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Abstract 

In this paper, behavior of foundation plates with transverse shear deformation under time variable loading is presented 
using modified Vlasov foundation model. Finite element formulation of thick plates on elastic foundation is derived by 
using an 8-noded finite element based on Mindlin plate theory. Selective reduced integration technique is used to avoid 
shear locking problem which arises when smaller plate thickness is considered for the evaluation of the stiffness 
matrices. After comparisons are made with the results given in the literature, the effects of the ratio of plate thickness to 
shorter span of the plate, aspect ratio, subsoil depth, loaded area, time variable loading type and pulse duration of 
impulsive load on its responses are analyzed. The results demonstrate that these parameters have significant influence on 
the dynamic behavior of the plate on elastic foundation. 

 

Keywords: Finite element method; Thick plate; Vlasov model; Time variable loading  

1. Introduction 

The dynamic analysis of soil-structure interaction problem such as beams or plates on elastic 
foundation is finding wide application in many engineering field because the solutions of dynamic 
analysis are guide for engineers in the structural designs. Among the various plate theories available 
today, the mostly used is the Kirchhoff plate theory where transverse shear deformation effects are 
neglected. But, the Kirchhoff plate theory is not valid for higher plate thickness. Mindlin plate 
elements include the effects of transverse shear deformation which became important as the ratio of 
plate thickness to shorter span increases. These elements based on Mindlin plate theory can be used 
for the analysis of the thin and the thick plates. However, the stiffness matrix obtained from Mindlin 
plate elements becomes too stiff and gives zero solutions if the thickness of plate is quite small. This 
phenomenon is called shear locking problem. Reduced or selective reduced integration techniques 
are recommended to avoid this problem in many studies. On the other hand the subsoil is usually 
represented by spring elements in the soil-structure interaction problems. The springs are assumed to 
be discrete in Winkler model and any interaction between the springs is ignored. However there is 
not only pressure but also moments or rotations at the point of contact between structure and 
foundation. For this reason more realistic foundation model is needed for more accurate analysis. 
Therefore a number of idealized foundation models which represent relationship of soil structure 
interaction in realistic manner have been developed since the soil exhibits a very complex behavior. 
Two parameter models such as Pasternak and Vlasov Model are derived as an extension of the 
Winkler model by assuming the interaction between the spring elements. But, there is not any certain 
consensus about determination of the soil parameters in two parameter models.  Modified Vlasov 
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Model is used in this study since it leads to more accurate results because a shear interaction between 
the springs is included in the model and soil parameters are calculated using an iteration technique.  
The main advantages of Modified Vlasov model is that it considers interaction between the springs 
and determines the soil parameters depending on the properties of subsoil, loading and surface 
displacements [1]. 

In recent years, a lot of studies concerning analysis of plates on elastic foundation are performed. 
Omurtag et al. [2] developed a mixed finite element formulation based on Gateaux Differential for 
free vibration analysis of Kirchhoff plates on elastic foundation. Shen et al. [3] performed the free 
and forced vibration analysis of Reissner-Mindlin plates resting on Pasternak-type elastic foundation. 
Huang and Thambiratnam [4] studied dynamic response of plates on elastic foundation subjected to 
moving loads and the investigated effects of velocity, subgrade reaction, moving path and distance 
between multiple moving loads on responses. Sun [5] derived a closed-form solution of dynamic 
response of a Kirchhoff plate on a viscoelastic foundation subjected to impulse and harmonic circular 
loads. Malekzadeh and Karami [6] presented a differential quadrature solution for free vibration 
analysis of thick plates with continuously varying thickness on two parameter elastic foundation. 
Celep and Güler [7] studied the static behavior and forced vibration of a rigid circular plate 
supported by a tensionless Winkler elastic foundation by assuming that the plate is subjected to a 
uniformly distributed load and a vertical load having an eccentricity. Eröz and Yildiz [8] presented a 
finite element formulation of forced vibration problem of a prestretched plate resting on rigid 
foundation. Yu et al. [9] presented the dynamic response of Reissner-Mindlin plate resting on an 
elastic foundation of the Winkler-type and Pasternak-type using an analytical-numerical method. 
Wen and Aliabadi [10] used boundary element method for the analysis of Mindlin plates on elastic 
foundation subjected to dynamic load using Winkler and Pasternak Model. Motaghian et al. [11] 
studied free vibration problem of thin rectangular plates on Winkler and Pasternak elastic foundation 
model which is distributed over a particular arbitrary area of the plate. Kutlu et al. [12] presented a 
method of analysis for investigating the dynamic response behavior of Mindlin plates resting on 
arbitrarily orthotropic two parameter foundation and partially in contact with a quiescent fluid on its 
other side. Özdemir [13] developed 17 noded finite element for shear locking free analysis of thick 
plates resting on elastic foundation using Winkler Model. 

In this paper; 8-noded Mindlin plate elements are adopted for the analysis of thick plates resting on 
Modified Vlasov foundation under time variable loading. For this purpose a computer program is 
coded in Fortran. Newmark-β method is used for time integration. Selective reduced integration 
technique is used to obtain stiffness matrix of plates. The effects of the ratio of plate thickness to 
shorter span, the aspect ratio, the subsoil depth, loaded area, time variable loading type and pulse 
duration of the impulsive load on its responses are analyzed. 

2. Modified Vlasov Model 

For a plate on two parameter elastic foundation as shown in Fig.1, if the assumptions with the 
displacements of the soil vu , and w  in x, y and z direction respectively 

                                                       ( ) 0,, =zyxu                                                                      (1) 

                                                       ( ) 0,, =zyxv                                                                      (2) 

and 

                                                         ( ) ( ) ( )zyxwzyxw φ,,, =                                                  (3) 

are made, total potential energy of the plate-soil system can be written as 
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where w, [D], q are displacement of the plate in z direction, the flexural rigidity of the plate and load 
on plate respectively. k and 2t in above expression are the soil parameters and may be defined as  
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Where H is the subsoil depth, sE  is modulus of elasticity of the subsoil, and sν  is the Poisson ratio 

of the subsoil. )(zφ is the mode shape function that gives the variation of the deflection in the 

vertical direction. The boundary conditions of mode shape function )(zφ  are ( ) ( ) 0 and 10 == Hφφ . 
 

 

 

 

 

 

 

 

 

 

 
Fig. 1 A plate resting on an elastic foundation 

 
The main field equation of the plate on an elastic foundation can be written as follows 

                                                             qkwwtwD =+∇−∇ 24 2        (6) 

where 2∇  is the Laplace and 4∇  is the biharmonic operators. The mode shape function can be 
expressed as  
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where γ represents the vertical deformation parameter within the subsoil and is calculated using the 
equation shown below. 
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As seen from the Eq. (5) and Eq. (8) the modulus of subgrade reaction, k, and the second parameter 
2t representing the shear deformation of the soil, are both dependent on the vertical deformation 
function φ and the depth of the soil H whereas the value of γ varies with the displacement of the plate 
and the depth of the subsoil. The parameter γ can be evaluated after determining w(x,y) which 
satisfies differential equation below and around of the plate. It is obvious that the solution technique 
for γ parameter have to be an iterative procedure. More details for the modified Vlasov model can be 
found in references [14] and [15]. 

3. Finite Element Modelling 

According to finite element method, the general equation of motion for the plate-soil system is given 
by  

                                                           [ ]{ } [ ]{ } { }FwKwM =+&&                                                              (9) 

where [K] is the stiffness matrix of the plate-soil system, [M] is the mass matrix of the plate-soil 
system, {F} is the applied load vector, ww && and  are the displacement and acceleration vector of the 
plate, respectively. In this study the Newmark-β method is used for the time integration of Eq. (9) by 
using the average acceleration method [16]. Evaluation of the stiffness and mass matrices are given 
in the following sections for a plate resting on an elastic foundation. 

3.1. Evaluation of the Stiffness Matrix 

An 8-noded rectangular finite element based on Mindlin theory is used to develop the element 
stiffness matrices (Fig.2). 

 

 

 

 

 
Fig. 2 The 8 noded finite element used in this study 
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Nodal displacements at each node are 

                                                                     , , yxw ϕϕ                                                               (10) 

where w is the transverse displacement, yx ϕϕ  ,  are the rotations of the normal to the undeformed 

middle surface. It is assumed that w, xϕ  and yϕ  varies quadratically over the element so that 
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the displacement shape functions are given as  

                            [ ][ ] . . .
1 2 8

0 0 0 0 0 0=iN N N N                                      (12) 

The shape functions, Ni, are given in [17] and [18]. 

The stiffness matrices of the plate-soil system can be evaluated as  

                                         { } [ ] [ ] [ ]( ){ }etwp
t

e wkkkwU   
2

1
2++=                                             (13) 

where [kp], [kw] and [k2t] are stiffness matrix of the plate, vertical deflection element stiffness matrix 
of the foundation and shear deformation element stiffness matrix of the foundation, respectively. 
{ we} is the nodal displacement vector for an element containing 24 components. 

In this study, the selective reduced integration rule on the shear terms is used to obtain the element 
stiffness matrix of the plate [kp] to avoid shear locking problem under the thin plate limit. The 
number of points of integration for shear energy terms of plate stiffness matrix are reduced 2x2 in the 
selective reduced integration whereas 3x3 of Gauss points are used for both bending and shear 
energy terms of plate stiffness matrix in the full integration. The element stiffness matrices are given 
in explicit forms by reference [19] for plate element and by reference [20] for the vertical deflection 
of foundation and the shear deformation of foundation. 

Boundary conditions need to be applied before solving the system of equations. The effect of the 
infinite soil domain outside the plate is applied as equivalent stiffness parameters on the plate 
boundary in the modified Vlasov model. Equivalent forces due to surrounding soil domain on the 
boundary of the plate are computed as a function of the displacement on the boundary [15 and 20]. 

3.2. Evaluation of the Mass Matrix 

According to Hamilton's variational principle, the total kinetic energy of the plate-soil system may be 
written as 
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where [µ ] is the mass density matrix and {w& } represents the partial derivative of the vector of 
generalized displacement with respect to time variable. The general formula for the consistent mass 
matrix, [M], can be written by substituting ewNw 1= into Eq. (14) 

                                                     [ ] { } [ ]{ }∫
Ω

Ω= dNNM
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11 µ                                                     (15) 

The matrix [µ ] in Eq. (15) is a square symmetric matrix of the form 
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where pρ  is the plate density, h is the plate thickness and sρ is the mass density of the soil. The 

following expression can be written for each finite piece 
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The consistent mass matrix of the plate and the soil can be evaluated after substituting Eq. (17) into 
Eq. (15). By assembling the element mass matrix obtained, the system mass matrix is evaluated. The 
matrices are presented in reference [21]. 

4. Numerical Examples 

4.1. Example 1 

At first dynamic responses of a plate on elastic foundation subjected to uniformly distributed load 
and concentrated load are compared with those of reference [16]. Daloglu et al.[16] analyzed the 
problem by MZC rectangular element based on Kirchhoff plate theory. In this study 8 nodded 
rectangular elements based on Mindlin plate theory with selective integration techniques are used.  

The properties of the plate-soil system are as follows. The modulus of elasticity of the plate is 
Ep=27000000 kN/m2, poisson ratio of the plate is νp=0.20, the modulus of elasticity of the subsoil is 
Es=20000 kN/m2, poisson ratio of the plate is νs=0.25. The mass densities of the plate and subsoil are 
taken to be ρp=2500 kg/m3 and ρs=1700 kg/m3 respectively. The uniformly distributed load on the 
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plate is 30 kN/m2 and concentrated load at the center of the plate is 1000 kN.  6 elements are used for 
10 m length and 0.01 s time increments for distributed load and a 0.001 s time increment for 
concentrated load. The shorter span length of the plate is kept constant at 10 m. The maximum 
displacements for ly/lx=1.0 and 2.0, h=0.5 m and H=5 m has been compared first with the results 
obtained in reference [16] to verify the accuracy of the present formulation in Table 1. As seen from 
Table 1 the results obtained in this study for both load cases are in a good agreement with the 
reference results. 
 

Table 1 Comparison of maximum displacement of plate on elastic foundation 

 

Distributed Load   Concentrated Load 
10mx10m 

 plate   
10mx20m 

plate  
10mx10m 

plate   
10mx20m 

plate 

wmax     
(mm) 

  
wmax 
(mm)   

wmax    
(mm)   

wmax 
(mm) 

Ref. [16] 10.170  12.800  6.590  5.800 

In this study 10.170  12.840  6.570  5.898 
 

4.2. Example 2 

A parametric study is carried out for various values of subsoil depth (H), aspect ratios(ly/lx), the ratio 
of plate thickness to shorter span of the plate (h/lx), loaded area (a/lx, b/ly), time variable loading type 
and pulse duration of impulsive load. The effects of the parameters mentioned above on maximum 
displacements and corresponding moments of the plates are presented in graphical form.  

The properties of the plate-soil system are as follows. The modulus of elasticity of the plate is 
Ep=25000000 kN/m2, poisson ratio of the plate is νp=0.20, the modulus of elasticity of the subsoil is 
Es=20000 kN/m2, poisson ratio of the plate is νs=0.25. The mass densities of the plate and subsoil are 
taken to be ρp=2500 kg/m3 and ρs=1700 kg/m3 respectively. Longer span length is considered as 10, 
15 and 20 m for lx/ly=1.0, 1.5 and 2.0 respectively while the shorter span length of the plate is kept 
constant at 10 m. The thickness of the plate is considered as 0.5, 1.0, and 2.0 for h/lx=0.05, 0.10 and 
0.20 respectively. The analysis is performed for three subsoil depth, H=3, 5 and 10 m. The time 
variable load q=q0.F(t) is applied on the plate, in which maximum amplitude of patch load (q0) is 30 
kN/m2. F(t) is a unit function of any impulsive load case given Fig.3 in the time domain. 

 

 

 

 

 

 

Fig 3 The various types of time variable loads 
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A convergence study for the mesh size and the time increment is performed first for the sake of 
accuracy. It is concluded that the results have acceptable error when equally spaced 8 elements for 10 
m length if a 0.0001 s time increment are used.  

In these examples, dimensionless forms of time, central displacement and bending moment are used 
and they are defined as follows respectively. 
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The results are presented in Fig. 4-10. Fig. 4 indicates the effects of loaded area on the maximum 
displacement and bending moment of the plate subjected to patch load for H=10m, h/lx=0.10, 
lx/ly=1.0 and sudden load case.  The ratio of loaded area dimensions to plate dimensions (a/lx= b/ly) 
are taken as 0.2, 0.5 and 0.8 as the plate dimensions are kept constant. As expected, these results 
show that the displacement and moment increase as the loaded area increases. 
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(b) Bending moments 

Fig. 4 Effect of the loaded area on dynamic behaviors of thick plate 
 
The variation of the central displacement and bending moment of the plate as a function of time for 
various values of the ratio of plate thickness to shorter span length of the plate (h/lx) is plotted for 
H=10m, lx/ly=1.0,  a/lx= b/ly=0.5 and step load case  in Fig. 5. The ratio of plate thickness to shorter 
span length of the plate is taken 0.05, 0.10 and 0.20 while the shorter span length of the plate is kept 
as 10 m. Here, as seen dimensionless equations, results are affected plate thickness. So, figures needs 
to be explicated in reverse.  The central displacement decreases as the ratio of plate thickness to 
shorter span length of the plate (h/lx) increases while bending moment increases with increasing the 
ratio of plate thickness to shorter span length of the plate (h/lx). It can be seen that the transverse 
shear deformation has a significant effect on the dynamic behavior of the plate. 
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(b) Bending moments 

Fig. 5 Effect of the plate thickness to length of the plate ratio on dynamic behaviors of thick plate 
 

Fig. 6 shows the effects of pulse duration on the central displacement and bending moment of the 
plate subjected to centrally patch load for H=10m, h/lx=0.10, lx/ly=1.0,  a/lx= b/ly=0.5 and triangular 
load case. Here β indicates . As expected, results indicate that central displacement and 
bending moment increase as the pulse duration increases. 
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(b) Bending moments 

Fig. 6 Effect of the pulse duration on dynamic behaviors of thick plate 
 

Fig. 7 shows central displacement and bending moment of a square plate subjected to central patch 
load as a function of time for various subsoil depth.  The subsoil depth is 3, 5 and 10 m while other 
parameters are kept as lx/ly=1.0, h/lx=0.10, a/lx= b/ly=0.5 and sine load case. As seen figure, the 
subsoil depth has a significant effect on the dynamic response of the plate. The central displacement 
and bending moment increase as the subsoil depth increases. This behavior is understandable in that 
a plate on elastic foundation with larger subsoil depth becomes more flexible. 
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(b) Bending moments 

Fig. 7 Effect of the subsoil depth on dynamic behaviors of thick plate 
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The variation of the central displacement and bending moment of the plate as a function of time for 
various values of aspect ratio (lx/ly) is plotted in Fig. 8 for H=10 m, h/lx=0.10,  a/lx= b/ly=0.5 and 
exponential load case. The aspect ratio is taken 1.0, 1.5 and 2.0 while the shorter span length of the 
plate is kept as 10 m. The central displacement and bending moment increase as the aspect ratio 
(lx/ly) increases.  
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(b) Bending moments 

Fig. 8 Effect of the plate aspect ratio on dynamic behaviors of thick plate 
 

The variation of the central displacement and bending moment of the plate as a function of time for 
various impulsive loading types such as sudden loads, step loads, triangular loads, sine loads and 
exponential loads given Fig.3 is plotted in Fig 9 for H=10 m, h/lx=0.1, a/lx= b/ly=0.5 and lx/ly=1.0. 
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Fig. 9 Effect of the time variable loading type on dynamic behaviors of thick plate 
 

7. Conclusions 

In this study, 8-noded Mindlin plate element are adopted for the dynamic analysis of thick plates on 
elastic foundations subjected to time variable patch loads and the effects of the thickness/shorter-
span ratio (h/lx), the aspect ratio (lx/ly), the subsoil depth (H), the loaded area, time variable loading 
type and pulse duration of the impulsive load on the central displacement and bending moment of 
thick plate on elastic foundation subjected to time variable loads are determined using Modified 
Vlasov Model.  

The applicability of the 8-noded element to analysis of thick plates on two parameter elastic 
foundations subjected to time variable loading using Modified Vlasov model is confirmed in the 
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initial example for the first time. In the latter example, a parametric study has been carried. The 
following conclusions can be drawn from the results. 

i. The results demonstrate that thickness/shorter-span ratio of the plate, aspect ratio; subsoil 
depth, loaded area, time variable loading type and pulse duration of the impulsive load have 
significant influence on the characteristics of the dynamic behavior of the plate on elastic 
foundation. 

ii.  The displacements and bending moments of the plate increase as the soil depth increases 
since the elastic foundation become more flexible.   

iii.  The displacement and bending moments are increased as the pulse duration increases. 

iv. It can be noted that the effect of loaded area and aspect ratio plays more crucial role on the 
dynamic response of the plate compare to other parameters considered. 

v. The transverse shear deformation of the plate has a significant effect on the dynamic behavior 
of the plate. 

vi. The dynamic behavior of the plate varies according to the type of loading. Sudden and 
exponential load types are more effective on the dynamics response. 
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