
 

40 

 

 

WAVE PROPAGATION ANALYSIS OF EDGE CRACKED BEAMS RESTING ON 
ELASTIC FOUNDATION 

 Şeref Doğuşcan Akbaş*  

*Assit. Prof. Dr., E-mail: serefda@yahoo.com 
Department of Civil Engineering, Bursa Technical University, Bursa, Turkey 

 

Abstract 

This paper presents responses of an edge circular cantilever beam resting on Winkler-Pasternak foundation under the 
effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. 
The Kelvin–Voigt model for the material of the beam is used.  The cracked beam is modelled as an assembly of two sub-
beams connected through a massless elastic rotational spring. The considered problem is investigated within the 
Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived 
by using Lagrange’s equations.  The obtained system of linear differential equations is reduced to a linear algebraic 
equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects 
of the foundation stiffness on the characteristics of the reflected waves and cracks are investigated in detail.  
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1. Introduction 
 
Elastic wave propagation through the monitored part is of considerable interest in many 
fields. The most striking example of the engineering applications is detection of damage 
or/and material difference in the investigated media. By investigating the character of waves, 
the type and position of damage or/and different material can be determined. 
 
In the last decades, much more attention has been given to the elastic wave propagation of 
beam structures. Teh and Huang [1] studied an analytical model, based on the elasticity 
equations, to investigate wave propagation in generally orthotropic beams. A finite element 
technique is developed for studying the flexural wave propagation in elastic Timoshenko and 
Bernoulli-Euler beams by Yokoyama and Kishida [2]. Wave propagation in a split beam is 
analyzed by treating each section separately as a waveguide and imposing appropriate 
connectivities at their joints by Farris and Doyle [3]. A direct mathematical approach method 
is developed to study the problem of coupled longitudinal and flexural wave propagation in a 
periodically supported infinite long beam by Lee and Yeen [4]. A spectral super-element 
model was used in Gopalakrishnan and Doyle [5] to model transverse crack in isotropic beam 
and the dynamic stress intensity factor was obtained accurately under impact type loading. 
Palacz and Krawczuk [6] investigated longitudinal wave propagation in a cracked rod by 
using the spectral element method. The use of the wave propagation approach combined with 
a genetic algorithm and the gradient technique for damage detection in beam-like structure is 
investigated by Krawczuk [7]. Krawczuk et al. [8] studied a new finite spectral element of a 
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cracked Timoshenko beam for modal and elastic wave propagation analysis. Usuki and Maki 
[9] formulated an equation of motion for a beam according to higher-order beam theory using 
Reissner’s principle. They derived the Laplace transform of the equation and investigated 
wave-propagation behavior under transverse impact. A method of crack detection in beam is 
provided by wavelet analysis of transient flexural wave by Tian et al. [10]. Kang et al. [11] 
applied the wave approach based on the reflection, transmission and propagation of waves to 
obtain the natural frequencies of finite curved beams. A spectral finite element with 
embedded transverse crack is developed and implemented to simulate the diagnostic wave 
scattering in composite beams with various forms of transverse crack by Kumar et al. [12]. 
The wave propagation model investigated herein is based on the known fact that material 
discontinuities affect the propagation of elastic waves in solids by Ostachowicz et al. [13]. A 
spectral finite element model for analysis of flexural-shear coupled wave propagation in 
laminated and delaminated, multilayer composite beams is presented by Palacz et al. [14,15]. 
A new spectral element is formulated to analyse wave propagation in an anisotropic 
inhomogeneous beam by Chakraborty and Gopalakrishnan [16]. Watanabe and Sugimoto [17] 
studied flexural wave propagation in a spatially periodic structure consisting of identical 
beams of finite length. Vinod et al. [18] investigated a formulation of an approximate spectral 
element for uniform and tapered rotating Euler–Bernoulli beams. Sridhar et al. [19] 
investigated the development of an effective numerical tool in the form of pseudospectral 
method for wave propagation analysis in anisotropic and inhomogeneous structures. An 
experimental method of detecting damage using the flexural wave propagation characteristics 
is proposed by Park [20]. Chouvion et al. [21] studied a systematic wave propagation 
approach for the free vibration analysis of networks consisting of slender, straight and curved 
beam elements and complete rings. Frikha et al. [22] investigated physical analysis of the 
effect of axial load on the propagation of elastic waves in helical beams. Kocatürk et al.[23] 
studied wave propagation of a piecewise homegenous cantilever beam under impact force. 
Kocatürk and Akbas [24] investigated wave propagation of a microbeam with the modified 
couple stress theory. In a recent study, wave propagation and localization in periodic and 
randomly disordered periodic piezoelectric axial-bending coupled beams are studied by Zhu 
et al. [25].    
 

In this study, wave propagation in a cantilever circular beam resting on Winkler-Pasternak 
foundation under the effect of an impact force is studied. The considered problem is investigated 
within the Bernoulli-Euler beam theory by using energy based finite element method. The 
Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an 
assembly of two sub-beams connected through a massless elastic rotational spring. The system of 
equations of motion is derived by using Lagrange’s equations. The obtained system of linear 
differential equations is reduced to a linear algebraic equation system and solved in the time 
domain by using Newmark average acceleration method. The effects of the foundation stiffness 
on the characteristics of the reflected waves and cracks are investigated in detail.  

 
 
2. Theory and Formulations 
Consider a beam of length  L, diameter D, containing an edge crack of depth a located at a 
distance 1L  from the left end, resting on Winkler-Pasternak foundation with spring constant 

wk  and pk , as shown in Fig. 1. It is assumed that the crack is perpendicular to beam surface 

and always remains open. When the Pasternak foundation spring constant pk 0= , the 

foundation model reduces to Winkler type. The beam is subjected to an impact force in the 
transverse direction as seen from Fig. 1.  
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Fig. 1  A circular beam with an open edge crack resting on Winkler-Pasternak foundation and 

cross-section. 
 

2.1 Governing equations of intact beam 
The beam is modeled within the Euler-Bernoulli beam theory. According to the coordinate 
system (X,Y,Z)  shown in Fig. 1, based on Euler-Bernoulli beam theory, the axial and the 
transverse displacement field are expressed as 
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Where u,v and w are x,y and z components of the displacement vector q, respectively, and t  
indicates time.  
Because the transversal surfaces of the beam is free of stress, then 
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By using Eqs. (1) and (2)  the linear strain- displacement relation can be obtained: 
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According to Hooke’s law, constitutive equations of the beam are as follows: 
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Where E is the Young’s modulus of the beam, sxx and exx are normal stresses and normal 
strains in the X direction, respectively. The potential energy of the beam is follows 
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The kinetic energy of the beam at any instant t is 
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Where r  is the mass density of the beam. The potential energy of the external load can be 

written as 
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The Kelvin–Voigt model for the material is used. The constitutive relations for the Kelvin–
Voigt model between the stresses and strains become 
 

                                         ( )s = e + h e&E                                     (10) 
 
where h  is the damping ratios, as follows 

                                                      
c

E
h =                                                                            (11) 

 
where c is the coefficient of damping of the beam. In this case, the dissipation function of the 
beam at any instant t is 
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Lagrangian functional of the problem is given as follows: 
 

                                              ( )= - +i eI T U U                                                        (13) 
 
2.2 Solution method of the problem 
The problem is solved by using Lagrange’s equations and time integration method of 
Newmark [26]. In order to apply the Lagrange’s equations, the displacements of nodes of the 
unknown functions q (X,t) which is written for a two-node beam element shown in Fig. 2 are 
defined as follows 
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Fig. 2 A two-node  beam element 

 
The displacement field of the finite element is expressed in terms of nodal displacements as 
follows 
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where 1j , 2j , 3j  and 4j  are interpolation functions and given as follows: 
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where Le is the length of the beam element. After substituting Equation (15) into Eq. (13) and 
then using the Lagrange’s equations gives the following equation; 
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D k
Q is the generalized damping load which can be obtained from the dissipation function by 

differentiating R with respect to 
e

kq&( )
. 

 
The Lagrange’s equations yield the system of equations of motion for the finite element and 
by use of usual assemblage procedure the following system of equations of motion for the 
whole system can be obtained as follows 
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where, K[ ]  is the stiffness matrix, [D]  is the damping matrix, [M]  is  mass matrix and {F(t)}  
is the load vector. The motion equations which is given by Eq. (19), are solved in the time 
domain by using Newmark average acceleration method (Newmark [26]).  
 
2.3. Crack modeling 
The cracked beam is modeled as an assembly of two sub-beams connected through a massless 
elastic rotational spring shown in Fig. 3. 
 

 
Fig. 3 Rotational spring model 

 
The bending stiffness of the cracked section Tk  is related to the flexibility G by 

                                                  T
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Cracked section’s flexibility G can be derived from Broek’s approximation (Broek [27]): 
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where M  is the bending moment at the cracked section, IK  is the stress intensity factor (SIF) 
under mode I bending load and is a function of the geometry and the loading properties as 
well. n  indicates Poisson’s ratio. For circular cross section, the stress intensity factor for IK  a 
single edge cracked beam specimen under pure bending M can be written as follow (Tada et 
al. [28]) 

                               I 4

'
x

'
x4M

K a F
R

h
(a / h )

2
= p

p                                                       (26) 

Where  

             
'
x

' '
x x

'
x

'
x

4

(a / h ) tg

a
0.923 0.199 1 sin( )

2h 2ha
(

aa 2h cos
2h

F )
( )

( )p
+ -

p
=

pp                                  (27) 

 



 46 

Where a is crack of depth and 'xh  is the height of the strip, is shown Fig. 4, and written as 
 

                                                  2 2'
x 2 R xh = -                                                         (28) 

 
where R is the radius of the cross section of the beam. 
 

 
Fig. 4 The geometry of the cracked circular cross section 

 
After substituting Eq. (26) into Eq. (25) and by integrating Eq. (25), the flexibility coefficient 
of the crack section G is obtained as 
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where b and Xa  are the boundary of the strip and the local crack depth respectively, are 

shown in Fig. 4, respectively, and written as 
 

                                                22b R (R a)= - -                                                           (30) 

                                             X
22a R x (R a)-= - -                                                      (31) 

 
The spring connects the adjacent left and right elements and couples the slopes of the two 
beam elements at the crack location. In the massless spring model, the compatibility 
conditions enforce the continuities of the axial displacement, transverse deflection, axial force 
and bending moment across the crack at the cracked section ( 1X L= ), that is, 

 

                                                   1 2v v= ,  1 2M M=                         (32) 
 
The discontinuity in the slope is as follows:  
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Based on the massless spring model, the stiffness matrix of the cracked section as follows: 
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The stiffness matrix of the cracked section is written according to the displacement vector:       
        

                                                 (Cr) 1 2
T{q} { , }q q=                                                            (35) 

 
Where 1q  and 2q  are the angles of the cracked section. With adding crack model, the 

equations of motion for the finite element and by use of usual assemblage procedure the 
following system of equations of motion for the whole system can be obtained as follows: 
 

           ( Cr ) q( t ) q ( t ) q ( t ) F( t )([K ] [K ] ){ } [D ]{ } [M ]{ } { }+ + + =& &&          (37) 

 
 
The dimensionless quantities can be expressed as 
 

                                               ,                                                           (38) 

 
 is the dimensionless Winkler parameter and  is the dimensionless Pasternak parameter, 

 
3. Numerical Results 

In the numerical examples, the effects of the foundation stiffness on the characteristics of the 
reflected waves and cracks are presented. In the numerical study, the physical properties of the 
pile are Young’s modulus E=70 GPa, Poisson’s ratio ν=0,3 and mass density ρ=2700 kg/m3. The 
geometrical properties of the pile are length L=3m and the diameter D= 2 cm. The problem is 
analyzed within the framework of the Bernoulli–Euler beam theory. Numerical calculations in 
the time domain are made by using Newmark average acceleration method. The system of linear 
diferantial equations which are given by Equation (19), is reduced to a linear algebraic system of 
equations by using average acceleration method. In the numerical calculations, the number of 
finite elements is taken as   n = 100. The beam is excited by a transverse triangular force impulse 
(with a peak value 1 N) modulated by a harmonic function (Fig. 5) (Ostachowicz et al., [13]). In 
this study, higher frequency excitation impulse is used for detection of the cracks. 
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Fig. 5 The shape of the excitation impulse in the time domain 

 
 

Figure 6 illustrates the effect of the dimensionless Winkler parameter wk  on the transverse 
accelerations at the free end of the cantilever beam for the crack depth ratio a/D=0.4, the 

crack location L1/L=0.5 and dimensionless Pasternak parameter Pk 0= . 
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Fig. 6 Transverse accelerations at the free end of the beam. a) wk 0= , b) 8
wk 10= ,  

c) 12
wk 10= and d) 16

wk 10=  
 

It is seen from Figure 6 that additional waves occur in case of the cracked beam (see the 
circles) because of reflecting from the cracks. With the increase in the dimensionless Winkler 
parameter wk , amplitude of waves increases seriously. This is because by increasing in wk , 
the beam gets more stiffer. Also, it is observed from figure 6 that With the increase in the 
dimensionless Winkler parameter wk , the reflected waves disappear. It shows that the 
Winkler parameters  play important role on the wave propagation of the beam. 

 

In figure 7, the effect of the dimensionless Pasternak parameter  Pk  on the transverse 
accelerations at the free end of the cantilever beam for the crack depth ratio a/D=0.4, the 

crack location L1/L=0.5 and dimensionless Winkler parameter 8
wk 10= . 
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Fig. 7 Transverse accelerations at the free end of the beam. a) pk 0= , b) 3
pk 10= ,  

c) 6
pk 10= , d) 9

wk 10= and e) 12
wk 10=  

 



 51 

 

It is seen from Fig. 7 that with increase in the dimensionless Pasternak parameter Pk , 
amplitude of waves increases as expected. It is observed from figures 6 and 7 that Pasternak 

parameter Pk  is more effective than Winkler parameterwk . It shows that Pasternak parameter 
is very effective for wave propagation.  
 
 
It is deduced from figures that the stiffness parameters of the foundation are very effective for 
reducing the negative influence of the cracks. With the increase foundation parameters, the 
generation time and location of the primary and additional waves decreases. 
 
 
4. Conclusions  
Wave propagation in an edge circular cantilever beam resting on Winkler-Pasternak 
foundation under the effect of an impact force is investigated. The considered problem is 
investigated within the Bernoulli-Euler beam theory by using energy based finite element 
method. The system of equations of motion is derived by using Lagrange’s equations. The 
obtained system of linear differential equations is reduced to a linear algebraic equation 
system and solved in the time domain by using Newmark average acceleration method. The 
stiffness parameters of the foundation have a great influence on wave propagation in the 
beam. It is observed from the investigations that the stiffness parameters of the foundation are 
very effective for reducing the negative influence of the cracks. It is seen from results that the 
Pasternak parameter is more effective than Winkler parameter on the wave propagation. 
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