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Abstract 

In this paper, we implemented a direct algebraic method for the exact solutions of the Liouville equation, Dodd-
Bullough-Mikhailov equations. By using this method, we find several exact solutions of the Liouville equation, 
Dodd-Bullough-Mikhailov equations. 
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1. Introduction  
  
Nonlinear phenomena play a crucial role in applied mathematics and physics. Traveling wave 
solutions of nonlinear equations in mathematical physics play an important role in soliton 
theory [1, 2]. It is well known that searching for explicit solutions for nonlinear evolution 
equation, by using different methods, is the goal for many researchers. So many analytic 
methods have been introduced in literature [3-16]. Some of them are: Bäcklund 
transformation, Generalized Miura Transformation, Darboux transformation, Cole–Hopf 
transformation, tanh method, sine–cosine method, Painleve method, homogeneous balance 
method, similarity reduction method and so on.  

Two classes of nonlinear partial equations, 
 

                                                                         (1) 
and 

                                                               (2) 
 

play an important role in many scientific applications such as solid state physics, nonlinear 
optics, plasma physics, fluid dynamics, mathematical biology, dislocations in crystals, kink 
dynamics, and chemical kinetics and quantum field theory. The function  takes many 
forms such as 
 

                                                                (3) 

 
that characterize the Sine–Gordon equation, sinh-Gordon equation, Liouville equation, Dodd–
Bullough–Mikhailov equation (DBM), and the Tzitzeica–Dodd–Bullough (TDB) equation 
respectively. 
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 The first two equations gained its importance when it gave kink and antikink solutions 
with the collisional behaviors of solitons. A kink is a solution with boundary values  and  
at the left infinity and at the right infinity respectively [17, 18]. The last two equations, Dodd–
Bullough–Mikhailov equation and the Tzitzeica–Dodd–Bullough equation, appear in 
problems varying from fluid flow to quantum field theory. In addition, these two equations 
are integrable, when boundary conditions are periodic, giving plenty of quasi periodic 
solutions. Other equations for other forms of  appear as well, such as the Klein–Gordon 
equation and the  equation if we substitute  and  in (2) 
respectively [19]. 

There are several forms of Liouville equation. It is well known that these equations 
can be converted to the well-known sinh–Gordon equation and other extended combined 
sinh–cosh–Gordon equations. Wazwaz obtained travelling wave solutions, explicit and 
implicit for these forms by using variable separated ODE method [20]. Borhanifar and 

Moghanlu [21]; obtained exact solutions for DBM equation by using - expansion method, 

Fan and Hon [22]; found some new explicit solutions for DBM equation by using extended 
tanh method, He and Wu [23]; obtained periodic solution or compact-like solution for DBM 
equation by using Exp-function method. 

In this study, we implemented a direct algebraic method [24]; for finding the exact 
solutions of Liouville equation, Dodd-Bullough-Mikhailov equations [19].The study is 
organized as follows. In Section 2, the key idea of proposed method its applications are 
described. We conclude this paper in Section 3. 

 
2. An Analysis of the Method and applications 

 
 Before starting to give a detail of the method, we will give a simple description of a 
direct algebraic method [24]. For doing this, one can consider in a two variables general form 
of nonlinear PDE  

( ) 0,,,, =Kxxxt uuuuQ ,  (4) 

and transform Eq. (4) with 
( ) ( ) wtkxutxu +== ξξ ,, ,  

where, k and λ  are arbitrary constants, respectively. After the transformation, we get a 
nonlinear ODE for ( )ξu  
 

( ) 0,,, =′′′′′′′ KuuuQ .                                                                              (5) 
 
Then, the solution of the equation (5) we are looking for is expressed in the form as a  
  

( ) ( ) ∑
=

==
M

i

i
i Fautxu

0
, ξ ,                                                                         (6) 

M is a positive integer that can be determined by balancing the highest order derivative and 
with the highest nonlinear terms in equation, and  Maaawk ,,,,, 10 K  are parameters to be 

determined. Substituting solution (6) into Eq. (5) yields a set of algebraic equations 
for iFF ′ or iF , then, all coefficients of  iFF ′  or iF  have to vanish. After this separated 
algebraic equation, we can found Maaawk ,,,,, 10 K  constants.  

 In this work, we aim to solve the shallow water wave equationby using the direct 
algebraic method which is introduced by Zhang [24]. 
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2
2

3
3

2 FqFqF +=′ ,                                                                              (7) 

where
ξd

dF
F =′   and 32 , qq  are constants. The author has given several cases to get the 

solutions of Eq. (7). 
 
Example 1.Consider the Liouvilleequation [19] 
 

0u
xtu e+ = .                                                 (8) 

 
We make transformation lnu v= . Let us consider the traveling 
wavesolutions ( ) ( ),v x t v ξ= , wtkx+=ξ , then Eq. (8) becomes 

 

( )2 3 0kwvv kw v v′′ ′− + = .(9) 

 
When balancing  vv′′  with  3v  then gives M=1. Therefore, we may choose 
 

0 1v a a F= + .                         (10) 

 
Substituting (10) into Eq. (9) yields a set of algebraic equations for 0 1 2 3,, , , ,a a q q k w. These 

systems are finding as  
3
0 0a = , 

2
0 1 0 1 23 0a a a a kq w+ = , 

2
0 1 0 1 3

3
3 0

2
a a a a kq w+ =

    
,(11) 

- 3 2
1 1 3

1
0

2
a a kq w+ = , 

 
From the solutions of the system, we can found 
 

1
0 1 1 2 2 3

3

2
0 , , , , 0 , 0

a
a a a w q q k q

kq
= = = − = ≠ ≠ ,  (12) 

 
with the aid of Mathematica. Substituting (10) and (12) into (7) we have obtained the 
following solution of equation (8). These solutions are 
 
Solution 1: 

 

  ( )
1 1

2 2
3 3

1
2 2

( ) ( )
3

1 2
2

,

2

a a
q kx t q kx t

kq kq

a
u x t Ln

q
c e c e

q

− − −

 
 
 =
 
 + − 
 

,                     (13) 

 
where  2

3
2
2212 16,0 qqccq => .         
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Solution 2: 

( ) 1

31 1
1 2 2 2

3 3 2

,
2 2

2

a
u x t Ln

qa a
c Cos q kx t c Sin q kx t

kq kq q

 
 
 =         − − + − − −              

, (14) 

 
where ( )2 2 2 2

2 2 1 2 30, 4q q c c q< + = .                                                

 
Solution 3: 

 

( ) 1
2

3 1 1
1 2

3 3

,
2 2

4

a
u x t Ln

q a a
kx t c kx t c

kq kq

 
 
 =  

    − + − +    
    

,   (15) 

 
where 23

2
1 cqc =  when .02 =q  

 
Example 2. Consider the Dodd-Bullough-Mikhailov equation [19] 
 

   2 0u u
xtu e eα β −+ + = .                           (16) 

 
We make transformation lnu v= . Let us consider the traveling wave solutions ( ) ( ),v x t v ξ= , 

wtkx+=ξ , then Eq. (16) becomes 
 

( )2 3 0kwvv kw v vα β′′ ′− + + = .    (17) 

 
When balancing  vv′′  with  3v  then gives M=1. Therefore, we may choose 
 

0 1v a a F= + .                                             (18) 

 
Substituting (18) into Eq. (17) yields a set of algebraic equations for 0 1 2 3,, , , ,a a q q k w. These 

systems are finding as  
 

3
0 0a α β+ = , 

2
0 1 0 1 23 0a a a a kq wα + = , 

2
0 1 0 1 3

3
3 0

2
a a a a kq wα + = ,    (19) 

3 2
1 1 3

1
0

2
a a kq wα + = , 

 
From the solutions of the system, we can found 
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23
33 3

0 1 2 3
2 2

33
, , , 0, 0 , 0, 0

2

q
a a w k q q

q kq

α ββ β α
α α

= − = − = ≠ ≠ ≠ ≠ ,  (20) 

 
with the aid of Mathematica. Substituting (18) and (20) into (7) we have obtained the 
following solutions of equation (16). These solutionsare 
 
Solution 1: 

 

( )
2 2

33

23

3
1 2

2

3
2

,

2
q q

q

q
u x t Ln

q
c e c e

q
ξ ξ

β
αβ

α −

 
 
 = − −
 + − 
 

,   (21) 

 

where  
23

2 2
2 1 2 2 3

2

3
0, 16 ,q c c q q kx t

kq

α βξ> = = + . 

Solution 2: 

( )
( ) ( )

33

23

3
1 2 2 2

2

3
2

,

2

q

q
u x t Ln

q
c Cos q c Sin q

q

β
αβ

α ξ ξ

 
 
 = − −
 − + − − 
 

,  (22) 

 

where ( )
23

2 2 2 2
2 2 1 2 3

2

3
0, 4 ,q q c c q kx t

kq

α βξ< + = = + . 

 
Solution 3: 
 
In the case of2 0q ≠ , there are no solutions. 

 
Example 3. Consider the a different Dodd-Bullough-Mikhailov [19] 
 

2 0u u
tt xxu u e e−− + + = ,     (23) 

 
We make transformation lnu v= . Let us consider the traveling wave 
solutions ( ) ( ),v x t v ξ= , kx wtξ = + , then Eq. (23) becomes 

 

( ) ( ) ( )22 2 2 2 3 1 0w k vv w k v v′′ ′− − − + + =
   

,(24) 

 
The solutions of the systems, we are looking for is stated in the form 

   ( ) ( )
1

0

,
M

i
i

i

v x t v a Fξ
=

= =∑ ,. 

When balancing  vv′′  with  3v  then gives M=1. Thus, we can we may choose 
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0 1 ,v a a F= +      (25) 

 
Substituting (25) into Eq. (24) yields a set of algebraic equations for  0 1 2 2 3,, , , , ,a a a q q k w. 

These systems are finding as 
 
 

3
01 0a+ = , 

2 2 2
0 1 0 1 2 0 1 23 0a a a a k q a a q w− + = , 

2 2 2
0 1 0 1 3 0 1 3

3 3
3 0

2 2
a a a a k q a a q w− + = ,   (26) 

3 2 2 2 2
1 1 3 1 3

1 1
0

2 2
a a k q a q w− + = . 

 
From the solutions of the system, we can found 
 
Case 1: 

2
3 2

0 1 2
2 2

3 3
1, , , 0,

2

q q w
a a k q

q q

− += − = − = ≠m    (27) 

 
with the aid of Mathematica. Substituting (25) and (27) into (7) we have obtained the 
solutions of the system of equation (23). These solutions are  
 
 
Solution 1: 

( )
2 2

3

2

3
1 2

2

3
2

, 1

2
q q

q

q
u x t Ln

q
c e c e

q
ξ ξ−

 
 
 = − −
 + − 
 

,    (28) 

 

where
2

2 2 2
2 1 2 2 3

2

3
0, 16 ,

q w
q c c q q x wt

q
ξ − +> = = +m .       

 
Solution 2: 
 

( )
( ) ( )

3

2

3
1 2 2 2

2

3
2

, 1

2

q

q
u x t Ln

q
c Cos q c Sin q

q
ξ ξ

 
 
 = − −
 − + − − 
 

,  

 (29) 
 

where ( )
2

2 2 2 2 2
2 2 1 2 3

2

3
0, 4 ,

q w
q q c c q x wt

q
ξ − +< + = = +m .                   
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Solution 3: 
 
In the case of2 0q ≠ , there are no solutions. 
 
Case 2: 
 

( )
( )

3 3 23
0 1

2 2 2 3 3

3 3 63 3
, ,

43 3

q i q qi
a a k w

q qi q q i q

−− += = = − +
+ −

m  

2
2 30, 0, 1q q i≠ ≠ = − ,                                                          (30) 

 
therefore solutions of the Eq.(23) 
 
Solution 1: 

 ( )

( )

2 2

3 3

2

3
1 2

2

3 3

43
,

3
2

q q

q i q

qi
u x t Ln

qi c e c e
q

ξ ξ−

 −
 
 − += + + + −
 
 

,        (31)       

 

where ( )
2 2 23

2 1 2 2 3
2 2 3 3

63
0, 16 ,

3

q
q c c q q w x wt

q q q i q
ξ> = = − + +

−
m .       

 
 
Solution 2: 

   ( )

( )

( ) ( )

3 3

2

3
1 2 2 2

2

3 3

43
,

3
2

q i q

qi
u x t Ln

qi c Cos q c Sin q
q

ξ ξ

 −
 
 − += + + − + − −
 
 

,     (32)      

 

where ( ) ( )
2 2 2 2 23

2 2 1 2 3
2 2 3 3

63
0, 4 ,

3

q
q q c c q w x wt

q q q i q
ξ< + = = − + +

−
m .                                                   

Solution 3: 
 
In the case of2 0q ≠ , there are no solutions. 

 
3. Conclusions 

In this paper, we present the improved a direct algebraic method by using ansatz (7) 
and, with aid of Mathematica, implement it in a computer algebraic system. An 
implementation of the method is given by applying it to Liouville equation, Dodd-Bullough-
Mikhailov equations with physics interests. More importantly, for the Liouville equation, 
Dodd-Bullough-Mikhailov equations, we also obtain some different solutions at same time. 
The method can be used to many other nonlinear equations or coupled ones. In addition, this 
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method is also computerizable, which allows us to perform complicated and tedious algebraic 
calculation on a computer. 
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