force 

equation, moment equation, axial compatibility equation. 

The force equation is given by, 

 
The moment equation is given by, 

 
 

) 

 
The axial compatibility equation is given by, 

 

 
 

Substituting the displacement equations w1,w2 and w3 as defined in (19-21)and substituting 
P1, P2 and P3 in terms of the eigen values, as defined by,  

 

we obtain three equations, with variables , λ2 and λ3. The above variables are solved for 
every value of input force and the individual displacement fields are obtained. Consequently, 
the mode shape is generated. The following table gives normalized applied load for a given 
delamination length and the delamination depth from the top surface of the beam. Table 3 
gives the numerical values for displacement and amplitude for a given crack length and depth 
from the top surface. Fig.3 gives the graph for the upper and lower surface displacement for a 
given crack lengths at different applied load levels in the post-buckling analysis. Table 4 
gives upper and lower surface displacement for various applied load  when d3<<b and Fig.4 
gives the graph of the displacement when the distance from the top surface is very small (thin 
film delamination). 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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Table 3: Normalized upper and lower surface displacement  
and amplitude for various applied load   in post buckling  
(d3=0.25 b=0.3) 

 w2/ d3 w3/ d3 B 

0.675119 0.012688 0.067105 0.001926 

0.750375 0.022467 0.377215 0.003196 

0.800854 -0.06416 0.51818 -0.00879 

Table 4: Normalized upper and lower surface displacement  for 
various applied load  when d3<<b  ( d3=0.02  b=0.5 ) 

 w2 w3 

0.016228 -0.00013 0.03866 
0.025356 -0.00023 0.051473 
0.085845 -0.00117 0.171219         
0.08791 -0.0012 0.1733 
0.088667 -0.00122 0.174056 
0.089618 -0.00123 0.175002 
0.091535 -0.00126 0.176893 
0.101424 -0.00142 0.186342 
0.228204 -0.00378 0.280433 
0.405696 -0.00891 0.37408 
0.6339 -0.02354 0.46724 

0.912816 -0.19737 0.551977 
0.943497 -0.42883 0.542373 
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5. Conclusions 

A simple analytical method is developed for the buckling load and mode shape for an 
isotropic delaminated beam.  It has been observed that in the buckling analysis, (1) As the 
delamination depth increases for a given delamination length, the buckling load increases. (2) 
For a very small delamination, the effect of depth on buckling load is more predominant 
when the defect is near the surface. (3) For a given depth, buckling load increases as the 
delamination length gets shorter. (4) For a very long delamination, the critical buckling load 
is much lesser when compared to other delamination lengths. (5) In calculating the post 
buckling parameters namely the displacements and amplitude, non-linear terms are included 
and we observe that the  displacement increases as the applied load increases. 
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