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Abstract: In this paper, a domain decomposition method has been presented for solving singularly perturbed 
differential difference equations with delay as well as advances whose solution exhibits boundary layer behavior. 
By introducing a terminal point, the original problem is divided into inner and outer region problems. An implicit 
terminal boundary condition at the terminal point has been determined. The outer region problem with the implicit 
boundary condition is solved and produces an explicit boundary condition for the inner region problem. Then, the 
modified inner region problem (using the stretching transformation) is solved as a two-point boundary value 
problem. Fourth order stable central difference method has been used to solve both the inner and outer region 
problems. The proposed method is iterative on the terminal point. To demonstrate the applicability of the method, 
some numerical examples have been solved for different values of the perturbation parameter, delay and advance 
parameters. The stability and convergence of the scheme has also investigated. 

Key words: Singular perturbation, Differential difference equations, Finite Differences, Terminal Boundary 
Condition, Boundary layer 

1. Introduction 

The boundary value problems for singularly perturbed differential difference equations with delay 
as well as advance are ubiquitous in the mathematical modeling of various practical phenomena 
in biology and physics, such as in variational problems in control theory, in describing the human 
pupil-light reflex, in a variety of models for physiological processes or diseases  and first exit 
time problems in the modeling of the determination of expected time for the generation of action 
potential in nerve cells by random synaptic inputs in dendrites. These biological applications 
motivate the study of boundary value problems for singularly perturbed differential difference 
equations with delay as well as advance.  For further study of neurophysiological and 
mathematical aspects of the above class of models, readers can refer to Stein [1, 2], Tuckwell [3-
5], Tuckwell and Wan [6], Lange and Miura [7], Derstine and et al [8], Longtin and Milton [9], 
Wazewska-Czyzewska and Lasota [10], Mackey  and Glass [11], etc. 
To find the approximate solution of a class of singularly perturbed differential difference 
equation, one encounters two major difficulties, namely: i) due to presence of the small singular 
perturbation parameter which is multiplied to the highest order derivative term and ii) due to 
existence of delay and advance parameters in the argument of reaction terms. To deal with the 
first difficulty, there are two approaches, namely asymptotic and numerical. Here, we adopt the 

International Journal of Engineering & Applied Sciences (IJEAS) 
Vol.7, Issue 1(2015)86-102   

  

 
 

 

 

 
 

 

 



G.F. Duressa and Y.N. Reddy 

87 
 

numerical approach. When the singular perturbation parameter tends to zero, a breakdown occurs 
and the solution of the singularly perturbed problem often behave analytically quite differently 
from a solution of the original equation in the narrow region of the domain. The solution changes 
rapidly and form boundary or transition layers in these narrow regions. Owing to this, many 
numerical methods have been developed to solve singularly perturbed ODEs with delay and 
advance. Lange and Miura gave a series of papers (see [12-17]) investigating different classes of 
BVPs of singularly perturbed differential difference equations by extending the method of 
matched asymptotic expansions developed for ODEs.  First-order numerical algorithms based on 
finite difference schemes are found in Sharma [18], fitted methods based on finite difference 
method Patidar and Sharma [19] and Kadalbajoo et al. [20], parameter uniform numerical method 
Kumar and Kadalbajoo [21]. To tackle with the second difficulty, we use Taylor series 
approximation for the terms containing delay as well as advance provided the delay and advance 
parameter are sufficiently small.  
Due to the singular behavior of the solution of the problem in the inner regions, the classical 
numerical schemes are found to be inadequate to approximate the solution of the singularly 
perturbed problems. To get rid of this problem, here in the present paper, we introduce a terminal 
boundary point and decompose the domain into inner and outer regions to treat the original 
problem as inner region and outer region problems separately. A terminal boundary condition in 
the implicit form is determined at the terminal point and then, the outer region problem with the 
implicit boundary condition is solved as a two-point boundary-value problem. From the solution 
of the outer region problem, an explicit terminal boundary condition is obtained. The inner region 
problem is modified and solved as a two- point boundary value problem using the obtained 
explicit terminal boundary condition. Finally, we combine the solutions of both the inner region 
and outer region problems to get the approximate solution of the original problem.  The present 
method is iterative on the terminal point. We repeat the process (numerical scheme) for various 
choices of the terminal point, until the solution profiles do not differ materially from iteration to 
iteration. 

2. Description of the Method 

Consider singularly perturbed differential equation with small delay as well as advance of the 
form: 

                   )()()()()( xfxyxxyxxyxxyxaxy                (1) 

)1,0(x  and subject to the interval and boundary conditions  

  0-on       , )(        xxxy                         (2) 
           11         ,)( xonxxy                 (3) 

Where              xandxxfxxxxa       ,   ,    ,   ,   ,  ,  are bounded and continuously 
differentiable functions on (0, 1), 10     is the singular perturbation parameter; and 

  o0  and   o0  are the delay and the advance parameters respectively.  When the 
shifts are zero (i.e., δ = 0, η = 0), the solution of the corresponding ordinary differential  equation 
exhibits layer behavior or turning point behavior depending on the coefficient of the convection 
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term, i.e., if a(x) does not change the sign or changes the sign on the underlying interval. The 
layer behavior of the problem under consideration is maintained only for 0  and 0 , but 
sufficiently small. In general, the solution of problem (1)-(3) exhibits boundary layer behavior at 
one end of the interval [0, 1] depending on the sign of    xxxa  )( . 
In this paper, we consider the problems whose solution exhibits the layer behavior on the left side 
of the interval. We assume that     0)(  xxx  ,     0)(  Mxxxa   throughout 
the interval [0, 1], where M is some constant.  Under these assumptions, Eq. (1) has a unique 
solution  xy  which in general, exhibits a boundary layer on the left side of the underlying 
interval.  
By using Taylor series expansion in the neighborhood of the point x, we have 

      )()( xyxyxy                            (4) 
       )()( xyxyxy             (5) 

Using Eqs. (4) and (5) in Eq.(1) we get an asymptotically equivalent singularly perturbed 
boundary value problem of the form: 

      )()()( xfxyxrxyxqxy                      (6) 
with boundary conditions 

   0)0(       0 y                      (7) 
   1)1(       1 y                       (8) 

where         xxxaxq   )(                      (9) 
         xxxxr   )(

  
                     (10) 

The transition from Eq. (1) to Eq. (6) is admitted, because of the condition that 10    and  
10   are sufficiently small. Further details on the validity of this transition can be found in 

Elsgolt’s and Norkin [22]. This replacement is significant from the computational point of view.  
Thus, the solution of Eq. (6) will provide a good approximation to the solution of Eq. (1). 
Now, we divide the problem into two: inner region and outer region problems. 
 Let px ( 10  px ) be the terminal point or width or thickness of the boundary layer (inner 
region), then the inner and outer region problems are defined on pxx 0  and 1 xx p  
respectively. 
 By using Taylor’s expansion, we have 

   )(
2

)()()(
2

xy
x

xyxxyxxy p
pp                                             (11) 

Using Eq. (11) in to Eq. (6) and evaluating at pxx  we get 

            321 )()( cxycxyc pp                                                         (12) 
where  ))(2(1 ppp xqxxc                                                        (13) 

             2)(2
2  pp xrxc                                                                         (14) 
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            )0(2)(2
3 yxfxc pp                                                                     (15) 

which is in implicit form and is taken as the terminal boundary condition at pxx  (the terminal 
point).  Using the terminal boundary condition in Eq. (12), which is in implicit form, we solve the 
outer region problem as a two point boundary value problem 

          )()()()()()( xfxyxrxyxqxy   ,  1 xx p                                  (16) 

with boundary conditions 
    321 )()( cxycxyc pp                           (17) 

  and )1()1( y                                                   (18) 

Solving this two point boundary value problem, we get the solution )(xy  over ]1,[ px . From the 
solution  xy  of the outer region problem in Eq. (16)-(18) on the interval 1 xx p , we get the 
value of )( pxy which is the explicit terminal boundary condition and let us denote it by

)( pxy . 
Since the terminal point px  is common to both the inner and outer regions, we can formulate the 
asymptotically equivalent inner region problem as a two-point boundary-value problem 

)()()()()()( xfxyxrxyxqxy   ,  pxx 0                                  (19) 

with boundary conditions 
   )0()0( y                (20) 

)( pxy                                             (21) 

In order to solve the inner region problem in Eq. (19)-(21), we choose the transformation 


xt                                (22) 

Then, using Eq. (22) we can transform the functions in Eq. (19) into 

)()()( tYtyxy                                         (23) 

            


 )()()( tYtyxy





                            (24) 

           
22

)()()(


 tYtyxy





                              (25) 

            )()()( tQtqxq                                             (26) 
            )()()( tRtrxr                                         (27) 
              )()()( tFtfxf                               (28) 

Substituting Eq. (23)-(28) in Eq. (19) we get the new inner region problem of the form: 
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)()()()()()( tFtYtRtYtQtY   , ptt 0                   (29) 

     with   )0()0( Y                               (30) 
      and   )()( pp xytY                     (31) 

where 


p
p

x
t  . Solving this new inner region problem in Eq. (29)-(31), we obtain the solutions 

over the interval ptt 0 .  

To solve the two-point boundary value problems given in Eq. (16)-(18) (outer region problem) 
and Eq. (29)-(31) (inner region problem), we make use of fourth order stable central difference 
method (Choo and Schultz [23]). In fact, any standard analytical or numerical method can be 
used. Finally, we combine the solutions of both the inner region defined on pxx 0  and outer 
region defined on 1 xx p  problems to get the approximate solution of the original problem in 
Eq. (1)-(3) over the interval 10  x . 
    We repeat the process (numerical scheme) for various choices of px (the terminal point), until 
the solution profiles do not differ materially from iteration to iteration. For computational point of 
view, we use an absolute error criterion, namely  

         )()(1 xyxy mm    pxx 0                                                   (32) 

Where )(xy m  = the solution for the mth iterate of px  and  = the prescribed tolerance bound. 

To set up the difference equation of the outer region problem in Eq. (16)-(18) we divide 
]1,[ px  into N equal parts, each of length h , 1...210  Np xxxxx . Then, we have

ihxx pi  ; Ni ,...,2,1,0 . For simplicity let   ii qxq  ,   ii rxr  ,   ii fxf  ,   0yxy p  ,
  ii yxy  ,   1 ii yhxy ,   1 ii yhxy ,   ii yxy  ,   ii yxy  , etc.  By Taylor expansion, we 

obtain the following central difference formulas for y   and y  at x  assuming that y has 
continuous fourth derivatives on  10, . 

    1
4

2

2
11

12
2 Tyh
h

yyyy iii
i 


             (33) 

  2

2
11

62
Tyh

h
yy

y ii
i 


              (34) 

Where  
   

!6
2 64

1
yhT   and  

  
!5

54

2
yhT    for  hxhx ii  ,, .  

Substituting Eq. (33) and (34) into Eq. (16) we can write the central difference approximation of 
Eq. (16) in the form that includes all the  2hO  error terms as follows: 

   iiiii
i

iii
i fTyyqhy

h
q

h
y

h
ry

h
q

h




 



 



  

4
2

12212 2
122

2
2

       (35) 
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Where 21 TqTT i  . Now, from (6) we have  

iiiiii fyryqy                   (36) 

Differentiating both sides of Eq. (36) we get       

  iiiiiiiiii fyryryqyqy                (37) 

  


i
iiiiiiii

fyryrqyqy 
1           (38) 

Differentiating both sides of Eq. (37) again we have 

       iiiiiiiiiiii fyryrqyrqyqy  224         (39) 

By making use of Eq. (38) and (39) into Eq. (35) for iy  and  4
iy  we obtain 







 









 









 





















 






 






  

i
ii

iii
ii

iii
iiii

iii
i

i
i

iii
i

f
fqhfTyr

rqhyrq
rqqqh

yrq
qhy

h
q

h
y

h
ry

h
q

h






1212
2

12

2
122

2
2

222

22

12212

     (40) 

Approximating the converted error term, this has a stabilizing effect, in Eq. (40) by using the 
central difference formulas given in Eqs. (33) and (34) for iy   and iy   we obtain  

Tffqhfyrrqhyrqrqqqh

yrq
rqqqhyrq

q
yrq

q

yrqqy
h

q
h

y
h

ry
h

q
h

i
ii

iii
ii

iii
iiii

iii
iiii

iii
i

iii
i

iii
i

i
i

iii
i

~
1212

2
24

2
24

2
12
12

6
1

2
12
1

2
2

2

22

1

11

22

1

2

12212








 









 









 











 











































 





 







 














     (41) 

 where     Tyhrq
rqqq

yhrq
q

T iii
iiii

iii
i 







 














72
2

144
2~ 4

4
42


  is the truncation error 

and  4
21 hOTqTT i   . Rearranging Eq. (41) we obtain the three term recurrence relation of 

the form 

iiiiiii HyGyFyE   11 , 1,...,1,0  Ni               (42) 
Where  
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





 










 





















 





















 















i
ii

ii

ii
iiii

ii
ii

i

i
ii

ii
i

ii

ii
iiii

ii
ii

i

ffqhfH

rq
rqqqhrq

q
h

q
h

G

r
rqhrq

q
r

h
F

rq
rqqqhrq

q
h

q
h

E












12

2
24

2
12
1

2

12
2

6
12

2
24

2
12
1

2

2

2

2

22

2

2

2

         (43) 

Equation (42) gives a system of N  equations with 1N unknowns 1y  to 1Ny . To eliminate the 
unknown 1y , we make use of the implicit boundary condition in Eq. (17) and then by employing 
the second order central difference approximation in it, we get  

      
1

3
10

1

2
1

22
c
hcyy

c
hcy                                                                         (44)   

Where 21 , cc and 3c are defined in Eq. (13)-(15). Making use of Eq. (44) in the first equation of 
the recurrence relation in Eq. (42) at 0i , we get 

0
1

3
010000

1

2
0

2
)()

2
( E

c
hc

HyGEyE
c
hc

F                                            (45) 

Now, Eq. (42) and Eq. (45) give  N  by N  tri-diagonal system which can be easily solved by 
using Thomas Algorithm. 

Similarly, to set up the difference equation for the inner region problem in Eq. (29)-(31) 

we divide the interval ptt 0  in to N  subintervals of equal mesh length 
N

t
h p 0
 with mesh 

points pN ttttt  ,...,0 210 . Following the same procedures/steps in Eq. (33)-(41), we 
obtain the three term recurrence relation 

iiiiiii HyGyFyE ~~~~
11   , 1,...,2,1  Ni               (46) 

Where 

   

   

   

 iiiii

iiiiii
i

iiii

iiiiiiii

iiiiii
i

iiii

FFQhFH

RQRQQQh
h

QRQQ
h

G

RRQhRRQQ
h

F

RQRQQQh
h

Q
RQQ

h
E









12
~

2
242

2
12
11~

12
2

6
12~

2
242

2
12
11~

2

2
2

2
2

2

2
2









          (47) 
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To solve the tri diagonal system in Eq. (46), we used Thomas Algorithm 

3. Lower Bound for the Terminal Point pt  

To gain further insight to the choice of pt , terminal point of the boundary layer region which is 

not unique, consider the problem in Eq. (1)-(3) and  choose pt  such that 
1pt .  

By making use of the stretching transformation Eq. (22) into Eq. (6)-(8) and taking the limit as
0 , we get 

0)()0()(  tYqtY               (48) 
Where )()( tytY   and the boundary conditions 

      )0()0( Y and  )( ptY            (49) 

Now solving the two point boundary value problem in Eq. (48)-(49) analytically, we get the 
solution  

mt
mm e

ee
tY









1

)0(
1

)0()(             (50) 

where  )0()0()0()0(   aqm  
As suggested by Hsiao and Jordan [24] and Lorenz [25], pt  can be determined by taking the 
inequality 

pmte               (51) 

Taking ln of both sides of Eq. (51) and rearranging we get  

)0()0()0(
ln






a

t p                 (52) 

For   10 , we can get the crude estimate for the lower bound of pt  as 

)0()0()0(
3.2)10ln(

)0()0()0( 











aa
t p .         (53) 

4. Stability and Convergence Analysis 

Remark: Here we shall use the definition of the stability of the difference operator given 
in Keller [26]. 
Definition: The linear difference operator hL  is stable if for sufficiently small h , there exists a 
constant k , independent of h , such that  
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   NjvLvvkv ihNiNj ,,1  ,0    ,max,max
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

 

for any mesh function  N
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, the difference operator defined on Eq. (42) is 

stable with 









1,1maxk . 

Proof: Let (.)hL  denote the difference operator on left hand side of Eq. (42) and iw  be any mesh 
function satisfying  

iih HwL )(            (54) 
If iwmax  occurs for 0i  or Ni  , then the definition holds trivially, since 1k . So assume 

that iwmax  occurs for 1 ,  ,2  ,1  Ni  . 

Under the given assumptions, 0    ,0  ii GE , iii GEF   and  ii GE  . This implies that the 
tri-diagonal system in Eq. (42) is diagonally dominant and its solution exists and is unique 
(Greenspan and Casulli [27]).  
Then by rearranging the difference Eq. (42) and using the non negativity of the coefficients, we 
have 

iiiiiii HwGwEwF   11  

ihiiiiii wLwGwEwF   11        (55) 
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Now using the fact, 
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  and equation Eq. (55) we get 
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  (56) 

Since the inequality in Eq. (56) holds for every i , it follows that  
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Hence, hL  is stable and this implies that the solutions to the system of the difference equation Eq. 
(42) are uniformly bounded, independent of mesh size h and the parameter .  Hence the scheme 
is stable for all step sizes. 

Corollary: Under the conditions for theorem 1, the error iii yxye  )(  between the solution 
)(xy  of the continuous problem and the solution iy  of the discrete problem, with the boundary 

conditions satisfies the estimate 
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is the truncation error. 
Proof: Under the given conditions one can easily show that the error ie  satisfies  

    1 ,  ,2  ,1   ,)()(  NiyxyLxeL iiihih    
and  00  Nee . 
Then theorem 1, the stability of hL ,  implies that  

iNiiii keyxy 
11

max)(


         (58) 

Hence the estimate in Eq. (57) establishes the convergence of the scheme for the fixed values of 
the perturbation parameter .  

5. Numerical Examples  

To demonstrate the applicability of the method we have considered three boundary value 
problems of the type given by Eq. (1)-(3) with left-end boundary layer.  The approximate solution 
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is compared with exact solution and the inner layer solutions also plotted by using graphs for 
different values of   and the terminal points.  The exact solution of such boundary value 
problems having constant coefficients (i.e.       , axa     ,  x       , x   ,  x  
     ,fxf       x  and    x    are constants) is given by:  

     
c
fxmcxmcxy  2211 expexp ,                (59) 

where  
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Example 1:  Consider the model boundary value problem given by Eq. (1)-(3) with 
              .1  ,1  ,0  ,3  ,0  ,2  ,1  xxxfxxxxa    

The exact solution of the problem is given by Eq. (59)-(60). The numerical results are given in 
tables 1, 2 for =0.001 and 0.0001 respectively.  

Table 1 Numerical Results for Example 1, =10-3 and   1.0  

x tp=10 tp =20 tp =30 Exact Sol. 
y(x) y(x) y(x) 

0.00000 1.0000000 1.0000000 1.0000000 1.0000000 
0.00020 0.8891662 0.8863916 0.8856926 0.8854601 
0.00040 0.7984523 0.7934058 0.7921346 0.7917112 
0.00060 0.7242065 0.7173000 0.7155601 0.7149817 
0.00080 0.6634415 0.6550117 0.6528881 0.6521843 
0.01000 0.3925705 0.3771362 0.3732482 0.3718990 
0.02000 

 
0.3819092 0.3779721 0.3756049 

0.03000 
  

0.3828013 0.3793768 
0.10000 0.4072314 0.4072314 0.4072314 0.4068620 
0.20000 0.4500288 0.4500288 0.4500288 0.4496161 
0.40000 0.5495898 0.5495898 0.5495898 0.5490746 
0.60000 0.6711769 0.6711769 0.6711769 0.6705341 
0.80000 0.8196632 0.8196632 0.8196632 0.8188615 
0.90000 0.9058052 0.9058052 0.9058052 0.9049096 
1.00000 1.0000000 1.0000000 1.0000000 1.0000000 
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Fig. 1: Graph of inner layer solutions of example 
1 for 001.0 and different terminal points 

 
Fig. 2: Graph of inner layer solutions of example 
1 for 0001.0 and different terminal points 

Table 2 Numerical Results for Example 1, =10-4 and   1.0  

x tp =10 tp =20 tp =30 Exact Sol. 
y(x) y(x) y(x) 

0.00000 1.0000000 1.0000000 1.0000000 1.0000000 
0.00002 0.8890539 0.8863192 0.8856640 0.8854204 
0.00004 0.7982205 0.7932469 0.7920552 0.7916133 
0.00006 0.7238525 0.7170458 0.7154148 0.7148132 
0.00008 0.6629651 0.6546576 0.6526669 0.6519369 
0.00100 0.3881176 0.3730271 0.3694100 0.3683056 
0.00200 

 
0.3740894 0.3704678 0.3686454 

0.00300 
  

0.3715705 0.3690142 
0.10000 0.4066579 0.4066579 0.4066579 0.4065989 
0.20000 0.4494155 0.4494155 0.4494155 0.4493577 
0.40000 0.5488909 0.5488909 0.5488909 0.5488380 
0.60000 0.6703845 0.6703845 0.6703845 0.6703415 
0.70000 0.7408718 0.7408718 0.7408718 0.7408360 
0.80000 0.8187701 0.8187701 0.8187701 0.8187438 
0.90000 0.9048591 0.9048591 0.9048591 0.9048446 
1.00000 1.0000000 1.0000000 1.0000000 1.0000000 

 

Example 2: Consider the model boundary value problem given by Eq. (1)-(3) with 
              .1  ,1  ,0  ,3  ,2  ,0  ,1  xxxfxxxxa    

The exact solution of the problem is given by Eq. (59)-(60). The numerical results are given in 
tables 3, 4 for =0.001 and 0.0001 respectively.      
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Fig. 3: Graph of inner layer solutions of example 
2 for 001.0 and different terminal points 

 
Fig. 4: Graph of inner layer solutions of example 
2 for 0001.0 and different terminal points

Table 3 Numerical Results for Example 2, =10-3 and   1.0  

   tp =10 tp =20 tp =30   
x y(x) y(x) y(x) Exact Sol. 

0.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.0002000 0.8898741 0.8877456 0.8877023 0.8854528 
0.0004000 0.7997113 0.7958402 0.7957615 0.7917016 
0.0006000 0.7258931 0.7205952 0.7204876 0.7149733 
0.0008000 0.6654564 0.6589903 0.6588590 0.6521794 
0.0100000 0.3926501 0.3809045 0.3806655 0.3719724 
0.0200000 

 
0.3819941 0.3817548 0.3756783 

0.0300000 
  

0.3828873 0.3794502 
0.1000000 0.4073182 0.4073182 0.4073182 0.4069350 
0.2000000 0.4501143 0.4501143 0.4501143 0.4496878 
0.4000000 0.5496684 0.5496684 0.5496684 0.5491403 
0.6000000 0.6712409 0.6712409 0.6712409 0.6705877 
0.7000000 0.7417666 0.7417666 0.7417666 0.7410401 
0.8000000 0.8197021 0.8197021 0.8197021 0.8188941 
0.9000000 0.9058264 0.9058264 0.9058264 0.9049277 
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
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Table 4 Numerical Results for Example 2, =10-4 and   1.0  

x tp =10 tp =20 tp =30 Exact Sol. 
y(x) y(x) y(x) 

0.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.0000200 0.8891366 0.8864011 0.8857456 0.8854197 
0.0000400 0.7983701 0.7933951 0.7922027 0.7916124 
0.0000600 0.7240578 0.7172490 0.7156171 0.7148124 
0.0000800 0.6632162 0.6549061 0.6529145 0.6519365 
0.0010000 0.3885801 0.3734850 0.3698667 0.3683130 
0.0020000 

 
0.3745477 0.3709251 0.3686527 

0.0030000 
  

0.3720278 0.3690215 
0.1000000 0.4071122 0.4071122 0.4071122 0.4066063 
0.2000000 0.4498618 0.4498618 0.4498618 0.4493649 
0.4000000 0.5492994 0.5492994 0.5492994 0.5488446 
0.6000000 0.6707174 0.6707174 0.6707174 0.6703469 
0.7000000 0.7411475 0.7411475 0.7411475 0.7408404 
0.8000000 0.8189732 0.8189732 0.8189732 0.8187471 
0.9000000 0.9049717 0.9049717 0.9049717 0.9048465 
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

Example 3: Consider the model boundary value problem given by Eq. (1)-(3) with 
              .1  ,1  ,0  ,5  ,1  ,2  ,1  xxxfxxxxa    

The exact solution of the problem is given by Eq. (59)-(60). The numerical results are given in 
tables 5, 6 for =0.001 and 0.0001 respectively. 

 

 
Fig. 3: Graph of inner layer solutions of example 
3 for 001.0 and different terminal points 
 
 

 
Fig. 4: Graph of inner layer solutions of example 
3 for 0001.0 and different terminal points 
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Table 5 Numerical Results for Example 3, =10-3 and   1.0  

x tp =10 tp =20 tp =30 Exact Sol. 
y(x) y(x) y(x) 

0.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.0002000 0.8208835 0.8190290 0.8186693 0.8181940 
0.0004000 0.6743861 0.6710132 0.6703587 0.6695278 
0.0006000 0.5545692 0.5499527 0.5490565 0.5479606 
0.0008000 0.4565743 0.4509386 0.4498444 0.4485531 
0.0100000 0.0171680 0.0065311 0.0044664 0.0027721 
0.0200000 

 
0.0068309 0.0046571 0.0028973 

0.0300000 
  

0.0049032 0.0030753 
0.1000000 0.0046968 0.0046968 0.0046968 0.0046685 
0.2000000 0.0085266 0.0085266 0.0085266 0.0084753 
0.4000000 0.0281015 0.0281015 0.0281015 0.0279330 
0.6000000 0.0926154 0.0926154 0.0926154 0.0920615 
0.7000000 0.1681357 0.1681357 0.1681357 0.1671315 
0.8000000 0.3052365 0.3052365 0.3052365 0.3034163 
0.9000000 0.5541317 0.5541317 0.5541317 0.5508323 
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 

Table 6 Numerical Results for Example 3, =10-4 and   1.0  

x tp=10 tp =20 tp =30 Exact Sol. 
y(x) y(x) y(x) 

0.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.0000200 0.8217893 0.8198857 0.8195039 0.8190809 
0.0000400 0.6758847 0.6724228 0.6717284 0.6709752 
0.0000600 0.5564294 0.5516915 0.5507411 0.5497316 
0.0000800 0.4586279 0.4528452 0.4516852 0.4504781 
0.0010000 0.0169474 0.0064431 0.0043361 0.0025479 
0.0020000 

 
0.0064169 0.0043036 0.0025180 

0.0030000 
  

0.0043166 0.0025331 
0.1000000 0.0045280 0.0045280 0.0045280 0.0045317 
0.2000000 0.0082482 0.0082482 0.0082482 0.0082542 
0.4000000 0.0273696 0.0273696 0.0273696 0.0273847 
0.6000000 0.0908196 0.0908196 0.0908196 0.0908529 
0.7000000 0.1654379 0.1654379 0.1654379 0.1654832 
0.8000000 0.3013628 0.3013628 0.3013628 0.3014180 
0.9000000 0.5489652 0.5489652 0.5489652 0.5490155 
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
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6. Discussion and Conclusion 

A domain decomposition method has been presented to find the numerical solution of singularly 
perturbed differential difference equations with delay as well as advance whose solutions exhibits 
boundary layer behavior. The method is iterative on the terminal point px  and the process is 
repeated for different values of px (the terminal point which is not unique), until the solution 
profile stabilizes in both the inner and outer regions. The present method has been implemented 
on three model examples with left-end boundary layer, by taking   5.0  ,1.0  and 
different values of . The numerical results have been tabulated and compared with the exact 
solutions (Tables 1-6). Further, the inner layer solutions for different values of the terminal points 
and   have been presented by using graphs (Fig. 1-6).  We have given here only a few values 
although the solutions are computed at all the points with mesh size h .  It can be observed from 
the tables and the graphs that the present method approximates the exact solution very well. The 
present method is simple, easy and efficient technique for solving singularly perturbed 
differential difference equations.  In fact, our method helps us not only to get good results but 
also to know the behavior of the solution in the boundary layer/inner region with  h  as shown 
by the graphs where most of the existing numerical methods fail to give good results. Thus, the 
present method provides an alternative technique for solving singularly perturbed boundary value 
problems involving delay as well as advance parameters. 
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