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Abstract

This paper presents elastic buckling and post-buckling analysis of an axially loaded isotropic beam-plate with
an acrossthe- width delamination located at a given depth, subjected to in-plane compression. A simple
analytical model for determining the global buckling load of the plate with delamination and the mode shape is
developed, for various delamination depths and lengths. The influence of applied load on the displacement for
a given crack length and depth is studied in the post-buckling state where the non-linear large rotations are
included. It is observed that the global buckling load for local delamination buckling increases with the
increase in delamination depth from the upper surface, for a given delamination length, and the buckling load
decreases if delamination length increases for a given delamination depth. In the post buckling analysis the
displacement increases as the applied load increases.
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a : Spanwise location of crack

b : Crack length

ds: depth from the upper surface
d, . depth from the lower surface

d. depth of beam

| : Length of beam

b =b /I (non-dimensional)

a =a/l (non-dimensional)

dz = d>/d (non-dimensional)

ds = d3/d (non-dimensional)

P, : applied compressive loadiffiregion
Di: flexural rigidity ofi™ region

w; : transverse deflection df beam
A Area of cross-section @f region

1. Introduction

The delamination phenomenon of composite mateisatsme of the most common modes of
failure in composite structures and hence it pkysucial role in assessing the compressive
response of structures. The damage induced byaptlenomenon can significantly reduce
the buckling strength of the composite.



A delamination in a laminated composite may buckider compressive loads which causes
high inter-laminar stresses at the delaminatiomtfieind may grow under such conditions.
The instability related delamination growth meclsamis a post-buckling process. This post-
buckling behavior of a plate depends on the ingldimensions, the flexural and in-plane
stiffness. The case of one-dimensional delaminasi@tudied on the basis of Euler-Bernoulli
theory of beam-plates in [1] and [2]. The deformatof delaminated composites under axial
compression is analyzed in [3] using a onedimerionodel which is based on the
perturbation technique and accounts for transvehgar effects. Strain energy release rate
was computed in [4] using system compliance refaéind also by finite element approach.
Chen studied the elastic buckling and post-buckdinglysis of an axially loaded beam- plate
having an across-the-width delamination by a viamaprinciple [5]. Buckling analysis of
delaminated composite plates by the applicatiodiféérential quadrature method is given in
[6]. A one-dimensional mathematical model was depetl in [7] to analyze the buckling
behavior of a two-layer beam of two different matlsrand having asymmetric delamination
under clamped boundary conditions. In the prearalysis, a layered isotropic elastic beam-
plate of unit width and given length with a singlelamination at a given depd3 from the
top surface of the plate is considered. The pri@ssumed to be clamped on both the edges
and subjected to an axial compressive fd?ca the clamped ends. The delamination is thin
line segment and extends across the entire platédhwirhe geometry of the one dimensional
delaminated beam plate is shown in Fig. 1. Therdinates used to develop the equations
are the local co-ordinates with respect to indigidegion. In the present work an analytical
technique for the determination of global bucklingd for local delamination buckling and
the mode shape are calculated using continuity itond, boundary conditions and axial
compatibility conditions. The influence of delamiioa depth and delamination length on the
buckling load is studied.

2. Global buckling load for local buckling in a delaminated beam

The beam is considered to comprise of four Eudamnts -1, 2, 3, 4, regions 1 and 4 being the
integral beams and region 3 and 2 being the dektiomregion above and below the crack
respectively. The part above the delamination plameferred to as the “upper' sub-laminate,
and the part below it is referred to as the ‘lowab-laminate. The sections before and after
delamination, where the plate is intact are reteteeas the "base' lamina@.andM; are the
shear force and the bending moments of'thegion at the crack tip.
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Figure 1: Beam subjected to compressive load

The governing equations for buckling in ifferegion is given by

(1)

atw; 2 8%wj
axt 1 ogx?

=0 i=12734
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A general solution for all the beams is written as

W (x:) = ‘4'11' Sin(}lix:) + ‘4'21' COS(AI'X) +A3I'x ‘I‘Ad{' i= 1, .2., 3 ,4 (2)

A = JE (3)
D;
Aq:,45;, A3, A4; , are arbitrary constants. In the present analffsgsnormalized applied load
is given by,

Where,

Py

P= 4T D, (4)

Boundary conditions at the clamped edges are diyen
wi(0) =0

dw,y

3y lk=0=0

3W4.
o lx=0

Displacement continuity conditions at the delamoratip are given by,

—0 7

b

wy(a) = w, (—E) h

wi(a) = wy (— g) ©)

wy(—c) = w, (g)

wy(—c) = wy (g) /

Slope continuity conditions at the delaminationaip given by

awl _ aW2

x=a — __b
dx dx ‘x= 2 \

%| _%| (7.8)
dx FTE T Gx 'x=—3
8W¢ aWZ
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Shear force continuity conditions are given by,

Q1 =02+ Qs
3 Wl 33W2 3
Z Ax .3 lx=a :(dg)ﬁu b+(d3) A3 |
Qs=0Qz+0Q3
a3 a3 a3
> Gitleeme = @G o+ @2, 8

Continuity conditions of bending moment at théadenation tip are given by,

My =M, + My + 22 222
> Tlea = @S, b+ @TRI,_ s -1EIE-EY 1o
M, = M, + My + 722 - 2%
> Titleee= @G| ot @GR s +; (- B ty
Axial compatibility condition is given by,
(e - [ 2 o] (2t e]  w

When buckling occurs, the non-linear terms do retehany contribution and hence the
above equation reduces to:

2\ ax bx=a dx be=-c ) = Ed, E d,

Q and M are the shear force and the bending moments df tfegjion at the crack tip. From
the above equations (11-13) a 16x16 matrix of drenf[A][X] = O is obtained. For a non-
trivial solution to exist, the determinant must & Thus, equating |A|=0, the lowest Eigen
valueis obtained by solving transcendental equation.

3. Resaultsof the buckling analysis

The following data is obtained for the bucklingdoaormalized with respect to Euler load.
This is compared with other references and valiais confirmed. Table 1. gives the
normalized buckling load for a central delaminatfon various values of crack length (b).
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For a fixed depth from the top surfaa®)( as the crack length

increases buckling load

decreases and the buckling load increases as #o& anoves away from the top surface.
Table 2 gives the buckling load for a particulapttbeand different crack lengths and the
results are in good agreement with the literataees [8.9,10]. The buckling load plot for
various crack lengths) and different heightsi§) from the top surface is shown in Fig.2.

Table 1: Normalized Buckling load for central delamination

d3 b=0.1 b=0.3 b=05 b=0.7 b=09

0.1 0.979922 0.110943 0.039959 0.020396 0.012343
0.2 0.999714 0.437109 0.158547 0.081221 0.049304
0.3 0.999825 0.858225 0.346905 0.180355 0.110496
04 0.999859 0.954327 0.567541 0.311104 0.194872
05 0.999868 0.96383 0.689563 0.430967 0.293302

Table 2: Comparison of buckling load for different crack lengths (ds= 0.2)

Crack length Present Reference Reference Reference
(b) value value?® value?® value™!
0.1 0.999714 0.99966 0.9997 0.99971
0.3 0.437108 0.43712 0.4371 0.43711
0.5 0.158546 0.15855 0.1585 0.15855
0.7 0.081221 0.08122 0.0812 0.08122
0.9 0.049304 0.04930 0.0493 0.04930
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Lo .;r_‘i A g —— b=0.7
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Figure 2: Buckling load vs. delamination depth

Post-buckling solution and delamination mode shape

The post-buckling case for the isotropic beam i same assumptions as earlier will be
dealt, considering the fact that the delaminat®rtentrally located. Hence in the present
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cas@ = c = ?. The displacements are obtained from the goverbuakling equation and

wi(x) =B (1 — cos [}bl G — x)])
wy(x) = B {(;lsm[f [(2 ] )]) (Cog[}zx] — cos[ ]) +1 — cos [} Ly G —g)]} (15)

they are given by,

ws) = (L) cospi - cos [2]) 41— cos s (-]}

hgsin|===
3 z

The amplitudeB, A, and 13 are calculated for a given applied load P by ughng force
equation, moment equation, axial compatibility eoqma

The force equation is given by,

(17)
Pl — Pz ‘I‘ P3
The moment equation is given by,
M, = My + My 4 202 P
1— 2 3 2 2
22w a w 22w P, d; Pyd (18)
> Dlazl|x=h,#2 2| b"‘Ds 3| (223—322)

The axial compatlblllty equatlon is glven by,

aW3 aW2 d2+d3 aWB
J( 2E d, j( 2 dx ng (19)

2E dg

Substituting the displacement equati@nsv, andws; as defined in (19-21)and substituting
P,, P2 andP; in terms of the eigen values, as defined by, (20)

P, = 2D,

we obtain three equations, with variab®s/, and 13. The above variables are solved for

every value of input force and the individual desgmment fields are obtained. Consequently,
the mode shape is generated. The following tablesghormalized applied load for a given
delamination length and the delamination depth ftoetop surface of the beam. Table 3
gives the numerical values for displacement andlitudp for a given crack length and depth
from the top surface. Fig.3 gives the graph forupper and lower surface displacement for a
given crack lengths at different applied load lsviel the post-buckling analysis. Table 4
gives upper and lower surface displacement forouarapplied load whets<<b and Fig.4
gives the graph of the displacement when the disténom the top surface is very small (thin
film delamination).
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Figure 4. Upper and lower smface displacernents ws.
applied load when dy<<h
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Table 3: Normalized upper and lower surface displacement
and amplitudefor various applied load in post buckling
(d3=0.25 b=0.3)

P Wo!l o W/ O3 B
0.675119 0.012688 0.067105 0.001926
0.750375 0.022467 0.377215 0.003196
0.800854 -0.06416 0.51818 -0.00879

Table 4: Normalized upper and lower surface displacement for
various applied load when ds<<b (d;=0.02 b=0.5)

P Wo W3

0.016228 -0.00013 0.03866
0.025356 -0.00023 0.051473
0.085845 -0.00117 0.171219
0.08791 -0.0012 0.1733
0.088667 -0.00122 0.174056
0.089618 -0.00123 0.175002
0.091535 -0.00126 0.176893
0.101424 -0.00142 0.186342
0.228204 -0.00378 0.280433
0.405696 -0.00891 0.37408

0.6339 -0.02354 0.46724
0.912816 -0.19737 0.551977
0.943497 -0.42883 0.542373
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5. Conclusions

A simple analytical method is developed for the Khing load and mode shape for an

isotropic delaminated beam. It has been obseivadin the buckling analysis, (1) As the

delamination depth increases for a given delanmondength, the buckling load increases. (2)
For a very small delamination, the effect of depth buckling load is more predominant

when the defect is near the surface. (3) For angoepth, buckling load increases as the
delamination length gets shorter. (4) For a vengldelamination, the critical buckling load

is much lesser when compared to other delamindgogths. (5) In calculating the post

buckling parameters namely the displacements arglitaicke, non-linear terms are included

and we observe that the displacement increastte @pplied load increases.
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