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Abstract

Rayleigh wave speed in a heat conducting transversely isotropic material with thermal relaxation is studied. Phase
and group velocity for the first four modes have been computed for aluminum alloy plate at different thermal
relaxation times. It is observed that if modal phase velocity decrease with increasing frequency normally dispersive
profiles, phase velocity is greater than group velocity and consequently carrier travels faster than the envelope. Thus
in such cases if a phase disturbance appears at the beginning of the pulse, then it overtakes and finally it disappears
in the front. Rayleigh wave speed is computed the medium and compared. It is observed that thermal relaxation time
effect plays a significant role thermoelastic speed of Rayleigh waves at the low values of wave number limits.
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1. Introduction

Waves propagate in a medium are largely body wawvek surface waves. Surface waves are
generated only in presence of a free boundary heg tan be essentially Love waves and
Rayleigh waves. In [17] Rayleigh waves are elastidace waves which propagate along the
traction-free surface with the phase velocity ia gubsonic range, with their amplitude decays
exponentially with depth below that surface. Sucves serve as useful tool in nhondestructive
characterization of materials and have particutgzartance in seismology, acoustic, geophysics,
material sciences, telecommunication industry &eddther fields of physics. In view of the fact

that velocity of the Rayleigh wave is the fundamaémuantity which used in wide range of

applications, thus it is significant to study theainalytical behavior and derive accurate
expressions in the simple forms.

Rayleigh waves firstly introduced as solution o tinee vibration problem for an elastic half-

space in [17]. It is anticipated the significanhattsuch kind of wave could have in earthquake
tremor transmission in this study in thermal enwim@nt. In fact the introduction of surface

waves was preceded by some seismic interpretataincouldn’t be explained using only body

wave theory, which was well known at that timesEof all the nature of the major tremor was

not clear, because the first arrivals were a coogpleninor tremors corresponding to P and S
waves respectively. The greater amount of energgcated to this late tremor if compared to
that of body wave was a strong evidence of lesna#tion passing through the same medium
and this could be explained only assuming thatkimd of wave was essentially confined to the
surface.
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For isotropic elasticity, such waves are well knoj@r7] and for anisotropic elasticity surface
waves studied by many researchers [8-12]. In awersely isotropic material elastic waves were
considered by [9] and the same problem was invastijin the rotating materials by [12]. Waves
that propagated along the plane surface of elaspied, therefore, surface waves firstly
introduced by Rayleigh are known by his name. Lateanber of researches studied the Rayleigh
wave speed by using different techniques in diffeiend of materials. Recently [13] discussed
the Rayleigh waves speed in orthotropic elastiadsplin this article rotational effects on
Rayleigh waves speed on a transversely isotropdiuneare studied.

Theory of coupled thermoelasticity [14, 15] is bétdiffusion type heat equation that predicts an
infinite speed of propagation of the heat wave whgphysically unacceptable. To get liberate
of this paradox, theories of generalized thermaieiaswere developed. Among the various such
theories the approach proposed by [16], is based orodified Fourier’'s law and [17] allows
second sound without violating the classical Foigitaw are most accepted theories. These
theories are structurally unlike, and one cannobitained as a particular case of the other have
been developed by introducing one or two relaxatiores in the basic equation of motions and
heat equations with intend to remove the paradoaroinfinite speed for the propagation of
thermal signals. The two theories both ensuredfigiteeds of propagation for thermal wave. Lord
and Shulman theory of generalized thermoelastiekiended for anisotropic media by [18].
Various problems characterizing these two thednege been investigated by [20, 21] and [22-
24] and have revealed some interesting phenomedatailed review is reported in [19].

In this paper Rayleigh wave speed in a heat comdudtansversely isotropic material with

thermal relaxation is studied. Phase and groupcitgldor the first four modes have been

computed for aluminum alloy plate at different thaf relaxation times. It is observed that if
modal phase velocity decrease with increasing #aqy normally dispersive profiles, phase
velocity is greater than group velocity and conseqly carrier travels faster than the envelope.
Thus in such cases if a phase disturbance appetirs bheginning of the pulse, then it overtakes
and finally it disappears in the front. Rayleighwvaspeed is computed the medium and
compared. It is observed that thermal relaxatioreteffect plays a significant role thermoelastic
speed of Rayleigh waves at the low values of waiabrer limits.

2. Boundary Value Problem and Secular Equation

Consider a semi-infinite stress-free surface obmdgeneous heat-conducting elastic material wtsch i
transversely isotropic in both elastic and thermedponse and we choose a system of rectangular
Cartesian co-ordinate system.

s (07, (u) i’y

i +f = ' i=12,2 !
;( 28 J o ot’ ’
KijTij - pC, (T + To-l:) :Toﬁ:i (ui,i T, vJ') @

where
L, =CGu& _/BU'T' Bii = Ciuay
3

the summation convention is impliegdp is the densityt is the time,y is the displacement in
hex; direction,K; are the thermal conductiviti€s, andt, are respectively the specific heat at constant
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strain, and thermal relaxation timej; and g; are the stress and strain tensor respectivgly;are
thermalmoduli;a; is the thermal expansion tensdris temperature; and the fourth order tensor
of the elasticityC,,, satisfies the (Green) symmetry conditions:

Cijlw =Cwij = Cijik =Cjw » anda; =a;, B =055, K; =K; . (4)
For a transversely isotropic medium the matrix rbaysimplified to a 6 x 6 array of constants

using symmetry arguments and the standard indestitutipn. For a transversely isotropic
material in the symmetric coordinate system caaXpeessed by

| 00 07 -
(1[G G G o1 4
G Cc, ¢ 0 O 0
I, e, 7
Gs 3 Cg 0 O 0
Il e, | 13
10 0 0¢, O 0 T )
Ty %, 0
S0 0006 o7 |
_le_ O O 0 O 0 QJ.;QI.Z _&2_ _O_
| oT | 07T
K (Toa# o) + KT o] - . (E o ?J
0
:To(a 0 j[ﬂl( 22)+18y332| (6)

where the z-axis is assumed to be the symmetry(Bles axis) as shown in Figure 1. In this
case we may write the equations of motion in openadtation as

le,j :pui ’
(7)
Z-ij,j = ukl k]l ﬁu o (8)
D A 4 9’ d
1753 TCus 5~ P+ [Ut| (CstCp)—— Ut BT =0,
ST }“ {( “"@@J“ o
_ 9)
_(C_B+C44)a:f%}ul+{c44%+C33&—,0%}U3—,3%T=O,
(10)
7
KTy + KT 53— 0C, (T'*'TT) T{o’t ﬂtzjl:ﬂyll By ;
(11)

The boundary conditions of zero traction are, whgalisfies the boundary conditions for the
problem, which are given by

B _oT|
T31|X3:o = T33| o - ax3 - O, (12a)
x3=0
where
T33 = Cllell+ Cl? 22+ C 3? 33 ﬁ-g (12b)

T13 = 2044813
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Using the definition of strains, we have
[33= 11j k¢1+ kC3§d3— ,[”3)(
[3= C44(k¢1+ik§03)
oT
TI -_ = k !
0X, X
This implies
key V-1g+ekgh—Bx=0
d+ig=0
X =0
(13)

Usual requirements that the displacements anditegsscomponents decay away from the
boundary implies;, - 0, o, - 0 (.,j=13) ax, - -
(14)

Following the approach for isotropic media, for wgwopagation, considering the harmonic
waves propagating ix, -direction,

(U, T) = (9, x)(2)e™ ™ i=y=1 (15)
wherek is the wave numbec,is the wave speed and=kx;; @, | =1,3 are the functions to
be determined. Substituting (15) into (9) to (I@plies
Cuk’d +ik*(C iy +C )+ k(o7 —c o) @ #ikB Y =0 (16)
Coak @ +ik?(Cpy + C )@+ K (pC? —c )@+ KB x' =0 (17)
K k?x" + k3c’r"B,T @, + ik’c’r"p.T @, + k 2(,oc T°C, - K 1))( =0 (18)
On applying Laplace transform on equations Eq9-(18) and by using (13), it is obtained
[ S’ + ¢ = ¢,y [P () +ik*(Cis* C )@ {5) +ikB X(9)
=c, K{sp, @), Norik’*(c,+c,)¢ (0)
1% (G *+ Cu)SA(S) + K (Ca8” —Cuut oc%) 949) +KB $X(S)
=i, +C, @ Ohc{os BFd, PrkBx
Cr BT s@(9) + KT BT spy(s) +{k (K 87+ (pc7°C, - K ) )} X(9)
=ik T BTy (Y ke BT, (K {x BFx (P

(19a)

(19b)

(19¢)

M @ ,(9)+M_ @ {S)+M x(9) =M ,, (20a)

M,@a(S) + M o(8) + M ,5X(8) =M ,, (20b)
M.,@(S)+ M ,@.(s)+M .x(s) =M ,, (20c)
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where
M,, =k?(c,s® +pc%-C,)), M ,=ik?(C gt s, M 7 ikp
M,, =c,k*{sp,(0)+¢ (O} +ik? (c13+c 9 {0)
M,, =i(c+C,)k’s, M ,,= ( C,$" — )k2 . kBs
M, =i(Ci+C.)@(0) + ¢ o p{O)s+ ¢3(0)} +kB ¥ (0)
M,, =ik’ r"BTs M, =kCr'BTs, M 33={k2(K §2+(pc 7C,-K ))}

(20d)
Mg, =ik°cr BT g(0) + kcT BT ¢40)+ K { x (0)+ x" (0}
On solving above equations we have
9.(s) ——,603(8)——,)((8)‘— (20e)
where
M14 M12 Ml3 Mll M 14 M 13
A1= M24 M22 M23’A2: M21 M24 M23'
_M34 Msz M33_ M31 M34 M33
Mll M12 Ml4 Mll M 12 M 13
A3: MZl M22 M24,A:M21 M22 M23
_M 31 M 32 M 34 ] M 31 M 32 M 33
Let §°, s> ands’are the roots (having real parts positive) of dateantA
AS +As'+AS +A =0, (21)
where
A, = CuCak oK
A= (C44C330C2Ce _C4J&3IB23)71(2 —C.8 X 1lf2
+[ Cpa * C33) :002 ~CiCast 0213"' z¢ 4Jk2k 3
A2=[(C11 )TToﬂac - ( 13_C44)TI¢6:§§3+(C19 33_2CF34ZC2)J< 1
+[(C33 +C44)p C _(C11C33_ 2:19 a4 Czlgpcz]fge
_[(C33 +C44) k11+(C11+C4A)k 33 pC2 tC 6 Jﬁ aF k £2C4+C L'@zqs]kz
A= (:002 _C44) k’ [{(011_:002) ki + (:02C4Ce +T(p3,312—,00 ?Clpe)r }}
This implies
(_q(s): Al + AZ + A3 + A4 + AS + AG (22)

S-S S-S, S-S, S+S S+s, S+S,
where A, j = 1,2,3..t are the constants to be determined. Taking invergglace
transform and applying (14), implies

ay) = 2 A exps,y) (23)
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In view of (16)-(18), (14) and (23), we have

a(y) =2 Ap exp6y) (24)
i1

X(Y) =2 A, expsy) (25)
=

Where

[(044512 +pc’ - 011)] is; + [i (Cuatca)s +poc” —c 44]ﬁ
3

P {(CB o) o 2 }sz (26)
| s + (et —edfer )]s #ile g e i(e e Joe?lk o
e
Putting the values ofg, gand y in (13), we obtain
3(5,+ip,)A =0 = (28)
=

3
2.59A =0
=

(011i +Cy3P; 1_%qj)Al+ (Cli.+c3ip $ f%q EA 2+(C 11+C £S ?%q )ﬁ %O

(8 +ip)A (S, +ip) A, + (S, +ip)A,=0 (29)
GSA +0,8A,+adsA;=0

(Cyi +033p181-%q])A1+ (ciitcps 2-%q JA#(citc ps g%q A 50

(S +iP)A +(S, +ip) A+ (S;+ip)A;=0 (30)

ASA +0SA,+qSA;=0
For non trivial solution of above linear homogerne@ystem of equations, the determinant
must vanishes

C11i+033p151_%q1 Cl.i+C33p§2_%q 2 le+C £%§%q 3
s +ip, s, *+ip, S;tip, =0 (31)
Q.S a,S, 455

2.1 Uncoupled Thermoelasticity

This case corresponds to the situation when tlaenséind temperature fields are not coupled
with each other i.e, =, =0. In this case the equation (21) decoupled, andatiadysis

reduced to uncoupled generalized thermoelastititys purely elastic and thermal waves
decoupled.

33



K..L. Verma

2.2 Coupled Thermoelasticity

This case corresponds to no thermal relaxation, tirago =0, then the analysis reduced to
the definition classical coupled thermoelasticity.

3. Numerical results and discussion

As the frequency equations (31) are complex egnaso that these transcendental equations
enable us to evaluate not only the phase veldaityalso the thermoelastic energy dissipation for
the propagation of thermoelastic waves in an itdiplate. In general, the waves are dispersive
and dissipate energy according to the LS theorgeoferalized thermoelasticity. The manner in
which the long and short wavelength limits are @mted requires numerical solution of Eqs.
(14). Moreover, for values af which make § $, and simaginary, the hyperbolic functions
become periodic and so an infinite number of highewdes exists. Computations for the
symmetric and antisymmetric modes have been caowgdfor aluminum alloy plate whose
physical data are given in Table I.

Table1l Physical Properties of an Aluminum Alloy

Young's modulus E 72.6 GPa

Poisson rativ 0.33

Density o 2800 kg.m”
Specific heaCe 960 J.kg.K™
Thermal diffusivityk; | 7x10° n? .s?

Expansioncoefficienta 2.35¢10° K

Initial temperature 293°K

An important consequence of surface wave disperbalavior is the existence of a group
velocity. When we talk about velocity of propagatiof surface waves, we use the term phase
velocity, that is the velocity of a wave front (lecof constant phase points), such as a peak or a
trough. In a dispersive medium, this is not the sa@® the velocity of a pulse of energy, indeed
the latter can be seen (Fourier analysis) as coeapos several single frequency signals, each
one travelling with its own velocity because ofpgission. In Figure 1 and Figure 2 dispersion
curves are depicted at the thermal relaxation times1.10°sand r, =1.10" swhich clarifies

this concept. The velocity of the wave train, tte velocity of the envelope is indicated as group
velocity, in contrast with that of the carrier thatthe phase velocity. Obviously for a non-
dispersive medium group velocity and phase velamincide.

The group velocityJ is computed using the following expressions, whislolve the derivative
of phase velocity with respect to frequentyor to wavelengtim

U :ﬂ:c+f$:0_/]$
dk(w) df d/
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where all the values are the average ones oveddhenant frequency range. From the above
expression it is clear that if modal phase velod#grease with increasing frequency (normally
dispersive profiles)c is greater than U and hence the carrier travaltefahan the envelope.
Thus in such cases if a phase disturbance appetirs heginning of the pulse, then it overtakes
and finally it disappears in the front (as showrrigure 1, Figure 2 and Figure 3).

Also fromFigures 1 to Figure 3 it is also observed that witlanges in thermal relaxation
times lower modes have more influenced whereasl sraghtion is noticed in the high modes.
At low wave number limits, although wave speed nsodee dispersive, but are different from
coupled case. Thus in generalized thermoelastiattyow values of the wave number, only the
lower modes get affected and the little changeenst relatively high values of wave number.
The low value region of the wave number is foundeocof more physical interest in generalized
thermoelasticity. Further as at high wave numbenitd has no effect in generalized
thermoelasticity, and so the second sound effeetslaort lived Phase Velocity Vs wave number
dispersion curvefor uncoupled and coupled thermoelasticity arexshim Figure 4 and Figure 5.

5. Conclusion

Thermoelastic Rayleigh waves are generated by régepce of a free surface in solids and they
travel in a confined zone along the free surfanegeéneral for a given frequency several free
wave modes exist, each one characterized by a giae number and hence a given phase
velocity. The effective phase velocity is a comhima of modal values and it is spatially
dependent. Because of the difference between pheleeity and group velocity, mode
separation takes place going away from the sounceh&nce the pulse changes shape. For a
normally dispersive profile the fundamental modstisngly predominant on the higher modes at
every frequency. Consequently, the effective phadecity is practically coincident with the
fundamental mode one. The wave propagation inteeeportion of the medium nearly equal to
a wavelengthFurther gparation among mode types is somewhat an artjfisilaen we learn
thermoelastic waves in anisotropic plates, as theaton for thermoelastic wave modes i.e.
quasi-longitudinal and quasi-transverse and shedzdntal modes are being coupled with quasi-
thermal modes. Also wave propagation in the highygnmetry materials as in isotropic case,
some wave types revert to pure modes, leading sictmracteristic equation of lower order, and
consequence of thermoelastic anisotropy in mediadsloss of pure wave modes for general
propagation direction. It is also observed thaloat wave number limits, modes are found to
highly influence and it vary with the thermal reddon times. At relatively low values of the
wave number, little change is observed in thesaegslAs wave number increases others high
modes appear, one of the modes seems to be asdowidih quick change in the slope of the
mode. ForCoupled and uncoupled thermoelasticitpack of figure display coupled wave speeds
corresponding to quasi-longitudinal, two transvess®l quasi-thermal at zero wave number
limits, for the higher value wave numbers highede®appear with wave number increases.

Legendsin thefigures -35are:

= Group Velocity Mode 1
= Group Velocity Mode 2
= Group Velocity Mode 3

Group Velocity Mode 4
""" Phase Velocity Mode 1
""" Phase Velocity Mode 2
""" Phase Velocity Mode 3

Phase Velocity Mode 4
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Phase and Group Velocity

Phase Vel. (dot) Group Velo. (Solid)

Wavenumber

Figure 1. Group and Phase Veloctyminum alloy plate when thermal relaxation time=1.10°s

Phase and Group Velocity
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Figure 2. Group and Phase Velocityminum alloy plate when thermal relaxation time=1.10"s
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Phase and Group Velocity
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Figure 3. Group and Phase Velocityminum alloy plate when thermal relaxation time=1.10°s
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Figure 4. Phase Velocigiuminum alloy plate in case bincoupled Thermoelasticity
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Figure 5.Phase Velocity aluminum alloy plate in case of Ged hermoelasticity

Legendsin thefigures4and 5are:

== Phase Velocity Mode

== Phase Velocity Mode 2

=== Phase Velocity Mode 3
Phase Velocity Mode 4
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