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Abstract 

In this work, damage detection (DD) method for beam structures subject to moving load is proposed. DD is formulated 
as an optimization problem and solved for crack locations and depths using three versions of the particle swarm 
optimization (PSO). It was observed that PSO with constriction factor is superior in the sense of convergence speed and 
robustness. Also, it was experienced that small cracks with depth ratio of 0.15 can be identified by the present method in 
spite of 3% noise interference. The proposed method is demonstrated to be better than wavelet transform method at 
higher moving load speeds. 

Keywords: Damage detection; particle swarm optimization; moving load. 

1. Introduction 

Structures under moving load have many practical applications such as railway tracks, bridges, 
pipelines, roadways, etc. Basically, a moving load yields larger deflections and higher stresses than 
equivalent static load conditions. Thus, dynamics of such structures has received considerable 
attention. Frýba collected a lot of approaches in the well-known textbook [1], investigating mainly 
beam type structures under moving load with various loading and boundary conditions. If the host 
structure has crack-like local defects, than the impact of moving load becomes more pronounced [2-
6]. On the other hand, various DD methods have been developed for beams subject to moving loads 
using the continuous wavelet transform (CWT) [7-11]. They are based on the fact that CWT 
coefficients of beam dynamic response demonstrate local peaks at crack locations, and magnitudes of 
these peaks are proportional to crack depths. 

In structural DD there are other methods based on model updating (MU) [12]. The basic of such a 
method is to update mathematical or finite element model of the structure to match the calculated 
response to the one measured from damaged structure. This is achieved through an optimization 
procedure. To solve the optimization problem the mathematical programming (MP) or metaheuristic 
techniques are employed. The MP methods can be categorized as gradient techniques such as the 
generalized reduced gradient technique, successive quadratic programming, Lagrange Newton 
approaches, successive linear programming and interior-point methods. Their common deficiency is 
that solution quality relies on the initial point. They may be trapped into local optima easily. Also, 
computational complexity becomes significant as the problem dimensions rise (see [13] for further 
disadvantages of these). To overcome the limitations of the MP methods, metaheuristic approaches, 
one of which is the PSO algorithm, have been introduced. PSO, developed by Kennedy and Eberhart 
[14], is a stochastic optimization technique inspired by natural flocking and swarm behavior of birds 
and insects. Unlike genetic algorithms (GAs), PSO has no evolution operators such as crossover and 
mutation. Also, PSO is easy to implement and there are few parameters to adjust. The information 
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sharing mechanism in PSO is significantly different than GAs. In GAs, chromosomes share 
information with each other, thus the whole population moves like a one group towards an optimal 
area. In PSO, only global and local best points give out the information to others, hence it is a one-
way information sharing mechanism. Compared with GAs, all the particles tend to converge to the 
best solution quickly [15,16]. PSO has been successfully employed in MU based DD applications 
[17-19]. In MU based DD, time dependent structural response is used, as well. Buezas et al. [20] 
formulated an optimization problem using time responses from several points on the beam, and 
determined crack size and depth by solving this problem. 

Bilello and Bergman [4] concluded that changes in the time-response of the beam due to damage are 
more perceptible in comparison to the changes in the natural frequencies. In the present work, 
motivated by the conclusion of Bilello and Bergman [4] and the method of Buezas et al. [20], a MU 
based DD approach has been proposed for beam type structures carrying moving load. In this 
respect, time dependent displacements from several points on a cracked beam were obtained, and an 
objective function was defined by subtracting these from the ones calculated by the mathematical 
model of the structure. Then, three variants of PSO were employed to minimize this objective 
function, and their performances were compared considering several damage scenarios. It was 
demonstrated that the proposed method is superior to the wavelet coefficients method at higher 
moving load speeds. To the best of the author’s knowledge, this is the first study which deals with 
formulating the DD in a beam subject to moving load as an inverse problem and solved by the 
various PSO algorithms. 

 
2. Formulation of The Problem 
2.1. Vibration modes of cracked beam 

For simplicity, the system including beam and moving load is considered in this work. This is 
illustrated in Figure 1, where a simply supported beam of length L is carrying moving load P with 
constant speed PV  . E and ρ  refer to the modulus of elasticity and density of beam material. I and A 

are, respectively, the second moment of inertia and cross-sectional area of the beam. The beam 
contains an open crack at 1z with depth 1h  . Assuming the beam is composed of two parts joined at 

the crack location through a rotational spring, we can write the following compatibility equations at 
the crack location [2] 

1 1 2 1( ) ( )Y z Y z= , 1 1 1 1 2 1' ( ) '' ( ) ' ( )Y z Y z Y zθ+ = , 1 1 2 1'' ( ) '' ( )Y z Y z= , 1 1 2 1''' ( ) ''' ( )Y z Y z=   (1) 

 
where ' /d dz= , and ( )iY z  is the mode shape of the ith beam part defined as follows 

 

1 2 3 4( ) cos( ) sin( ) cosh( ) sinh( )i i i i iY z C z C z C z C zλ λ λ λ= + + + , i=1,2    (2) 

 
where λ=(ρAω2/(EI))0.25. In Eq.(2) λ and ω are eigenvalue and natural frequency parameters, 
respectively, and ijC  are the constants to be determined by solving the eigenvalue problem. The first, 

third and fourth terms in Eq.(1) mean deflection, bending moment and shear force at the crack 
location are continuous while the second term indicates slope discontinuity due to the crack. The 
geometric factor of the crack, θ , is defined as follows [2,6]  
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Figure 1: The cracked beam carrying moving load 
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( )iY z  in Eq.(2) and its first three derivatives can be written in matrix form: 

 

i iV = TC             (4) 
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Then, Eq.(1) in matrix notation: 
 

1 2UV = V    ⇒   [ ] 1
1 1 4x8

2 8x1

( ) ( )z z
 

−  
 

C
UT T =0

C
,    

1 0 0 0

0 1 0
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 

U=     (6) 

 
In order to determine the elements of the vectors 1C and 2C  eight equations are required. Eq.(6) 

provides the four of these. The remaining four come from the boundary conditions, which are given 
in Eqs.(7-8) for the simply supported beam. 
 
At the left end 1(0) 0Y =  and 1 ''(0) 0Y = , i.e. 

 

L 1 L

1 0 1 0
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At the right end 2( ) 0Y L =  and 2 ''( ) 0Y L = , which gives 
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R 2 R

cos( ) sin( ) cosh( ) sinh( )
 ,  =

-cos( ) -sin( ) cosh( ) sinh( )

L L L L

L L L L

λ λ λ λ
λ λ λ λ

 
=  

 
T C 0 T       (8) 

 
With Eqs.(6-8) the following eigenvalue problem is formulated 
 

L2x4 2x4
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For the nontrivial solution of Eq.(9) the determinant of A should be zero. By this way the natural 
frequencies of the cracked beam, iω , and corresponding mode shapes, ( ) ( )iY z  i=1,2,…, are obtained. 

In the case of multiple cracks one can verify that Eq.(9) becomes as follows 
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where cN  is the number of cracks. Again the same method is applied to solve Eq.(10). By this way, 

natural frequencies and mode shapes of the multiple-cracked beam are obtained. 
 
2.2 Dynamic response of the beam subject to moving load 
 
Equation of motion of the beam in Figure 1 is [7] 
 

2 4

P2 4

( , ) ( , ) ( , )
- ( - )

y z t y z t y z t
A C EI P z V t

t t x
ρ δ∂ ∂ ∂+ + =

∂ ∂ ∂
      (11) 

 
where C and δ are, respectively, damping coefficient of the beam and Dirac delta function. Using 
natural modes of the cracked beam Eq.(11) can be solved by the mode superposition method. Thus, 

assuming ( )

1
( , ) ( ) ( )mN i

ii
y z t q t Y z

=
=∑ , where mN  is the number of modes employed, substituting into 

Eq.(11), multiplying by ( ) ( )jY z  and integrating along the beam lead to 
 
Mq + Cq + Kq = F&& &             (12) 
 
where M, C and K are mass, damping, and stiffness matrixes, respectively, with the following 
entities 
 

( ) ( )

0

( ) ( )d
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i j
ijM AY z Y z zρ= ∫ , ( ) ( )

0

( ) ( )d
L

i j
ijC CY z Y z z= ∫ ,       (13.1) 



Hakan Gökdağ 

5 
 

( ) ( )

0

'''' ( ) ( )d
L

i j
ijK EIY z Y z z= ∫ , ( )

0

- ( - ) ( )d
L

j
i PF P z V t Y z zδ= ∫      (13.2) 

m

T
1 2[ , ,..., ]Nq q q=q ,   i,j=1,2,…, mN         (13.3) 

 
In this work Eq.(12) is solved by the Newmark Beta method (with β=1/6 and γ=1/2 [21]). To verify 
the codes written for computations, midspan deflections of the beam were obtained using the 
following data [7]: E=210GPa, ρ=7860 kg/m3, L=50m, b=0.5m, h=1m, P=10 kN, sampling 
frequency 100 Hz, number of modes m 5N = , 2% modal damping for each mode. Figure 2 illustrates 

the normalized midpoint deflections for different speed and damage combinations. Normalization is 
performed dividing by the static deflection, i.e. 3 / (48 )PL EI  , of the midpoint when P acts on this 
point. One can verify the agreement comparing the curves in Figure 2 with those in [2,6,7]. 
 

 

Figure 2: Normalized midspan deflection of the beam. I: P 15m/s,  0V δ= =, 

II: P 15m/s,  0.5V δ= = ,  III: P 140m/s,  0V δ= = , IV: P 140m/s,  0.5V δ= =  

 
2.3 The objective function and the constrains 
 
The aim is to correlate the response of the damaged structure to the one calculated by the 
mathematical model of the structure. To achieve this, it is proposed to adjust crack sizes and 
locations by solving an optimization problem. The objective function of the problem is introduced as 
follows. 
 

( )
mp

1 0

( , ) ( , )
( ) d

max ( , )

N T
n n

n n

y z t y z t
f t

y z t=

−
=∑∫z          (14) 

 
where mpN  is the number of measurement points on the beam, nz  is the location of the nth 

measurement point on the beam, y  denotes the reference displacements measured from damaged 
beam whereas y  stands for the corresponding displacements computed by the mathematical model 
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of the structure. T is the total time for the load to move across the beam, and z is the vector 
containing crack location and size parameters, i.e. 
 

{ }c c1 2 1 2, ,.... , , ,...,N Nz z zδ δ δ=z ,   i
i

h

h
δ = , i

i

z
z

L
=       (15) 

 
The ith element of z denotes the depth ratio of the ith crack while its ( )thcN i+ element shows the 

location of the ith crack. As to the measurement  points, it is better to choose them close to the 
midpoint, since maximum deflection occurs at the beam midspan. Thus, four points [20] on the beam 
were determined as {0.3 0.5 0.6 0.7}L, i.e. mp 4N =  in Eq. (14). If the number of cracks (cN ) is more 

than one, then extra constraints should be introduced for the optimization algorithm to make search 
in the feasible region. With these explanations in mind, the optimization problem can be formulated 
as follows 
 
min ( )f z   subject to:  1 0i iz z+− < , i=1,2,…, c 1N −  and 0 1jz< < , 0 1jδ≤ < , j=1,2,…, cN  (16) 

 
Crack locations and depths can be determined by solving Eq.(16). In this work the PSO is employed 
for this purpose, and its details are given in the next section. At each iteration, the candidate solutions 
are checked if crack locations satisfy the relevant constrains in Eq.(16). Those not satisfying are 
penalized by adopting extremely high objective function value such as 1010. 

3. The Particle Swarm Optimization (PSO) Algorithm  

PSO algorithm is initialized with a "swarm" composed of N particles. Particles refer to the candidate 
points in the search space of the optimization problem. To obtain the best solution each particle 
adjusts its trajectory toward its own previous best position and toward the previous best position of 
the swarm. By this way, each particle moves in the search space with an adaptive velocity, and stores 
the best position of the search space. Location (x) and velocity (v) of a particle are updated with the 
following equations [14,15]. 

1
1 1 2 2

1 1
max

( ) ( )

,     1,2,.., ,   1,2,..., ,   1,2,...,

k k k k k k
ij ij ij ij gj ij

k k k
ij ij ij

v v c R p x c R p x

x x v i N j m k K

+

+ +

= + − + −

= + = = =
     (17) 

where k is the iteration counter, Kmax denotes the maximum number of iterations, m is the problem 
dimension, k

ijp   and k
gjp  are, respectively, the best positions of the ith particle and the swarm found 

until the kth iteration, R1 and R2 ∈ U(0,1), where U means the uniform random distribution, 1c  and 

2c  are positive weighting constants called cognitive and social coefficients, respectively. These two 

constants regulate the relative velocity toward global and local best points. The algorithm using 
Eq.(17) is called standard PSO, the pseudo code of which is illustrated in Figure 3. Shi and Eberhart 
[22] further studied the performance of PSO, and modified it by introducing a constant called 
"weighting coefficient", w, as follows 

1
1 1 2 2( ) ( )k k k k k k

ij ij ij ij gj ijv wv c R p x c R p x+ = + − + −        (18) 

This w plays the role of balancing the global and local searches. The authors, assuming1 2 2c c= = , 

concluded that the PSO with inertia weight in the range [0.9,1.2] on average has a bigger chance to 
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find the global optimum within a reasonable number of iterations. Later studies revealed that PSO 
parameters cannot be selected arbitrarily, i.e. they must satisfy certain mathematical relationships to 
guarantee convergence [15,23]. One way to improve the convergence speed of PSO is to decrease w 
during the optimization process. In this case the algorithm is initialized with a bigger value (upw ) to 

promote exploration in the early stages of optimization. Then it is decreased linearly, as in Eq.(19), 
to a smaller value (loww ) to eliminate oscillatory behaviors in later stages. 

 

Figure 3: Pseudo-code of PSO [15]. 

up up low
max

( )k k
w w w w

K
= − −          (19) 

This version of PSO is called linearly decreased inertia weight (LDIW) PSO [15,22,24]. On the other 
hand, Zheng et al. [25] proposed an opposite approach in which inertia weight is increased from a 
lower value to an upper one iteratively. This is called as linearly increased inertia weight (LIIW) 
PSO. In their opinion, either global or local search ability associates with a small inertia weight, 
which possesses the capacity of exploring new space. Besides, a large inertia weight provides the 
algorithm more chances to be stabilized. According to the PSO algorithm with LIIW, velocity of 
each particle is updated as follows. 

1
1 2( ) ( )k k k k k k k

ij ij ij ij gj ijv w v c p x c p x+ = + − + −  , n n n nc b R d= +
 
,  (n=1,2)    (20) 

where 1 2 1.5b b= = , 1 2 0.5d d= = , and kw  is the inertia weight linearly increasing from 0.4 to 0.9, 

i.e. 

max

0.4 (0.9 0.4)k k
w

K
= + −          (21) 

Clerc and Kennedy [26], replacing inertia weight with constriction factor (χ), introduced another 
version known as contemporary PSO [15], in which the velocity of each particle is updated as 
follows. 

where ( ) 1
22 2 4χ ϕ ϕ ϕ

−

= − − − , 1 2c cϕ = + , and 4ϕ > . This version of the PSO is denoted in this 

work by the abbreviation CF (constriction factor). The CF not only induces particles to converge on 
local optima, but also prevents swarm explosion, which is a common problem with traditional PSO 
algorithms [26]. In this work, the three PSO variants given above, also summarized in Table 1, are 
employed. Algorithms were executed in MATLAB environment. To test the written codes two 
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common benchmark functions, i.e. Rosenbrock (1f ) and Sphere (2f ) [15,22,27], are utilized with the 

relevant parameters in Table 2. 

Table 1. PSO variants used in this work. 
Method Relevant Equations Parameters References 

LDIW (18), (19) 
1 2 2c c= =, low 0.4w =, 

up 0.9w = 
[15,27] 

LIIW (20), (21) 
n n n nc b R d= +, (n=1,2) 

1 2 1.5b b= =, 

1 2 0.5d d= = 

[25] 

CF (22) 1 2 2.05c c= =, 

0.729χ = 
[15,26] 

Initial values of particles and their velocities were obtained drawing random numbers within the 
range of each dimension [28], i.e. 

1
LB, UB, LB,.( )ij j j jx x R x x= + − , 1

LB, UB, LB,.( )ij j j jv x R x x= + −      (23)  

where LB, jx  and UB, jx are, respectively, lower and upper boundary values of the j th dimension, and R 

∈ U(0,1). Besides, if a particle moves beyond ranges, then it is bounced back to the search space by 
the following equations: 

UB, UB, UB,

LB, LB, LB,

.( ),      if    

.( ),      if    

k k k
ij j ij j ij j

k k k
ij j j ij ij j

x x R x x x x

x x R x x x x

= − − >

= + − <        (24) 

Analysis results are shown in Table 3. It is obvious that all three algorithms produce accurate results 
in comparison with the reference values. CF and LIIW have close best values, and they are better 
than LDIW. Considering the runs in which the best results are obtained, visual comparison is given 
in Figure 4 for the Rosenbrock function. It is clear that convergence speeds of LIIW and CF are 
similar, and better than that of LDIW. 

Table 2. Benchmark functions and running parameters of the algorithms. 
Function Dimension 

(m) 
Initial Range Objective 

( )
1

2 2 2
1 1

1

100( ) (1 )
m

i i i
i

f x x x
−

+
=

= − + −∑ 30 ±10 0 

2
2 1

m

ii
f x

=
=∑ 30 ±20 0 

N(swarm size) = 20, Kmax (max. number of iterations) = 2000 
Number of runs for each algorithm: 20 
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Table 3. Optimization results for the two benchmark functions. 
Method Function Worst Mean Best σ 

1f 309.4288 73.4422 1.9396 71.7047 
LDIW 

2f 
1.0455E-7 1.2658E-8 6.6664E-11 3.2352E-8 

1f 149.2786 49.4933 0.2627 39.0609 
LIIW 

2f 
3.7972E-11 1.0859E-11 4.1E-14 1.4205E-11 

1f 153.0790 44.2481 0.2733 39.4564 
CF 

2f 
0 0 0 0 

Reference results: 1 39.1185f = ,  2 0f = [26].     σ: standard deviation.  

Best results are typed in bold. 
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Figure 4: Minimization of 1f  by the three PSO variants. 

4. Damage Identification Performance of the PSO Algorithms 

To evaluate damage identification performance of the algorithms several damage scenarios in Table 
4 were considered.  
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Table 4. Damage scenarios to evaluate the PSO algorithms. 
Case Damage Parameters 

PV (m/s) pN (%) N  
pe(%) 

1 
1 10.5,  =0.5z δ= 1 1 20 2 

2 
1 1

2 2

0.33,  =0.3

0.66,  =0.2

z

z

δ
δ

=
=

 
3 2 20 2 

3 1 1

2 2

3 3

4 4

0.2,  =0.15

0.4,  =0.15

0.6,  =0.15

0.8,  =0.15

z

z

z

z

δ
δ
δ
δ

=
=
=
=

 

5 3 20, 30 10 

Damage cases were arranged in increasing difficulty, i.e. as the damage case index rises, number of 
cracks, moving load speed, and noise amount increase whereas crack depths decrease. Noise is added 
to the calculated data as follows [7,9]: 

noisy calc p( , ) ( , ) . .y z t y z t N Gσ= +          (25) 

where calc( , )y z t  is the calculated response of point z of the damaged beam, i.e. y  in Eq.(14), pN  is 

the noise percentage, G is Gaussian distribution with zero mean and unit standard deviation, σ is the 
standard deviation of calc( , )y z t . The data to obtain Figure 2 is used again. The sampling frequency is 

the same as in [7], i.e. 100 Hz, for all cases. Thus, the more the moving load speed is, the shorter the 
length of recorded data. Empirically, swarm size between 20 and 30 is sufficient for most benchmark 
problems [29]. Thus, considering the dimensions of the present problem, the swarm size is kept 
within this interval. To evaluate the success of the algorithms, the success index (SI), defined in 
Eq.(26), is employed. 

NSR
SI=

TNR
            (26) 

where NSR means number of successful runs, while TNR is the total number of runs of an algorithm. 
Since each algorithm is run ten times [18] TNR = 10. Successfulness of single run of algorithm is 
determined in the following way: Suppose that an optimization problem has m variables, and their 
optimum values are iα , i=1,2,…,m. If predicted value iα , which is found by solving the optimization 

problem, satisfies 

p

( )
100 i i

i

e
α α

α
− ≤            (27) 

for all i ∈[1,m], where pe denotes the error percentage, then we can conclude that this run of the 

algorithm is successful. SI indicates the robustness of algorithm. If SI=1 the algorithm is independent 
of run times, so that it can be called “robust”. If SI=0 the algorithm fails to give acceptable results, 
thus it is unsuccessful. Here p 2e = is assumed for noise up to 2%, which means a predicted damage 

parameter is allowable if it has at most 2% relative error. In the case of more noise and less crack 
size, a bigger value such as p 10e =  is adopted by experience, since noise is much more dominant in 

this case. With these explanations in mind looking at Table 5 we see that each algorithm 
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demonstrates excellent performance for Kmax=30. However, when we reduce maxK to 20, a significant 

performance loss in LDIW is observed in the sense of SI. The other two still have sufficient 
robustness. Thus, for this simple case either CF or LIIW (preferably LIIW) should be employed to 
achieve less number of function evaluations, which is equal to the product of swarm size and Kmax, 
and faster convergence. Figure 5 verifies this conclusion, as well. Similar observations are valid for 
Case 2 (see Table 6 and Figure 6) when max 100K = . However, when it is reduced to 50, LDIW fails 

to give results within error limits, thus SI=0. Again there is no remarkable difference between LIIW 
and CF. Table 7 demonstrates the results for Case 3. It is observed that the swarm size equal to 20 
seems insufficient to determine both damage locations and extents. The reason may be due to the 
number of constrain equations. Because, as the crack number increases so does the number of 
constrains for crack locations. This may reduce the number of particles inside the feasible region. As 
a remedy a bigger swarm is tried, since the search ability of algorithm in the earlier stages of 
optimization is crucial to converge to desired optimum. Besides, number of iterations is increased 
from 100 to 150 to give the algorithms more chance to exploit local search. In this case, it is 
observed that only CF, though its SI value is not close to 1, achieved to find desired local optimum 
within error limits.  

Table 5. Results for Case 1 in Table 4. 
Kmax=30 

  LDIW LIIW CF 
 E Pr |ε| Pr |ε| Pr |ε| 

1δ 0.5 0.5002 0.03 0.5001 0.02 0.5001 0.02 

1z 0.5 0.5004 0.07 0.5003 0.05 0.5000 0.01 

f 0.4805 0.4786 0.40 0.4776 0.60 0.4774 0.64 

SI  1 1 1 
 

 Kmax=20 
 E Pr |ε| Pr |ε| Pr |ε| 

1δ 0.5 0.5018 0.36 0.4994 0.14 0.4995 0.10 

1z 0.5 0.5047 0.94 0.4988 0.26 0.5018 0.36 

f 0.4805 0.6495 35 0.5080 5.72 0.5374 11.84 

SI  0.5 1 0.7 
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Figure 5: Comparison of the PSO algorithms for Case 1 in Table 4. 

With CF both damage sizes and locations are determined with sufficient accuracy. Hence, 
considering the results in Table 5-7 we can conclude that CF is suitable for the optimization problem 
considered in this study. 

Table 6. Results for Case 2 in Table 4 
Kmax=100 

  LDIW LIIW CF 
 E Pr |ε| Pr |ε| Pr |ε| 

1δ 0.3 0.3005 0.18 0.3006 0.20 0.3006 0.20 

2δ 0.2 0.2000 0.02 0.2000 0.02 0.2000 0.02 

1z 0.33 0.3294 0.17 0.3294 0.18 0.3293 0.21 

2z 0.66 0.6618 0.27 0.6619 0.29 0.6619 0.29 

f 0.3199 0.3191 0.25 0.3191 0.25 0.3191 0.25 

SI  0.8 0.7 0.9 
 

Kmax=50 
  LDIW LIIW CF 
 E Pr |ε| Pr |ε| Pr |ε| 

1δ 0.3 0.2972 0.9343 0.3006 0.20 0.3003 0.11 

2δ 0.2 0.1967 1.6300 0.1990 0.50 0.1996 0.21 

1z 0.33 0.3289 0.3321 0.3295 0.15 0.3301 0.04 

2z 0.66 0.6406 2.9412 0.6604 0.05 0.6604 0.06 

f 0.3199 0.3214 0.47 0.3191 0.25 0.3191 0.25 

SI  0 0.6 0.6 
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Figure 6: Comparison of the PSO algorithms for Case 2 in Table 4. 

Table 7. Results for Case 3 in Table 4. 
Swarm size N=20, Kmax=100, p 10e = 

  LDIW LIIW CF 
 E Pr |ε| Pr |ε| Pr |ε| 

1δ 0.15 0.0821 45.27 0.0244 83.75 0.0670 55.36 

2δ 0.15 0.1824 21.59 0.1842 22.78 0.1827 21.83 

3δ 0.15 0.1506 0.39 0.1367 8.86 0.1329 11.42 

4δ 0.15 0.1809 20.57 0.2163 44.19 0.2022 34.77 

1z 0.2 0.1731 13.43 0.2262 13.08 0.2022 1.09 

2z 0.4 0.3812 4.70 0.3867 3.33 0.3877 3.07 

3z 0.6 0.6289 4.82 0.6078 1.30 0.6069 1.15 

4z 0.8 0.8616 7.70 0.8612 7.65 0.8494 6.17 
f 0.2894 0.1731 40 0.2760 4.63 0.2758 4.70 
SI  0 0 0 

 Swarm size 30, Kmax=150, p 10e = 
  LDIW LIIW CF 
 E Pr |ε| Pr |ε| Pr |ε| 

1δ 0.15 0.1656 10.42 0.1599 6.61 0.1632 8.83 

2δ 0.15 0.1329 11.39 0.1613 7.55 0.1423 5.15 

3δ 0.15 0.1683 12.22 0.1289 14.09 0.1502 0.11 

4δ 0.15 0.1890 25.98 0.1666 11.08 0.1539 2.59 

1z 0.2 0.1977 1.13 0.1750 12.52 0.1960 2.00 

2z 0.4 0.3974 0.64 0.4103 2.55 0.4056 1.41 

3z 0.6 0.5999 0.02 0.5998 0.04 0.5947 0.89 

4z 0.8 0.8792 9.90 0.7936 0.80 0.7995 0.07 
f 0.2894 0.2795 3.42 0.2796 3.39 0.2794 3.46 
SI  0 0 0.2 
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5. Comparison With The Wavelet Transform Method  

Common deficiency of the wavelet transform methods in [7-11] is that CWT coefficients lose 
sensitivity to damage with increasing moving load speed. To indicate this the cases in Table 8 are 
considered. Figure 7 demonstrates the wavelet coefficients of the midpoint deflection corresponding 
to Case 1 in Table 8. As is obviously seen, CWT coefficients are sufficiently sensitive to damage 
locations, i.e. the CWT coefficients at the crack points have large magnitudes and these magnitudes 
increase along with the scale. Therefore, it is possible in this case to determine crack locations and 
sizes with sufficient accuracy using CWT coefficients.  

Table 8. Damage cases for comparison with the wavelet transform method. 

Case PV (m/s) sω(Hz) Data length pN (%) 

1 1 100 5000 3 
2 5 100 1000 3 
3 5 500 5000 3 

Damage parameters for each case: 1 2 1 20.33,  0.67,  0.5z z δ δ= = = =  

sω: sampling frequency,   Data length ≅ ( )p sL V ω 

 
However, when the moving load speed is increased to 5 m/s, which corresponds to Case 2 in Table 8, 
CWT coefficients fail to reveal damage effects, as seen in Figure 8. One can verify that a similar 
variation in Figure 8 is obtained for the Case 3 in Table 8. Thus, a bigger sampling frequency is not 
helpful in extracting damage locations. On the other hand, Table 9 demonstrates that both damage 
locations and crack sizes can be determined by the proposed approach with sufficient accuracy. With 
increasing moving load speed, the displacement curves become smoother, thus singularities in the 
response curve disappear. This reduces the sensitivity of CWT coefficients to damage. However, the 
proposed approach is based on the correlation of reference displacement curves, which are measured 
in the damaged case, and those calculated by the mathematical model of the structure. Thus, 
disappearing of singularities in the response curve does not affect the performance of the proposed 
method. 

 
Figure 7: CWT coefficients of the midpoint displacement (Case 1 in Table 8). Wavelet: Gaus4 
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Figure 8: CWT coefficients of the midpoint displacement (Case 2 in Table 8). 

6. Conclusions 

In this work, DD in a beam subject to moving load is formulated as an inverse problem, and damage 
parameters are determined by solving this problem using PSO variants. The applicability of the 
proposed method to real-life problems depends on three issues: 1) Well-defined mathematical model 
of the system, 2) Suitable crack or damage model for the carrying structure, 3) Measuring reference 
data (i.e. y  in Eq.(14)) with sufficient quality. These three requirements are characteristics of the 
general MU based DD methods, and they are related to different disciplines such as dynamics of 
structures and systems, fracture mechanics, data acquisition and signal processing. On the other 
hand, considering the above studies the following conclusions can be drawn: 

 

Table 9. Optimization results for the cases in Table 8. 
     f 

1δ 2δ 1z 2z 

E 1.4579 0.5 0.5 0.33 0.67 
Case 1 

Pr 1.5034 0.4988 0.5022 0.3314 0.6628 
E 0.2860 0.5 0.5 0.33 0.67 

Case 2 
Pr 0.3443 0.4954 0.5007 0.3270 0.6452 
E 0.2808 0.5 0.5 0.33 0.67 

Case 3 
Pr 0.3191 0.5047 0.5001 0.3251 0.6670 

Swarm size 20, Kmax=30, E: Exact, Pr: Predicted, Optimization algorithm: CF 

 

1) Performances of the three PSO algorithms were compared. It was observed that LIIW and CF 
methods are superior to LDIW in the sense of convergence speed and robustness. LIIW and CF were 
nearly the same for most of the cases considered. However, CF was observed to be slightly better 
than LIIW from the point of robustness. Also, swarm size of 30 and the maximum number of 
iterations equal to 150 were experienced to be sufficient for the considered cases. On the other hand, 
for the inertia weight, cognitive and acceleration constants there are other combinations in the 
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relevant literature, though the ones employed in this study are widely used. Trying these 
combinations may be worth further studying in another study. 

2) It was observed that small damages, i.e. crack depth ratio equal to 0.15, can be determined by the 
proposed method in spite of three percent noise interference. Also, this method can be applied for 
higher moving load velocities which the CWT coefficients fail to extract damage info. However, the 
proposed method requires an accurate mathematical or finite element model of the structure, which is 
a common disadvantage of the MU based DD methods. In this respect, the wavelet transform 
methods are superior as they generally do not require this. However, their sensitivity to damage 
depends on various parameters, as is well known from the relevant literature. 

3) In this work, the inertia effects of the moving load and load-beam interaction are omitted. Indeed, 
this does not bring a serious restriction on the application of the proposed method, since the method 
is based on the correlation between reference and calculated responses. Including these effects may 
enhance the performance of the proposed method, since their impact on the response curve is 
considerable especially at higher velocities. 

4) Denoising the reference displacements in Eq.(14) may enhance the accuracy of crack 
identification. In this regard suitable filtering methods can be applied before solving the optimization 
problem. 

Future works are planned to cover the omitted issues above and verification with real data. 
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