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Abstract

In this work, damage detection (DD) method for besimctures subject to moving load is proposed. iBfbrmulated
as an optimization problem and solved for crackatmns and depths using three versions of the gartswarm
optimization (PSO). It was observed that PSO withstriction factor is superior in the sense of aengence speed and
robustness. Also, it was experienced that smattkgavith depth ratio of 0.15 can be identified g present method in
spite of 3% noise interference. The proposed metbatemonstrated to be better than wavelet tramsfanethod at
higher moving load speeds.

Keywords: Damage detection; particle swarm optimization; mgJoad.

1. Introduction

Structures under moving load have many practicpliegtions such as railway tracks, bridges,
pipelines, roadways, etc. Basically, a moving lgads larger deflections and higher stresses than
equivalent static load conditions. Thus, dynami€ssach structures has received considerable
attention. Fryba collected a lot of approachesh& well-known textbook [1], investigating mainly
beam type structures under moving load with varimasling and boundary conditions. If the host
structure has crack-like local defects, than thpaich of moving load becomes more pronounced [2-
6]. On the other hand, various DD methods have bleseloped for beams subject to moving loads
using the continuous wavelet transform (CWT) [7-1They are based on the fact that CWT
coefficients of beam dynamic response demonstoatd peaks at crack locations, and magnitudes of
these peaks are proportional to crack depths.

In structural DD there are other methods based odetnupdating (MU) [12]. The basic of such a
method is to update mathematical or finite elenmantel of the structure to match the calculated
response to the one measured from damaged strudtbie is achieved through an optimization
procedure. To solve the optimization problem theh@matical programming (MP) or metaheuristic
techniques are employed. The MP methods can bgaraged as gradient techniques such as the
generalized reduced gradient technique, succesgiNgratic programming, Lagrange Newton
approaches, successive linear programming andarq@sint methods. Their common deficiency is
that solution quality relies on the initial poifdthey may be trapped into local optima easily. Also,
computational complexity becomes significant as pghablem dimensions rise (see [13] for further
disadvantages of these). To overcome the limitatmfithe MP methods, metaheuristic approaches,
one of which is the PSO algorithm, have been intced. PSO, developed by Kennedy and Eberhart
[14], is a stochastic optimization technique ins@iby natural flocking and swarm behavior of birds
and insects. Unlike genetic algorithms (GAs), P$® ho evolution operators such as crossover and
mutation. Also, PSO is easy to implement and tlaeeefew parameters to adjust. The information
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sharing mechanism in PSO is significantly differahan GAs. In GAs, chromosomes share
information with each other, thus the whole popafaimoves like a one group towards an optimal
area. In PSO, only global and local best pointe giut the information to others, hence it is a one-
way information sharing mechanism. Compared withsG#l the particles tend to converge to the
best solution quickly [15,16]. PSO has been sudckgsemployed in MU based DD applications
[17-19]. In MU based DD, time dependent structuesponse is used, as well. Buezas et al. [20]
formulated an optimization problem using time rewmes from several points on the beam, and
determined crack size and depth by solving thidlera.

Bilello and Bergman [4] concluded that changeshmtime-response of the beam due to damage are
more perceptible in comparison to the changes e natural frequencies. In the present work,
motivated by the conclusion of Bilello and Bergnjdhand the method of Buezas et al. [20], a MU
based DD approach has been proposed for beam tyyeuses carrying moving load. In this
respect, time dependent displacements from sepenals on a cracked beam were obtained, and an
objective function was defined by subtracting th&sen the ones calculated by the mathematical
model of the structure. Then, three variants of R&De employed to minimize this objective
function, and their performances were compared idenag several damage scenarios. It was
demonstrated that the proposed method is supearidhe wavelet coefficients method at higher
moving load speeds. To the best of the author'sMexdge, this is the first study which deals with
formulating the DD in a beam subject to moving I an inverse problem and solved by the
various PSO algorithms.

2. Formulation of The Problem
2.1. Vibration modes of cracked beam

For simplicity, the system including beam and mgvinad is considered in this work. This is
illustrated in Figure 1, where a simply supportedrn of length_ is carrying moving loadP with
constant speelt, . E andp refer to the modulus of elasticity and densitypem material. andA

are, respectively, the second moment of inertia enods-sectional area of the beam. The beam
contains an open crack atwith depthh, . Assuming the beam is composed of two parts ¢bate

the crack location through a rotational spring,cae write the following compatibility equations at
the crack location [2]

Yi(2)=Y%(2, Y (2)+0Y (D= Y 2, Y"(2)=Y2(2, Y"(3)=Y"(2) (1)

where'=d/dz, andY,(2 is the mode shape of tHebeam part defined as follows

Y (2= CGcos@ 2+ C sing 2+ G cos z ¢ sinb( ., i=1,2 2

where A=(0AFI(EN)°? In Eq.(2) A and w are eigenvalue and natural frequency parameters,
respectively, andcC; are the constants to be determined by solvingidpenvalue problem. The first,
third and fourth terms in Eq.(1) mean deflectioenting moment and shear force at the crack
location are continuous while the second term igis slope discontinuity due to the crack. The
geometric factor of the crack, is defined as follows [2,6]
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Figure 1. The cracked beam carrying moving load
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9=2h( ](5.93— 19.69,+ 37.14 - 35.8f+ 1342), 4 =h/h )

Y,(2 in EQ.(2) and its first three derivatives can br@ten in matrix form:

V,=TC, 4)
where
Y. (2 cos(lz) sing z) cosm{z)  sini(z) C.
Y.'(2 -Asin(Az) Acosdz) A sinkfz) A cosH(z C,
Vi: " , 1= 2 2 o 2 2 'Ci: (5)
Y, "(2 -A°cos(lz) A°sindz) A° cosm{z) A° sinA(z | Cs
Y "(2) A’sinlz) -A%cos@z) A°sinh{z) A° cosi(z| C.,
Then, Eq.(1) in matrix notation:
1000
C 0160
uv, =V -T = =
=V, = [UTE) (a)]%{cz}m 0, U, (6)
0001

In order to determine the elements of the vec©yand C, eight equations are required. Eq.(6)

provides the four of these. The remaining four cdroe the boundary conditions, which are given
in Eqs.(7-8) for the simply supported beam.

At the left endY;(0)=0 andY,"(0)=0, i.e.

1010
} (")

&= TL{O A0 4

At the right endY,(L) =0 andY, "(L) =0, which gives
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cos@dL) sindL) cosKL ) sinkAC |
T.C,=0, T.= aL) _ﬂ ) ML ) | 4-: ®)
-cos(lL) -sindL ) cosL ) sindAL |
With Eqgs.(6-8) the following eigenvalue problenfasmulated
C TL2x4 O2><4
ALt =0, A TY. | L TY=[UT@R) -T(2)],, (9)
C2 8x1 0 "

T
2x4 R2x4 8x8

For the nontrivial solution of Eq.(9) the deterrmhaf A should be zero. By this way the natural
frequencies of the cracked beam, and corresponding mode shapeé¥,(2) i=1,2,..., are obtained.
In the case of multiple cracks one can verify tat(9) becomes as follows

Tioxa 0 C,
T® C,
T 0
=0, T"=[UT@) -T(3)],, (10)
T(Nc) .
_0 TR2x4_4(NC+1)X4(NC+1) CNc+1 4N, +1)x1

where N, is the number of cracks. Again the same methogpdied to solve Eq.(10). By this way,
natural frequencies and mode shapes of the mutltijpleked beam are obtained.

2.2 Dynamic response of the beam subject to moving load

Equation of motion of the beam in Figure 1 is [7]

’y(zt) , ~0Nz ) 'Y z)_
PA== T+ C= S+ EI=— 52 = PY(2- V) (11)

whereC and o are, respectively, damping coefficient of the beamd Dirac delta function. Using
natural modes of the cracked beam Eq.(11) can lvedsby the mode superposition method. Thus,

assumingy(z t) :ziN:rl" q(t)\r‘”( 2, where N, is the number of modes employed, substituting into
Eq.(11), multiplying byY” (2 and integrating along the beam lead to

Mg+Cq+Kg=F (12)

where M, C andK are mass, damping, and stiffness matrixes, raspggct with the following
entities

M, = [ PAYO (YD - G, = [CYO (9 ¥ | (13.1)
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K; =TEIY "YW (3d . F :T-Pcf(z-\éw”( yd : (13.2)
q=[0, &y, 'y 0j=1,2,....N, (13.3)

In this work Eq.(12) is solved by the Newmark Betathod (with8=1/6 andy=1/2 [21]). To verify
the codes written for computations, midspan deflest of the beam were obtained using the
following data [7]: E=210GPa, o=7860 kg/ni, L=50m, b=0.5m, h=1m, P=10 kN, sampling
frequency 100 Hz, number of moddk, =5, 2% modal damping for each mode. Figure 2 illdsga
the normalized midpoint deflections for differepiesd and damage combinations. Normalization is
performed dividing by the static deflection, ileL®/(48El) , of the midpoint when P acts on this
point. One can verify the agreement comparing threes in Figure 2 with those in [2,6,7].

Normalized midspan deflection

“o0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Time

Vo =5m/s, o, = (Figure 2: Normalized midspan deflection of the beam. I
Il Vo, =5m/s, o,= 0.5 lll: V, =40m/s,d,= ( IV: V,=40m/s,d,= 0.

2.3 The objective function and the constrains

The aim is to correlate the response of the damaedture to the one calculated by the
mathematical model of the structure. To achievs, thi is proposed to adjust crack sizes and
locations by solving an optimization problem. Thyeative function of the problem is introduced as
follows.

@t y(z, - W7, DI
1= ZI max(|y (z,,t]) o

where N, is the number of measurement points on the beamis the location of thenth

measurement point on the beam,denotes the reference displacements measured feonaged
beam whereay stands for the corresponding displacements cordpayethe mathematical model
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of the structureT is the total time for the load to move across bleam, andzis the vector
containing crack location and size parameters, i.e.

2={3,0,...0,, 2.2,..73}, 9 - z=4 (15)

Theith element ofz denotes the depth ratio of tité crack while its(N, +i)th element shows the
location of theith crack. As to the measurement points, it isebetd choose them close to the
midpoint, since maximum deflection occurs at tharbenidspan. Thus, four points [20] on the beam
were determined as {0.3 0.5 0.6 A.7}.e. N, =4 in Eq. (14). If the number of crack$\() is more
than one, then extra constraints should be intredldor the optimization algorithm to make search

in the feasible region. With these explanationmind, the optimization problem can be formulated
as follows

min f(z) subjectto:Z -7, <0,i=1,2,...,N.-1and0<Z <1, 0<9, <1,j=1,2,....N, (16)

C

Crack locations and depths can be determined lngpEq.(16). In this work the PSO is employed
for this purpose, and its details are given inrtbgt section. At each iteration, the candidatetgsmis
are checked if crack locations satisfy the relev@aoistrains in EQ.(16). Those not satisfying are
penalized by adopting extremely high objective fiorcvalue such as 19

3. TheParticle Swarm Optimization (PSO) Algorithm

PSO algorithm is initialized with a "swarm" compds# N particles. Particles refer to the candidate
points in the search space of the optimization lprab To obtain the best solution each particle
adjusts its trajectory toward its own previous lqEssition and toward the previous best position of
the swarm. By this way, each particle moves insiéserch space with an adaptive velocity, and stores
the best position of the search space. Locatiprarfd velocity () of a particle are updated with the
following equations [14,15].

Vilj(ﬂ:\ﬂk"'qa( p(_ iX)+ G B( gﬁ‘ij%

17
XK= ey =12, N, j= 1,2,.m k= 12K, ")

wherek is the iteration counteKnax denotes the maximum number of iteratiomsis the problem
dimension, pi and py; are, respectively, the best positions of itheparticle and the swarm found
until thekth iteration,R; andR, [0 U(0,1), whereU means the uniform random distributiof,and

C, are positive weighting constants called cognitinel social coefficients, respectively. These two

constants regulate the relative velocity towardbgloand local best points. The algorithm using
Eq.(17) is called standard PSO, the pseudo codéiah is illustrated in Figure 3. Shi and Eberhart
[22] further studied the performance of PSO, andliffe it by introducing a constant called

"weighting coefficient"w, as follows

\/iljﬁl:W\{"'qa(fﬁ_i*)"' gagb_ij% (18)

This w plays the role of balancing the global and loerehes. The authors, assungigc, =2,
concluded that the PSO with inertia weight in thege [0.9,1.2] on average has a bigger chance to

6
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find the global optimum within a reasonable numbkiterations. Later studies revealed that PSO
parameters cannot be selected arbitrarily, i.e/ thest satisfy certain mathematical relationshgps t

guarantee convergence [15,23]. One way to imprbgecbnvergence speed of PSO is to decr@ase

during the optimization process. In this case figeréhm is initialized with a bigger valuen(,) to

promote exploration in the early stages of optitiga Then it is decreased linearly, as in EQ.(19),
to a smaller valuew,,, ) to eliminate oscillatory behaviors in later stage

Step 1. Setk« 0

Step 2. Initialize S and Set P=S

Step 3. Evaluate S and P, and define index g of the best position
Step 4. While (termination criterion not met)

Step 5. Update S using Eq. (1)

Step 6. Evaluate S

Step 7. Update P and redefine index g

Step 8. Set k< kt+1

Step 9. End While

S: swarm, P: best values of particles

Figure 3: Pseudo-code of PSO [15].

Kk
we = Wup - (Wup - Vvlow) K— (19)

max

This version of PSO is called linearly decreasedtia weight (LDIW) PSO [15,22,24]. On the other
hand, Zheng et al. [25] proposed an opposite approawhich inertia weight is increased from a
lower value to an upper one iteratively. This idlezhas linearly increased inertia weight (LIIW)
PSO. In their opinion, either global or local séasability associates with a small inertia weight,
which possesses the capacity of exploring new sgaesides, a large inertia weight provides the
algorithm more chances to be stabilized. Accordmghe PSO algorithm with LIIW, velocity of
each particle is updated as follows.

VT =W AT - X+ (-9 .8 =R+ d,, (0=1,2) (20)

whereb =b,=1.5, d, =d, =0.5, and W< is the inertia weight linearly increasing from @c40.9,
i.e.

W = 0.4+ (0.9- 0.4)KL (21)

Clerc and Kennedy [26], replacing inertia weighthweconstriction factor X), introduced another
version known as contemporary PSO [15], in which telocity of each particle is updated as
follows.

where y = 2(‘2—¢ -9 - 49

work by the abbreviation CF (constriction factoFhe CF not only induces particles to converge on
local optima, but also prevents swarm explosioniclviis a common problem with traditional PSO
algorithms [26]. In this work, the three PSO vatgagiven above, also summarized in Table 1, are
employed. Algorithms were executed in MATLAB enviroent. To test the written codes two

-1
) , §=c,+c,, and @ >4. This version of the PSO is denoted in this
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common benchmark functions, i.e. Rosenbro€R and Sphere {,) [15,22,27], are utilized with the
relevant parameters in Table 2.

Table 1. PSO variants used in this work.

Method Relevant Equations Parameters References
, Woy =04, =G, =2
LDIW (18), (19) W, =0.9 [15,27]
LIW (20), (21) , b =b,=15 [25]
d =d,=0.5
, G =¢C,=2.05
CF (22) ¥=072¢ [15,26]

Initial values of particles and their velocities reeobtained drawing random numbers within the
range of each dimension [28], i.e.

)ﬂ‘} =Xg,; t R(Xg; = Xa; ) V& =Xg,; * R(X%g; = Xs,) (23)

where x; ; and x; ; are, respectively, lower and upper boundary vabiekej™ dimension, andR

(0 U(0,1). Besides, if a particle moves beyond ranties) it is bounced back to the search space by
the following equations:

Xi|j< = Xug,j T R(?{_ Xgj ) if i?k > ¥g;

X =Xe, t R(Xs; = ¥),  if X< % (24)
Analysis results are shown in Table 3. It is obsgidlat all three algorithms produce accurate result
in comparison with the reference values. CF andVLHave close best values, and they are better
than LDIW. Considering the runs in which the besstults are obtained, visual comparison is given
in Figure 4 for the Rosenbrock function. It is clélaat convergence speeds of LIIW and CF are
similar, and better than that of LDIW.

Table 2. Benchmark functions and running parameietise algorithms.

Function Dimension Initial Range  Objective
(m)
m-1
fl = 2(100(&2 R )2 + (- X )2) 30 +10 0
i=1
f =X 30 £20 0

N(swarm size) = 2K max (Mmax. number of iterations) = 2000
Number of runs for each algorithm: 20
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Table 3. Optimization results for the two benchmfarictions.

Method Function Worst Mean Best o
f, 309.4288  73.4422 1.9396 71.7047

bW f, 1.0455E-7 1.2658E-8 6.6664E-11 3.2352E-8
LW f, 149.2786  49.4933 0.2627 39.0609
f, 3.7972E-11 1.0859E-11 4.1E-14 1.4205E-11

f, 153.0790  44.2481 0.2733  39.4564

CF f, 0 0 0 0

[26]. o©: standard deviationf, =0 , f, =39.118tReference results:
Best results are typed in bold.

6
4x10 ‘
— LDIW
3.5 —o- LIW ||
b * CF
3, -

0 500 1000 1500 2000
iteration

Figure4: Minimization of f, by the three PSO variants.

4. Damage | dentification Perfor mance of the PSO Algorithms

To evaluate damage identification performance efdlyorithms several damage scenarios in Table
4 were considered.
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Table 4. Damage scenarios to evaluate the PSQOitalyst

Case Damage Parameters (m/s)V; (%)N, N (%)e,
1 Z =0.5,0,=0.t 1 1 20 2
2 7 =0.33,9,=0.3 3 2 20 2
Z,=0.66, 9, =0.2

3 7 =0.2,9,=0.15 5 3 20, 30 10
Z,=04,9,=0.1¢
Z,=0.6, 0,=0.1¢

Z,=0.8, 3,=0.1¢

Damage cases were arranged in increasing difficuétyas the damage case index rises, number of
cracks, moving load speed, and noise amount inemghsreas crack depths decrease. Noise is added
to the calculated data as follows [7,9]:

)_/(Z, t)noisy = _)/( Z Dcalc+ N) Gr (25)

where y(z 1), is the calculated response of pairif the damaged beam, i.g.in Eq.(14), N, is

the noise percentag@,is Gaussian distribution with zero mean and uamdard deviationg is the
standard deviation of(z t),.. The data to obtain Figure 2 is used again. Thepag frequency is

the same as in [7], i.e. 100 Hz, for all cases.sTtive more the moving load speed is, the shdreer t
length of recorded data. Empirically, swarm sizeMeen 20 and 30 is sufficient for most benchmark
problems [29]. Thus, considering the dimensionghef present problem, the swarm size is kept
within this interval. To evaluate the success @& #igorithms, the success index (Sl), defined in
Eq.(26), is employed.

TNR

where NSR means number of successful runs, while iBNhe total number of runs of an algorithm.
Since each algorithm is run ten times [18] TNR = $Qccessfulness of single run of algorithm is
determined in the following way: Suppose that atinoigation problem has variables, and their
optimum values arer,, i=1,2,...m. If predicted valuax,, which is found by solving the optimization

problem, satisfies

100((@ -a)

a;

<e (27)

for all i 0[1,m], where g,denotes the error percentage, then we can conthadethis run of the

algorithm is successful. Sl indicates the robustrdslgorithm. If SI=1 the algorithm is indepentien
of run times, so that it can be called “robust”SIE=0 the algorithm fails to give acceptable result
thus it is unsuccessful. Hees = 2is assumed for noise up to 2%, which means a pgeztitamage

parameter is allowable if it has at most 2% re&#vror. In the case of more noise and less crack
size, a bigger value such as=10 is adopted by experience, since noise is much momgnant in

this case. With these explanations in mind looketg Table 5 we see that each algorithm

10
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demonstrates excellent performanceKgr=30. However, when we redud€, ,, to 20, a significant

performance loss in LDIW is observed in the senk&lo The other two still have sufficient
robustness. Thus, for this simple case either CEIWY (preferably LIIW) should be employed to
achieve less number of function evaluations, wiscbqual to the product of swarm size dg.
and faster convergence. Figure 5 verifies this kmmen, as well. Similar observations are valid for
Case 2 (see Table 6 and Figure 6) wiken, =100. However, when it is reduced to 50, LDIW fails

to give results within error limits, thus SI=0. Agahere is no remarkable difference between LIIW
and CF. Table 7 demonstrates the results for Cales3observed that the swarm size equal to 20
seems insufficient to determine both damage lonatend extents. The reason may be due to the
number of constrain equations. Because, as the& eramber increases so does the number of
constrains for crack locations. This may reducentin@ber of particles inside the feasible region. As
a remedy a bigger swarm is tried, since the sealility of algorithm in the earlier stages of
optimization is crucial to converge to desired optn. Besides, number of iterations is increased
from 100 to 150 to give the algorithms more chatweexploit local search. In this case, it is
observed that only CF, though its Sl value is Hose& to 1, achieved to find desired local optimum
within error limits.

Table 5. Results for Case 1 in Table 4.

Kmax=30
LDIW LW CF
E Pr €| Pr (3] Pr €|
o, 0.5 0.5002 0.03 0.5001 0.02 0.5001 0.02
Z 0.5 0.5004 0.07 0.5003 0.05 0.5000 0.01
f 04805 04786 040 0.4776 0.60 04774 0.64
Sl 1 1 1
Kmax=20
E Pr €| Pr €] Pr €|
o, 0.5 0.5018 0.36 0.4994 0.14 0.4995 0.10
Z 0.5 0.5047 0.94 0.4988 0.26 0.5018 0.36
f 0.4805 0.6495 35 05080 572 05374 11.84
Sl 0.5 1 0.7

11
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- < -LIIW
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N

Best value of objective function (Case 1)

N
T

ey Wﬁ%ﬁ@éééé@“ﬁ% 460660

0 5 10 15 20 25 30
iteration

>

Figure5: Comparison of the PSO algorithms for Case 1 inld 4.

With CF both damage sizes and locations are detedniwith sufficient accuracy. Hence,
considering the results in Table 5-7 we can corelhdt CF is suitable for the optimization problem
considered in this study.

Table 6. Results for Case 2 in Table 4

Kmax=100
LDIW LW CF
E Pr | Pr | Pr le|
o 03 0.3005 0.18 0.3006 0.20 0.3006 0.20
J, 0.2 0.2000 0.02 0.2000 0.02 0.2000 0.02
z 033 0.3294 0.17 0.3294 0.18 0.3293 0.21
z, 0.66 0.6618 0.27 0.6619 0.29 0.6619 0.29
f 0.3199 0.3191 0.25 0.3191 0.25 0.3191 0.25
SI 0.8 0.7 0.9
Kmax=50
LDIW LIIW CF
E Pr €| Pr €] Pr €|
o) 0.3 0.2972 0.9343 0.3006 0.20 0.3003 0.11
0, 0.2 0.1967 1.6300 0.1990 0.50 0.1996 0.21
A 0.33 0.3289 0.3321 0.3295 0.15 0.3301 0.04
Z, 0.66 0.6406 2.9412 0.6604 0.05 0.6604 0.06
f 03199 0.3214 047 03191 0.25 0.3191 0.25
SI 0 0.6 0.6

12
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—LDIW
- < -LIIW
* CF

Best value of objective function (Case 2)

0 20 40 60 80 100
iteration

Figure 6: Comparison of the PSO algorithms for Case 2 inld 4.

Table 7. Results for Case 3 in Table 4.
e. =10Swarm sizeN=20, Kn2=10C,

LDIW LIIwW CF
E Pr le] Pr le] Pr e]
0, 0.15 00821 45.27 0.0244 83.75 0.0670 55.36
0, 0.15 01824 2159 0.1842 22.78 0.1827 21.83
o, 0.15 0.1506 0.39 0.1367 8.86 0.1329 11.42
9, 0.15 01809 20.57 0.2163 44.19 0.2022 34.77
Z 0.2 0.1731 13.43 0.2262 13.08 0.2022 1.09
Z, 0.4 03812 470 0.3867 3.33 0.3877 3.07
Z 0.6 06289 482 0.6078 1.30 0.6069 1.15
Z, 0.8 08616 7.70 0.8612 7.65 0.8494 6.17
f 0.2894 0.1731 40 0.2760 4.63 0.2758 4.70
Sl 0 0 0
e, =10 Swarm size30, Kmay=15C,
LDIW LW CF
E Pr €] Pr €] Pr €]

0, 0.15 0.1656 10.42 0.1599 6.61 0.1632 8.83
0, 0.15 0.1329 11.39 0.1613 7.55 01423 5.15
o, 0.15 0.1683 12.22 0.1289 14.09 0.1502 0.11
9, 0.15 0.1890 25.98 0.1666 11.08 0.1539 2.59
Z 0.2 0.1977 1.13 0.1750 12,52 0.1960 2.00
Z 0.4 03974 0.64 0.4103 255 04056 141
Z 0.6 0.5999 0.02 05998 0.04 0.5947 0.89
Z, 0.8 0.8792 990 0.7936 0.80 07995 0.07
f 0.2894 0.2795 3.42 0.2796 3.39 0.2794 3.46
Sl 0 0 0.2

13
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5. Comparison With The Wavelet Transform M ethod

Common deficiency of the wavelet transform methoud7-11] is that CWT coefficients lose
sensitivity to damage with increasing moving lopeexd. To indicate this the cases in Table 8 are
considered. Figure 7 demonstrates the waveleticmafts of the midpoint deflection corresponding
to Case 1 in Table 8. As is obviously seen, CWTifements are sufficiently sensitive to damage
locations, i.e. the CWT coefficients at the cradings have large magnitudes and these magnitudes
increase along with the scale. Therefore, it issfis in this case to determine crack locations and
sizes with sufficient accuracy using CWT coeffi¢gen

Table 8. Damage cases for comparison with the waueinsform method.

Case (m/s)V,  (Hz)wy,  Datalength  (%)N,
1 1 100 5000 3
2 5 100 1000 3
3 5 500 5000 3

7 =0.33,2 = 0.67,0,=9,= 0.Damage parameters for each case:
(L/Vp)a)s: sampling frequency, Data lengthw,

However, when the moving load speed is increas@&dmdés, which corresponds to Case 2 in Table 8,
CWT coefficients fail to reveal damage effects,sasn in Figure 8. One can verify that a similar
variation in Figure 8 is obtained for the Case Jable 8. Thus, a bigger sampling frequency is not
helpful in extracting damage locations. On the otiend, Table 9 demonstrates that both damage
locations and crack sizes can be determined bprity@osed approach with sufficient accuracy. With
increasing moving load speed, the displacementesubecome smoother, thus singularities in the
response curve disappear. This reduces the satysth\CWT coefficients to damage. However, the
proposed approach is based on the correlationferfergce displacement curves, which are measured
in the damaged case, and those calculated by thieematical model of the structure. Thus,
disappearing of singularities in the response cuives not affect the performance of the proposed
method.
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Figure 7. CWT coefficients of the midpoint displacement $€4d. in Table 8). Wavelet: Gaus4
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Absolute values of wavelet coefficients
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Figure 8: CWT coefficients of the midpoint displacement $€2 in Table 8).

6. Conclusions

In this work, DD in a beam subject to moving loadarmulated as an inverse problem, and damage
parameters are determined by solving this problemguPSO variants. The applicability of the
proposed method to real-life problems depends mretissues: 1) Well-defined mathematical model
of the system, 2) Suitable crack or damage modeh#® carrying structure, 3) Measuring reference
data (i.e.y in Eq.(14)) with sufficient quality. These thresquirements are characteristics of the
general MU based DD methods, and they are relatatifferent disciplines such as dynamics of
structures and systems, fracture mechanics, dafais#on and signal processing. On the other
hand, considering the above studies the followimgctusions can be drawn:

Table 9. Optimization results for the cases in &abl

f a S, Z 2

Case 1 E 1.4579 0.5 0.5 0.33 0.67
Pr 1.5034 0.4988 0.5022 0.3314 0.6628

Case 2 E 0.2860 0.5 0.5 0.33 0.67
Pr 0.3443 0.4954 0.5007 0.3270 0.6452

Case 3 E 0.2808 0.5 0.5 0.33 0.67
Pr 0.3191 0.5047 0.5001 0.3251 0.6670

Swarm size 20, Ka=30, E: Exact, Pr: Predicted, Optimization algantiCF

1) Performances of the three PSO algorithms wenepaoed. It was observed that LIIW and CF
methods are superior to LDIW in the sense of cagemce speed and robustness. LIIW and CF were
nearly the same for most of the cases consideredieiker, CF was observed to be slightly better
than LIIW from the point of robustness. Also, swasme of 30 and the maximum number of
iterations equal to 150 were experienced to bacsesfit for the considered cases. On the other hand,
for the inertia weight, cognitive and acceleraticonstants there are other combinations in the

15



Hakan Gokdg

relevant literature, though the ones employed irs tsiudy are widely used. Trying these
combinations may be worth further studying in aeotstudy.

2) It was observed that small damages, i.e. cragkhdratio equal to 0.15, can be determined by the
proposed method in spite of three percent noisfarence. Also, this method can be applied for
higher moving load velocities which the CWT coetits fail to extract damage info. However, the
proposed method requires an accurate mathemati@aite element model of the structure, which is
a common disadvantage of the MU based DD methadghis respect, the wavelet transform
methods are superior as they generally do not mredghis. However, their sensitivity to damage
depends on various parameters, as is well known fhe relevant literature.

3) In this work, the inertia effects of the movilogid and load-beam interaction are omitted. Indeed,
this does not bring a serious restriction on thaieation of the proposed method, since the method
is based on the correlation between reference alodlated responses. Including these effects may
enhance the performance of the proposed methode gheir impact on the response curve is

considerable especially at higher velocities.

4) Denoising the reference displacements in Eq.(®gy enhance the accuracy of crack
identification. In this regard suitable filteringetthods can be applied before solving the optinopati
problem.

Future works are planned to cover the omitted ssibb®ve and verification with real data.
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