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Abstract 

The influence of permeability of the porous plate on double diffusive MHD mixed convective flow past an inclined porous 

plate in the boundary layer region has been investigated in this paper. The system of non-linear partial differential 

equations and their boundary conditions have been developed, and transformed into a set of non-linear ordinary 

differential equations with the help of similarity transformations. These transformed equations are solved numerically for 

different values of relevant parameters using Runga-Kutta method with Nachtsheim-Swigert shooting iteration technique. 

Numerical results are obtained for the velocity, temperature and concentration distributions as well as local skin-

friction, local Nusselt number and local Sherwood number, and presented graphically to analyze the effects of 

permeability parameters of the porous plate and the porous medium, and Eckert number. For some specific values of 

relevant governing parameters, the numerical result is compared with those available in the literature for validity of 

numerical results and a comparatively good agreement is reached. 

Keywords: Double diffusive; MHD; mixed convection; permeability; inclined porous plate. 

1. Introduction 

Double diffusive MHD mixed convective flow has attracted the considerable interest of many 

researchers in last several years due to its important applications in many important environmental 

and engineering fields with applications. The problems involving MHD are very important in many 

fields such as magnetic behavior of plasmas in fusion reactors, liquid-metal cooling of nuclear 

reactors, electromagnetic casting, petroleum industries, geophysical, boundary layer control in 

aerodynamics, MHD generators, crystal growth, Ship propulsion, Jet printers and so on. Moreover, 

the possible usage of MHD is largely concerned with the flow, heat and mass transfer characteristics 

for an electrically conducting fluid as the purpose of thermal production, braking, propulsion and 

control. An analysis of heat and mass transfer in MHD flow by natural convection from a permeable, 

inclined surface with variable wall temperature and concentration, taking into consideration the 

effects of ohmic heating and viscous dissipation is investigated by Chen [1]. Alam [2] studied the 

thermal-diffusion effects as well as heat generation effects on combined free-forced convection and 

mass transfer flow over a vertical porous flat plate in a porous medium. Combined effect of viscous 

dissipation and joule heating on the coupling of conduction and free convection along a vertical plate 

has been discussed by Alim [3]. MHD mixed convective heat transfer about a semi-infinite inclined 

plate in the presence of magneto and thermal radiation effects has been examined by Aydin and Kaya 

[4]. MHD mixed convection boundary layer flow with double diffusion and thermal radiation 

adjacent to a vertical permeable surface embedded in a porous medium has been investigated by Tak  

[5]. The author Tak [5] presented the numerical results in tabular form for the transverse magnetic 

field, thermal radiation and Dufour-Soret parameters. Reddy and Reddy [6] analyzed a steady two-

dimensional MHD free convection and mass transfer flow past an inclined semi-infinite vertical 

surface in the presence of heat generation in a porous medium. In a recent investigation, unsteady 

MHD thermal diffusive, radiative and free convective flow past a vertical porous plate through 
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nonhomogeneous porous medium has been examined by Raju [7]. Steady incompressible boundary 

layer flow over a permeable vertical plate in the presence of a chemical reaction and wall suction is 

investigated by Magodora [8]. Guha and Samanta [9] investigated the effect of thermophoresis on the 

motion of aerosol particles in natural convective flow on horizontal plates. An unsteady free 

convective MHD flow of a viscous fluid along a semi-infinite vertical plate embedded in a porous 

medium is investigated with heat source and thermo diffusion by Anuradha and Priyadharshini [10]. 

As mentioned above, the permeability effects have not been investigated yet on double diffusive 

MHD mixed convective flow past an inclined porous plate. So it is more reasonable to analyze the 

permeability effects on the momentum to explore the impact of the momentum, heat and mass 

transfer characteristics with a transverse applied magnetic field. Therefore, in the light of above 

literatures, the aim of the present work is to investigate the effects of permeability parameters of the 

porous plate fw, the porous medium K, and the Eckert number Ec on double diffusive MHD mixed 

convective flow past an inclined porous plate. 

2. Mathematical Analysis 

Consider two-dimensional double diffusive MHD mixed convective flow along an inclined porous 

plate which makes an acute angle α to the vertical direction. The physical coordinates (x,y) are 

chosen such that x is measured from the leading edge in the streamwise direction and y is measured 

normal to the surface of the plate. The velocity components in the directions of flow and normal to 

the flow are u and v respectively. A uniform magnetic field B0 which is applied normal to the 

direction of flow. The external flow with a uniform velocity U∞ takes place in the direction of flow, 

parallel to the inclined plate. It is assumed that T and C are the temperature and concentration of the 

fluid which are the same, everywhere in the fluid. The plate is maintained at a constant temperature 

Tw, which is higher than the constant temperature T∞ of the surrounding fluid and the concentration 

Cw which is greater than the constant concentration C∞. The schematic view of flow configuration 

and coordinates system is shown in Fig. 1.  

 

 
Fig.1: Schematic view of flow configuration and coordinate system 
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Under the foregoing assumptions, the governing equations in terms of continuity, momentum, energy 

and concentration equations can be written as: 
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∂ ∂
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where ν is the kinematics viscosity, g is the acceleration due to gravity, β is the volumetric 

coefficient of thermal expansion, β* is the volumetric coefficient of expansion with mass fraction, σ 

is the electrical conductivity, K* is permeability of the porous medium, ρ is the density of the fluid, k 

is the thermal conductivity of the fluid, cp is the specific heat at constant pressure, Q0 is the heat 

generation constant, D is the mass diffusivity and VT is the thermophoretic velocity. 

The appropriate boundary conditions for the flow field, relevant to this investigation are as follows: 

0, ( ), , at 0 and  , , as w w wu v v x T T C C y u U T T C C y∞ ∞ ∞= = ± = = = = = = → ∞   (5.1,5.2) 

In addition, U∞ is the free stream velocity and vw(x) represents the permeability of the porous plate 

where its sign indicates suction ( < 0) or blowing ( > 0), subscripts w and ∞ indicate the conditions at 

the wall and at the outer edge of the boundary layer edge, respectively. In the equation (4) the 

thermophoretic velocity VT can be expressed in the following form as: 

T

ref

T
V

T y

κν ∂
= −

∂
   (6) 

where Tref  is some reference temperature and  κ is the thermophoretic coefficient which is defined by 

Talbot [11]. In order to reduce the number of independent variables and to make the governing 

differential equations dimensionless, the following dimensionless variables, which defined by Cebeci 

and Bradshaw [12], are applied: 

, ( ), ( ) , ( )
w w

U T T C C
y xU f

x T T C C
η ψ ν η θ η φ η
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∞
∞ ∞

− −
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where, ψ (x, y) is the stream function defined by and u y v xψ ψ= ∂ ∂ = −∂ ∂ , such that the continuity 

equation (1) is satisfied automatically. In terms of these new variables, the velocity components can 

be expressed as: 

1
( ), ( )

2

U
u U f v f f

x

ν
η η∞

∞ ′ ′= = −    (8) 

where, the prime stands for ordinary differentiation with respect to similarity variable η. Using 

dimensionless variables, the transformed momentum, energy, and concentration equations together 

with the boundary conditions can be written as: 
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1
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with the boundary conditions: 

, 0, 1, 1   at   0   and   1, 0, 0   as   wf f f fθ φ η θ φ η′ ′= = = = = → → → → ∞  (12.1,12.2) 

where, Grt is the local thermal Grashof number, Grm is the local mass Grashof number, M is the 

magnetic field parameter, K is the permeability parameter, Pr is the Prandtl number, Q is the heat 

generation parameter, Ec is the Eckert number, Sc is the Schmidt number, τ is the thermophoretic 

parameter and ( ) ( )w wf v x x Uν ∞= −  is the dimensionless wall mass transfer coefficient such that  

0wf > indicates wall suction and 0wf <  indicates wall injection or blowing. The corresponding 

dimensionless groups that appear in the dimensionless form of governing equations are defined as: 
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The physical quantities of fundamental interest of heat and mass transfer are the local friction factor 

in terms of the local skin friction coefficient, the local heat transfer in terms of the local Nusselt 

number and the local mass transfer coefficients in terms of the local Sherwood numbers, 

respectively. By employing definition of wall shear stress ( )
0w y

u yτ µ
=

= ∂ ∂  along with Fourier’s law  

( )
0w y

q k T y
=

= − ∂ ∂
 

and Fick’s law ( )
0s y

J D C y
=

= − ∂ ∂ , the local skin-friction coefficient is  

1
22 Re (0)fC f

−
′′= , the local Nusselt number is 

1
22Re (0)uN θ ′= −  and the local Sherwood number is   

1
22Re (0)hS φ ′= − , where  Rex xU ν∞=  is denoting the local Reynolds number. 

3. Solution Procedures 

In order to solve the system of nonlinear ordinary differential equations (9), (10) and (11), along with 

the boundary conditions (12.1) and (12.2), we reduce it into initial value problem using Nachtsheim-

Swigert shooting iteration technique, and then solve numerically by sixth order Runge-Kutta initial 

value solver. Due to better numerical results, the sixth order Runge-Kutta initial value method has 

been used to solve transformed nonlinear ordinary differential equations. In a shooting method, the 

unspecified initial condition at the terminal point of the interval is assumed, and the differential 

equation is then integrated numerically as an initial value problem to the terminal point. There are 

three asymptotic boundary conditions in equation (12) and hence three unknown surface 

conditions (0), (0)and (0)f θ φ′′ ′ ′ . The outer boundary conditions may be functionally represented in 

the initial value method and Nachtsheim-Swigert iteration techniques as 

max( ) ( (0), (0), (0)) ; 1,2,...,6j j jf jη θ φ δ′′ ′ ′Φ = Φ = =   (13) 

where, 1 2 3 4 5 6, , , , ,f fθ φ θ φ′ ′′ ′ ′Φ = Φ = Φ = Φ = Φ = Φ =  
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 The last three represent the asymptotic convergence criteria and choosing as 

1 2 3, andf g g gθ φ′′ ′ ′= = = . Now expending equations (13) in a first order Taylor series yield  
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Substituting equation (14) in (15) and then obtained, 
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Using Cramer rules in equation (16), then obtained the missing values of 
ig
 
as 

i i ig g g= + ∆ . Now 

the reduced initial value problem solves numerically using sixth order Runge-Kutta initial value 

method. The numerical methods are described in details, referring to Nachtsheim and Swigert [13]. 

For the accuracy of the numerical results, the present investigation is compared with the previous 

investigation by Reddy and Reddy [6] as shown in Fig. 2 while Grt = 2.0, Grm = 2.0, M = 0.5 (only 

for coefficient of f′ otherwise M = 0.0), Q = 0.5, K = 0.5, α = 30
0
, Pr = 0.71, Ec = 0.0, fw = 0.0, Sc = 

0.6 and τ = 0.0.  
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Fig. 2: Comparison of Concentration Distribution  

It is observed that the present result is in good agreement with that of Reddy and Reddy [6]. This 

favorable comparison leads confidence in the numerical results to be reported in the next sections. 

4. Results and discussion 

The formulation of the problem that accounts for the effects of permeability of porous plate, 

magnetic field and Eckert number on the flow field is examined and discussed in the preceding 

sections. This enables to carry out the numerical calculations using different value of various 

physical parameters for the velocity, temperature and concentration distributions across the boundary 
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layer, as well as the local skin friction coefficient, the local Nusselt number and the local Sherwood 

numbers at the wall, respectively. The following set of considered values for the relevant parameters 

in the numerical solutions were adopted, unless otherwise stated; Grt = 0.87, Grm = 0.87,   M = 0.001, 

Q = 0.50, K = 0.01, α = 30
0
, Pr = 0.71, fw = 0.50, Sc = 0.60, τ = 0.10 and U∞ / ν = 1.0. The values of 

Prandtl and Schmidt numbers are taken to be 0.71 and 0.78 which are corresponding physically to air 

and ammonia, respectively.  

The influence of the permeability parameter fw (fw = -1.00 for injection, 0.00 for neither injection nor 

suction and 1.00 for suction) on the velocity, temperature and concentration distributions as well as 

the local skin friction coefficient, the local Nusselt number, and the local Sherwood number are 

presented in Figs. 3(a) - 3(c) and 4(a) – 4(c), keeping other parameters of the flow field constant. It is 

observed from Fig. 3(a) that, the velocity of the flow field decreases with the increase of 

permeability of the porous plate. This is because of the fact that, as the permeability through the plate 

increases, then an opposite fluid velocity which is normal to the direction of the flow, acts through 

the plate. Therefore, the velocity of the flow field decreases as the permeability of the porous plate 

increases. With regards to the temperature distribution in Fig. 3(b), it is found that in presence of the 

fluid suction, the temperature of the flow field decreases as the plate is cooled down due to fluid 

suction through the plate increases. However, the temperature of the flow field increases as fluid 

injection through the plate increases. Because of, when the fluid injection through the plate increases, 

the heat transfer from wall to the fluid increases.  On the basis of the concentration distribution in 

Fig. 3(c), it is seen that the concentration of the flow field at all points decreases as the fluid suction 

increases, because the larger fluid passing through the plate. But, the concentration of the flow field 

at all points increases as the fluid injection increases, because the larger fluid coming through the 

plate within the flow field.  
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Figs. 3: Representative (a) velocity; (b) temperature; (c) concentration distributions for different values of  Permeability parameter of 

   porous plate  fw 

Figures 4(a) - 4(c) depict the local skin friction coefficient, the local Nusselt number, and the 

local Sherwood number at the wall. The local skin friction coefficient Cf  increases as the 

fluid suction increases causing the viscosity of the flowing fluid increases at the wall and 

inversely for injection, which is observed in Fig. 4(a). On the other hand both the local 

Nusselt number and the local Sherwood number increase with the increase of fluid suction 

parameter due to increase in temperature and concentration difference respectively, which are 

observed in Fig. 4(b) and Fig. 4(c) and inversely for injection. The effect of the permeability 

parameter of the porous medium K (K = 0.01, 0.03 and 0.05 ) on the velocity and temperature 

distributions as well as the local skin friction coefficient and the local Nusselt number are 

displayed in Figs. 5(a) - 5(b) and Figs 6(a) – 6(b), keeping other parameters of the flow field 

fixed. On the basis of the velocity distribution in Fig. 5(a), it is seen that the velocity of the 

flow field within the velocity boundary layer decreases as the permeability of the porous 

medium increases. Also the velocity boundary layer thickness is found to decrease as growing 

in the permeability of the porous medium parameter. An observation of the temperature 
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distribution is in Fig. 5(b), the temperature and the thermal boundary layer thickness of the 

flow field increase due to increase in the permeability of the porous medium parameter. Figs. 

6(a) and 6(b) show the influence of permeability of the porous medium on the local skin 

friction coefficient and the local Nusselt number at the wall. In Figs. 6(a) and 6(b), it is found 

that both the local skin friction coefficient and the local Nusselt number decrease with the 

increase of permeability parameter of the porous medium. The variation of velocity and 

temperature under the influence of Eckert number Ec are shown in Figs. 7(a) and 7(b).      
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Figs. 4: Effects of Permeability parameter of porous plate  fw on (a) local skin friction coefficient; (b) local Nusselt number; (c) local 
Sherwood number at the wall 
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Figs.5: Representative (a) velocity; (b) temperature distributions for different values of  permeability parameter of porous medium K 
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Figs. 6: Effects of permeability parameter of porous medium K on (a) local skin friction coefficient; (b) local Nusselt number at the wall 
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  Figs. 7: Representative (a) velocity; (b) temperature distributions for different values of  Eckert number Ec 
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From these figures, it is observed that the increase in the values of Eckert number Ec tends to 

increases the momentum and thermal boundary layers, which in turn increasing the velocity 

and temperature of the flow field. For different values of the Eckert number Ec, the local skin-

friction coefficient and the local Nusselt number are plotted in Figs. 8(a) and 8(b).  It is noted 

that as the Eckert number Ec increases, the local skin-friction coefficient increases, whereas 

the local Nusselt number decreases.                                                                                  
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Figs. 8: Effects of Eckert number Ec on (a) local skin friction coefficient; (b) local Nusselt number at the wall 

5. Conclusions 

A mathematical model for double diffusive MHD mixed convective flow past an inclined porous 

plate, in presence of a transverse uniform magnetic field and suction or injection has been developed 

and investigated numerically. The numerical results are presented for the effects of permeability 

parameters of the porous plate fw , the porous medium K, and the Eckert number Ec on the flow field. 

From the present numerical investigation, the following conclusions can be drawn as: 

���� Fluid suction has the effect to decrease the velocity, temperature and concentration of the 

flow field whereas increase the local skin friction coefficient, the local Nusselt number and 

the local Sherwood number, inversely for injection. 

���� Increases in the permeability of the porous medium, the fluid velocity decreases whereas 

the temperature increases. On the other hand, the local skin friction coefficient changes 

insignificantly but the local Nusselt number decreases significantly with the increase of 

Permeability of porous medium. 

���� Both the velocity and the temperature of the flow field increase significantly with the 

increase of Eckert number. Moreover the local skin friction coefficient increases whereas 

the local Nusselt number decreases due to increase of Eckert number. 
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