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Abstract

For delivering the maximum power output at the lsamperating voltage, the fuel cell-based standchalpower supply
system has to be configured in terms of numbeeltd m series, number of cells in parallel, andl’sesurface area. In
this paper, in order to optimize a stand alone posugpply system of proton exchange membrane fllg{REEMFC),
an artificial immune system (AIS) based on the al@election algorithm is proposed. For this aimmathematical
model for the PEMFC stack is introduced, then, Hasa this model an AIS code is developed in theldldat
environment. The results manifest that the AlSrsliable technique for finding the optimal configtion of the fuel
cell stack.
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1- Introduction

The hopefulness of very low pollution and relatwéigh efficiency can be achieved in the fuel
cell-based power plant system. Fuel cells are nbt characterized by lower pollution and higher
efficiency than conventional power sources, butytlikave superior dynamic response, good
stability and low noise. Among different kinds betfuel cells, because of many advantages such as
low operating temperature, high current densitgt fasponse, and zero emission if it is run with
pure hydrogen, proton exchange membrane fuel ¢MFC) is regarded as an immense
alternative for distributed sources of energy m ¢bming years.

In the fuel cell-based stand alone power supplyesys to work efficiently, the maximum power
output must be delivered at the load’s operatingage. So, the fuel cell stack configuration has to
be optimized in terms of number of stack cellsanes, number of stack cells in parallel, and sell’
surface area. By the help of an optimization teghej the optimal stack configuration can be
obtained. Although various aspects of the PEMFCeHaeen considered by many researchers, but
the stack sizing and configuration has receivat lattention. The focus of this paper is the stack
configuration issue.

The evolutionary computation technique based onretyeralgorithm (GA) has been recently
attracted much attention in the study of fuel sgitems [1], [2], [3], [4], and [5]. Although theAG
gives better results than the traditional methduls, still have some deficiencies. For instance,
premature convergence and falling into local extrers are two drawbacks.



Inspired by immune system (IS) and its principsficial immune system (AIS) has been recently
regarded as an efficient candidate to solve op#tion problems. Research studies have indicated
that the AlS-based algorithms are comparable agather natural-inspired algorithms in order to
solve optimization problems [6]. In our study, gotimization method based on AIS for PEMFC
stack configuration is developed.

This paper is organized as follows: In SectioniHg PEMFC model and stack configuration is
discussed. Section 3 is concerned with the studyhefartificial immune system. Results are
presented in section 4 and ultimately, conclussostated in Section 5.

2. Mathematical model of the PEM FC stack

In normal operation of a PEMFC, in order to getoatmuous electrical power, the hydrogen gas

has to be fed constantly to the anode (negatiwretle) compartment and an oxidant, usually from

air, has to be fed constantly to the cathode (pes@lectrode) compartment. In the anode and at the
presence of platinum, which is usually used aslysitahe hydrogen gas releases electrons and H

ions (or protons). The polymer electrolyte onlyoals the protons to pass through it, and not

electrons. Via an external circuit, the electrorm/enfrom the anode to the cathode and accordingly
an electrical current flows through the circuit. thie cathode, oxygen reacts with the electrons
taken from the external circuit and the protonsrfrthe polymer electrolyte and produces water.

Total reaction of the cell can be shown by theofwlhg expression.

H, + 050, O - H,0 + Electricity + Heat (1)

In a hydrogen fuel cell, though the theoreticalropgcuit voltage is a value of about 1.2 V [7] but
when a fuel cell is made and put to use, due taraber of voltage drops the voltage is less than
this value.

Many fuel cell models have been developed in tieediure [7], [8], [9], [10], [11], [12], [13], [14
and [15]. The one used in this investigation ispteld from [7]. Basic expression for the voltage of
the PEMFC system can be given by:

Vs =2 X (EO ~/lohm ™ Mact _”con) (2)

In it, Vs is the output voltageV), Z is the number of fuel cells connected in serigsis the ideal
standard voltageM), and#onm 77act and7con are the voltage dropd/Y which are caused when a
current is drawn from the fuel cell by the load.

The ohmic lossyonm is linearly proportional to the current densityhig voltage drop is the
straightforward resistance to the flow of electréhough the material of the electrodes and the
various interconnections, as well as the resistandée flow of ions through the electrolyte [7].
According to the Ohm’s law, it is given by:

Mohm = ri (3)

Wherertnzis the area specific resistance of the fuel ¢&ll ¢nf) andi is the fuel cell current density
(mA cn).

The activation losgac: is a highly non-linear voltage drop which is calgy the sluggishness of
the reactions taking place on the surface of eldes. This is given by:
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In it, the constanA is called Tafel slop\) andiy is usually called the exchange current densits (
cni®), at which the voltage drop begins to move fromoze

The concentration losg.o, results from the change in the concentration ef riactants at the
surface of electrodes. Due to the reduction in eatration is the result of a failure to transport
sufficient reactant to the electrode surface, tyji® of loss is also often calledass transport loss
[7]. It is expressed by the following expression.

ncm=—sln[1—.i—j (5)

I

whereB is a concentration loss constak) @ndi, is the limiting current densityn{A cn?), at
which the cell voltage will fall quickly.

Crossover and internal currents are other causatdduel cell voltage drop. Reasons for this are
the waste of fuel that passes directly throughdieetrolyte producing no electrons and electron
conduction through the electrolyte and not passingugh the electrodes. This results an increasing
effect on the current withdrawn from the cell byueaofin.

By introducing the internal and fuel crossover gglént current density and combining (2), (3),
(4), and (5), the relationship between the fudlwatage and current can be shown by:

vszz(Eo—r(i+in)—A|n[iTin}sm(l—ifinn (6)
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To produce more power output, fuel cells have tedm@nected together forming a stack. A typical
PEMFC stack is illustrated in Figurel.
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Figure 1. Schematic of a PEMFC stack.



The relationship between the terminal voltage amdenit can be represented by:
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In it, Vi is the terminal voltageV), I; is the terminal current{A), N is the number of stack cells in
parallel, andSis the cell’s areacfrf) which plays an important role in the power getiera

In this research, the main goal is to design a paueply system to provide dc electricity for a
single dwelling in a remote area of a developingintny. The system uses solar hydrogen
technology, where a fuel cell stack is used to eonkrydrogen into dc electricity. The system load
is estimated to be 730 kW per year on 12 V dcTBE fuel cell stack has to be configured so that it
can provide the design requirements of deliverirggright amount of power at 12 V dc. Moreover,
the physical size of the fuel cell stack has tsbigable for using in a family house. This work can
be accomplished by optimization of the PEMFC statdsign by searching for the best
configuration in terms of number of stack cellseriesZ, number of stack cells in paralld| and
cell’'s surface are& In order to conquer this problem artificial imneusystem is proposed. In each
optimization problem the definition of an objectiftenction (performance criterion) is necessary.
The objective function will specify on how to pemio the identification process. In this paper, the
objective functionF is defined based on how far the fuel cell stackage at maximum power
point is from the load’s operating voltage. To a&efei this goal the objective function is defined
according to Eq. (8).

F= a{l—@J + az[l—MJ (8)

ref ref

In which, Pnaxis the maximum output poweV;(Pmay IS the output voltage at the maximum power,
Prer is the load’s power, ands is the load’s operating voltage; anda, are used to control the

2 2
weighting of (1—%] and (1—MJ , respectively. For this studPer = Pmax= 730 kW and

ref ref

Vref = 12 V.

3. Artificial immune system

As an efficient and powerful natural protectionteys, the biological immune system can generate
multiple antibodies from antibody gene librariesl &eep it alive even if the foreign pathogens are
unknown. The primary immune theory model is theufappn theory of the biological immune
system, which consists of immune density regulatimechanism and network regulation
mechanism [16], [17]. The theory indicates that Hielogical immune system can adjust the
generation of antibodies and balance the quantitiyeomultiple kinds of antibodies. When antigens
invade, the antibodies that match these antigeesaativated and produce more antibodies to
restrain the antigens. Then the immune system ae$i@ new balanceable state.

Artificial immune system (AIS) is a computationgstem inspired by the principles and processes
of the vertebrate immune system. The algorithm ciity exploits the immune system’s
characteristics of learning and memory to solveablem. Nowadays due to promising results the



immune systems and algorithms have gained muchtateand wide applications in different
fields [18], [19], and [20]. Clonal selection algbm [21] as one of the existing immunity-based
algorithms, inspired by the clonal selection theasymost commonly applied to the optimization
domains. Affinity proportional reproduction and iaffy maturation are two key features of the
clonal selection. An antigen chooses some cellsctpire their clone. The selection rate of each
cell is directly proportional to its affinity witkelective antigen. If an antigen has a high affjnit
number of offspring of this antigen is high. Thetation rate is inversely proportional to its affini
with an antigen [22].

In this work, in order to optimize the stack comfigtion, an artificial immune system is proposed.
This method is based on the clonal selection algori The steps of the proposed algorithm used in
this study to get the optimal configuration arevsh@s below:

Step 1. Initially a population of antibodies is damly produced in the feasible region. Each
antibody consists &, N, andS,

Step 2. The antibodies are inserted into the mgein by Eq. (7), and the voltage versus current
characteristic is calculated. The value of the dibje function (antigen) is calculated by using of

Eq. (8) for each antibody. The affinity of eachibodly is equal to the normalized objective

function value and is computed by:

_ l:max - I:j
Affy = (©)

J —
I:max I:min

In it, Aff, is the affinity of thg™ antibody,F; is the objective function value of tff8 antibody, and
Fmax » Fmin @are the maximum and minimum objective functionueal in the current population,
respectively.

Step 3. Based on their affinity, the populatiordigided into three classes (high-affinity subset,
medium-affinity subset and low-affinity subset)ngthe following equation [23].

high- affinity if  Aff; 2 Affeant 1.5%0
antibodyclass=< medium-affinity  if = Aff .= 15%x0 < Aff; < Aff,n+15%0 (10)
low — affinity if  Affj < Affean—15%0

In which, Affnean and o are the mean and the standard deviation of thaeitgffof the whole
population, respectively.

For generating a pool of clone, the antibodiesha high and medium-affinity subsets are cloned.
The number of clone depends on the antibody’s igffithe higher the affinity, the more the clone
will produce. According to the following equatiothe number of clone for each antibody is
determined [23].

In it, Ng; is the clone size gf" antibody ands is the maximum clone size of an antibody in each
iteration.

Step 4. The clones have to be mutated. Mutatienfoateach clone is inversely proportional of its
affinity. The clones are mutated by Eq. (12) [23].



¢’ =c+mxrandonx/s (12)
m=expux Aff;) (13)

In which, c is the cloneg¢’ is the mutated cloney is the mutation rateandomis a random number
between -1 and 1, andis the step factor which firstly set to a value e®gs on the bound of the
variables. Step factor is reduced during iterabgra factord. In this investigation, the factéris
selected as the following decreasing linear fumctio

B(1) = Gnax ~ (Bmax ~ Orin) X—— (14)

tmax

wheret is the iteration indeXax iS the maximum iteration times, amdax, & min are the initial and
final values for theg, respectively. Therefore,

n=6xn (15)

In Eqg. (13), the value qf has a significant effect on the clonal selectierfgrmance. If the value
of theu is selected too big, only very few antibodies exposed to mutation and diversity of the
population can’t be guaranteed, and vice versa.

Step 5. According to Eq. (9) the affinity of eadbne is computed and then, the best mutated clone
is replaced with its parent.

Step 6. The antibodies in the low-affinity subset @iminated and replaced by randomly generated
antibodies.

Step 7. Step 2 to step 6 are repeated until theeatterion is met, which can be that the maximum
iteration times are reached or the minimum objectiinction value is satisfied.
4. Results

In order to find the best configuration of the PEMS§tack, the AIS code is developed in the Matlab
environment. An educational solar hydrogen tesf2igis used to provide the load’s power. The
parameters of this fuel cell are given in Table 1.

Table 1. Fuel cell model parameters.

Parameter Value

Eo 1.04V

A 0.05Vv

in 1.26 mA cnf
io 0.21 mA cnt

r 98x10°% kQ cnt
B 0.08 v

i 129 mA cnif




In this investigation the lower and upper boundshefstack parameters are givenlkyZ <50, 1<
N <50, and10 cnf< S <400 cni, the weighting factors af; anda. are set to 1 and the adjusted
parameters for the AIS are given by population siZ29, 6 = 10,u = 4, Onin = 0.5,0max= 1.5, and

tmax = 70

Table 2 shows the performance of AIS algorithm emparison with the results obtained by GA
[2]. As can be seen AIS yields a smaller valuedigjective function than GA. So, the performance
of AIS is better than GA. The convergence procdgb® AIS, which indicates the best objective
function value versus the iteration times, is iitaged in Figure 2. As can be seen, the convergence
speed is fast so that the optimization procesis/@rged to the optimal values after about 20

iterations.

Table 2. Optimal values for the fuel cell stackigegarameters obtained by the AIS.

Variable AlS GA
Number of stack cells in Series, 22 21
Number of stack cells in Parall®, 8 1
cell's areaS 18.82 cm 156.25 cm
F 4.287 x 10° 7.430 x 10
2
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Figure 2. Convergence process of the AIS during the optitiiagrocess.



In order to confirm the performance of the PEMF&cktdesigned using artificial immune system,
after the optimization procedure the optimal paramseare fed back to the stack mathematical

model to perform performance simulation. Figuren8 &igure 4 show the voltage versus current
and the power versus voltage characteristics ostiek. It is obvious that using optimal parameters

found by AIS, the maximum power point occurs atltaal’s operating voltage.

Current (A)

Figure 3. The voltage versus current characteristic of fiignozed PEMFC stack.
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Figure 4.The power versus voltage characteristic of thendipgd PEMFC stack.



5. Conclusion

It this paper, in order to optimally configure a&fcell stack to deliver its maximum power output
at the load’s operating voltage, an artificial imnmausystem based on the clonal selection algorithm
is proposed. It is shown that the optimization pescis converged after about 20 iterations to the
best configuration. The optimum solution is confanby feeding it to the stack model and
performing current versus voltage and power vemltage characteristic simulations. Results
show that AIS is an effective and reliable techeidor configuration of the fuel cell stack and can
be used to solve other complex optimization proklefthe fuel cell system.
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