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Abstract

In this article, shape effect on free vibration heior of functionally graded plates is investigatethuare,
rectangular, skew, circular, elliptical, annular drequilateral triangular plates with the same sudearea and
thickness are considered. Frequency values of th&stes are compared for simply supported and cleanp
boundary conditions. Finite element method (FEMysed in calculating frequency values and mode shap
Since commercial codes do not allow inputting fiomatlly graded material properties directly, MATLABde
was developed for FEM solution. Findings of thigdgtcan be useful for designers that have freednohbose
the plate shape in engineering applications.

Keywords. Free Vibration, Plate, Functionally Graded Mateffénite Element Analyses.

1. Introduction

Functionally graded materials (FGMs) were develofmedvercome problems such as high
thermal residual stresses and stress concentrattahg interface of conventional composite
materials. FGMs are obtained by combining diffesats of materials commonly metal with
ceramic. In FGMs desirable mechanical propertiesaghieved by changing volume fraction
gradually through the thickness. Mechanical progenn FGMs are expressed with various
mathematical functions such as power law form sfritiution.

Due to importance, bending, vibration, buckling. étehavior of FGM plates received great
attention in the last decade. Many studies weralgated to investigate the free vibration
behavior of various plate shapes such as rectanglaw, circular, elliptical and annular

plates. Yang et al. [1] investigated the dynamispomse of initially stressed functionally

graded rectangular thin plates subjected to pbrtidistributed impulsive lateral loads.

Hosseini et al. [2, 3] obtained closed form solutad moderately thick and thick rectangular
FGM plates for free vibration. Sheikholeslami et pl] investigated free vibration of

functionally graded thick rectangular plates with @nalytical approach. Huang et al. [5]
investigated three-dimensional (3-D) vibrationgedtangular parallelepipeds of functionally
graded material with Ritz method. Latifi et al. [Blvestigated buckling of thin rectangular
functionally graded plates. Kim, Y. W. [7] investigd vibration characteristics of initially

stressed functionally graded rectangular platekeérmal environment with the Rayleigh—Ritz
procedure. Sundararajana et al. [8] investigated Wiibration characteristics of functionally
graded material rectangular and skew plates swgjeict thermal environment analytically
and numerically. Upadhyay et al. [9] investigatemhlmear static and dynamic behavior of
functionally graded skew plates. Singha et al. [i®jestigated the large amplitude free
flexural vibration behavior of symmetrically lamied composite skew plates using the finite
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element method. Ganapathia et al. [11] investig#tedmal buckling of functionally graded
skew plate with the finite element approach. Nialef12] investigated the three-dimensional
free and forced vibration analysis of functionalisaded circular plate for various boundary
conditions with semi-analytical approach. Allahveedieh et al. [13, 14] employed a semi-
analytical approach for nonlinear free and forcgyammetric vibration of a thin circular
functionally graded plate. Zhu et al. [15] inveatigd free vibration analysis of functionally
graded circular plates in thermal environments witlocal Kriging meshless method. Talabi
et al. [16] investigated free vibration of thickailar FGM plates analytically. Matsunaga H.
[17] investigated vibration and buckling of FGMaitar cylindrical shells. Hosseini-Hashemi
et al. [18] investigated closed-form solution adquency equation for free vibration analysis
of circular/annular moderately thick FGM plates.tdPaet al. [19] investigated the free
vibration characteristics of functionally gradediptical cylindrical shells using finite
element. Hsieh et al. [20] investigated static bedraof FGM elliptical plate using
approximation method. Zhang D-G. [21] investigatemh-linear bending analysis for super
elliptical thin plates with Ritz method. Ceribadi &. [22] investigated static behavior of
clamped superelliptical plates with Galerkin's nogthNie et al. [23] investigated free and
forced vibration of functionally graded annular teei@al plates using a semi-analytical
approach. Nie et al. [24] investigated dynamic wsial of multi-directional functionally
graded annular plates using a semi-analytical nigadenethod. Hosseini-Hashemi et al. [25]
investigated an analytical solution for free vibwatanalysis of stepped circular and annular
FG plates. Jodaeia et al. [26] investigated thieeedsional vibration analysis of functionally
graded annular plates using state-space basededififd quadrature method. Ebrahimi et al.
[27] investigated free vibration analysis of modehathick annular functionally graded plate
with piezoelectric layers. Tajeddini et al. [28)v@stigated free vibration analysis of thick
circular and annular functionally graded plateshwiariable thickness using elasticity theory.
Belalia et al. [29] investigated nonlinear freeraition analysis of functionally graded sector
plates with p-version of the finite element.

Regarding vibration of triangular FGM plates, tce tluthor's knowledge no study is
available. In this study free vibration behaviowvafious FGM plates is analyzed. Frequencies
of square, rectangular, skew, circular, ellipti@alnular plates as well as equilateral triangular
plate are calculated and compared with each otiresimply support and clamped boundary
conditions. In the analytical studies of FGM plateen Poisson’s ratio is assumed to be
constant in contrast to elastic modulus and dersityake solution easier. In this study, this
limitation is also overcome by using FEM and numedrintegration procedures.

2.FINITE ELEMENT EQUATION FOR FREE VIBRATION

2.1 Displacements and Strains

In this study, free vibration analyses of squaeetangular, skew, circular, elliptical, annular
and equilateral triangular plates are carried oith WWEM. Free vibration analyses are
conducted using 4-node quadrilateral shell elem&mwn in Fig. (1). For a 4-node
guadrilateral shell element stiffness and massiceatithat are needed in modal analyses are
derived as following.
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y
%8
Figurel: 4-node quadrilateral shell element.

Displacements at a general point (x, y, z) in dlgement as shown in Fig. (1) can be stated
as

u(x, ¥,2) =Uy (X, y) +26,(X, y)
V(X, ¥, 2) =V, (%, Y) +26,(X, Y) (1)
W(X, ¥, 2) =Wy (X, Y)

where 4, Vo, W are displacements of mid-plane of the shell ip, %, directions respectively
andox, 0y are rotations of mid-plane in x-z and y-z plaespectively.

For thick plates using First Order Shear Deformmafidheory (FSDT), strain-displacement
relationships can be written as

9y, %6,
oX 0x
£o] & | |Ea| | 96,
el o] |ew| | "y
o X(Z) 2’) oy  ox oy  0x
Vye Vyz Vye ow 0
v ) el eyt 0
a_W + gx
0x
2.2 Equation of Motion
Free vibration equation can be obtained from theadyic version of virtual work as
AJ +dT =0 (3)
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WhereoU and oT indicate virtual work of internal and inertial é@s respectively. Virtual
work of internal forces in terms of stresses anairss in element domain A is given as [30].

Ml =
{ 0,0y + 0,/

-h/2 yz

{ I ["xx (@0 2260, (@ + 2062 0, (v + Zayg)%]dz}dmy
(4)

EqQ. (4) can also be written in terms of stressltasts as

A = ne NXXJ(E‘)ES) +M xx5£>£>l<) + Nyy5£>('3) +M WJSS,) + nydyig) +M Xydyg') ¥ dz dxdy
A | -hi2 an—yg) +Q, (5)
Stress resultant®Nfy, Ny, Ny, My, Myy, My, Qi Q) in EQ. (5) are defined as
(0) @ (0) @
N hiz | Fxx h/2 Exx hi2 Exx Exx Exe
N b= T oy dz:[ IC(z)dz} £0 +[ .[C(z)zdz} c0 L= [a]le0 L+ [a, ] e
-h/2 -h/2 -h/2
ny ny y >£3) y g/) y S) y g’) 6
(6)
(0) @) (0) @
M hiz | I hi2 Exx h/2 Exx Exx Ex
M= [ {0, zdz:{ jC(z)zdz} 9 { IC(z)dez} eWt=[B,}e9t+[D, e
-h/2 -h/2 -h/2
M Xy axy 14 QS) 12 S)-/) 14 S) 14 S)-’) (7)
Q h/2 o, h/2 (2) (2)
{y =k, [ 17" tdz=|k, [C.(2d2 " L=}
Q -hi2 (O -h/2 yo 2% (8)

In Eqg. (6-7)C is material matrix for plane stress case and in(BCs is material matrix for
transverse shear for functionally graded mateheEq. (8)ks is the shear correction factor
and it is equal to (5/6) for rectangular sections.

Virtual work of inertial forces is expressed as
hi2 ) ) i} ) )
ar = j{ J p(z)[(uw zexj(d'uo + deX)+ (VO'F zeyj(d/o + zdey)+ WdN}dZ}dxdy

A (-h/2

(9)

where p indicates the density of functionally graded materMaterial properties vary in
thickness direction in functionally graded matesidh finite element method displacement
and rotations within the element are obtained thiaihe following interpolation functions;
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Uy :iNi(Xi Yy, 4
iil 6, =2 N (x,y)8,
Vo = 2 Ny (X, y)v, izl (10)
i:i 6, = Z N; (x,¥)0,;
wo =3 N (X Y)W, =

where Ni indicate shape functions amdv, w;, 6, 6yi are nodal displacement and rotations.
If nodal displacement and rotations of the eleman¢ denoted as the vector of

ul :{ul,vl,V\g,Hxl,Hyl,...u4,v4,w4,.6’x4,0y4} , in-plane and transverse shear strains can be
written in terms of nodal displacement vector as

©
é‘)(X
O = 11
&y 1 = Bl (11)

)
yxy

o
Exx

o)
et =Bu, 12)

@)
y Xy

(0)
{yy; } =B, (13)
Ve

whereBy , B; andBs matrices are given in terms of shape functionvdénes as

N, O 00O - N,, O 00O

B,=| 0 N, 0 0 O - o N, 000 (14)
N, N, 00 0 - N,, N, 0 0 0
000N, O 000N, O

B=[0 00 0 N, 000 0 N, (15)
000 N, N, 000N, N,

- 00N, 0 N, 00N, O N, (16)
00 N, N, 0 00 N, N, 0

Using the aforementioned equations and virtual waekinition, stiffnessKk and massM
matrices for quadrilateral shell element are wnits
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K= I[Bg (AmBo + BmBl)+ BlT (BmBO + DmBl)dAdZ+ B;QmBs}dey (17)

M = j{ hfp(xfxg)(xoxl)dz}dxdy (18)

A (-h/2

Xo matrix in Eqg. (18) is given as

100 2z0O0
X,=|01 00 z (19)
00100
andX; matrix in Eq. (18) is given as
'N, 0 0 0 O N, 0 0 O O]
0O NN 0O O O 0O N, O O O
X;={0 0 N, O O 0O 0 N, O O (20)
0O 0 O N, O 0O 0 O N, O
0 0 0 0 N, 0 0 0 0 N,J
Using the derived stiffness and mass matrices Mitg@ation equation is given as
MU+KU =0 (21)

whereU andU indicate nodal accelerations and displacemenfseosisely. Since mass and

stiffness matrices are higher order function >fy and z they are often calculated

numerically, e.g. using Gauss Quadrature rulendmerical integration full integration is

applied to mass matrix as well as to the in-plarens of stiffness matrices while reduced
integration is applied to the transverse shearderhthe stiffness matrix.

In free vibration, frequencies are solved fromfibi®wing eigenvalue problem
|- w?™M + K =0 (22)

whereo indicates the frequency value. In this study eigdue problem is solved by Matrix
Iteration Method [21].

Since commercial FEM codes do not allow directlputiing FGM properties, a FEM

computer code was developed to implement finitanelg method and solve frequency
equation. Developed program was validated withahalytical results for free vibration of
circular and annular FGM plates in Hashemi etréicla [22].

3. FREE VIBRATION ANALYSIS
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In this section, modal analyses of square, recfangskew, circular, elliptical, annular and
equilateral triangular FGM plates shown in Fig. &% conducted for simply support and
clamped boundary conditions. For a fair comparign same surface area of 106 amd
thickness value of 0.1 m were used for all FGMgsanh this study. Characteristic dimensions
of plates are shown in Fig. (2) and their specifitties are given as following.

e) f) 9)

Figure2: Plate shapes: a) Square, b) Rectangle, c) SHgw@jrcular, e) Elliptic, f) Annular, g)
Triangular

In Fig. (2) a and b indicate side lengths in squagetangle, skew and triangular plates. R
indicates radius of circular plate. Ri and Ro iagécinner and outer radius of annular plate.
In square plate a=10 m, in rectangular plate a4 and b=a/2, in skew plate a=10.745 m
and skewness anglke=30°, in circular plate R=5.641 m, in elliptic pab=7.9788 m and
b=a/2, in annular plate R0o=6.514 m and Ri = RaiZquilateral triangular plate a=15.196 m.

In FGMs, material property such as elastic moduRasson’s ratio and density change in
thickness direction. Material property at a distzcwithin the thickness can be given by a
power law distribution function as below

P(2) = (P, - P)(ﬁ%j +P, (23)

whereP; and Py, are material properties for ceramic and metal nmeserespectivelyn is the
volume fraction exponent of the FGM ahdis the thickness of the plate. FGM material
properties given in Table 1 along with the paramesdue ofn=2 are used in this study.

Table 1: FGM material properties.

Ceramic Aluminum
Elastic modulugGPa) 390 70
Poisson’s ratio 0.26 0.34
Density (kg/m) 3900 2700
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In free vibration analyses, for simply support bdary condition, only nodal displacements at
boundaries are constrained as below

u=v,=w =0 (24)
For clamped boundary condition, both nodal disptam®ts and rotations at boundaries are
constrained as below

u =v,=w,=6,=6, =0 (25)

Frequency values of FGM plates for six mode shapes given in Tables 2-3 and
corresponding mode shapes are shown in Fig. (3T16kave space only three mode shapes
are shown in figures. In Fig. (3-16) SSSS, SSSE$S, S, SS, SSS indicate clamped
boundary condition for square, rectangular, skewgutar, elliptic, annular and triangular
respectively. CCCC, CCCC, CCCC, C, C, CC, CCC immicsimply supported boundary
condition for square, rectangular, skew, circuddiiptic, annular and triangular respectively.

Normalized frequency values for six mode shapesgiwven in Tables 4-5. For simply
supported boundary condition, it is seen from Tabléhat annular plate has the highest
frequency value followed by rectangular-triangugew-elliptic-square-circular plates for
Mode 1 shape. For Mode 2, annular plate has thbkebigfrequency value followed by
triangular-square-skew- circular-rectangular-eltigtlates. For Mode 3, annular plate has the
highest frequency value followed by rectangulamsiediptic-triangular-square-circular
plates. For Mode 4, annular plate has the highesfuéncy value followed by triangular-
rectangular-circular-square-elliptic-skew platesr Mode 5, annular plate has the highest
frequency value followed by skew-square-rectangulangular-circular-elliptic plates. For
Mode 6, annular plate has the highest frequenayevillowed by circular-triangular-square-
elliptic-rectangular-skew plates.

For clamped boundary condition, it is seen froml&abthat annular plate has the highest
frequency value followed by rectangular-ellipti@atrgular-skew-square-circular plates for
Mode 1 shape. For Mode 2, annular plate has thbkebigfrequency value followed by
triangular-square-skew-circular-rectangular-eltgtiates. For Mode 3, annular plate has the
highest frequency value followed by skew-rectangalbptic-triangular-square-circular
plates. For Mode 4, annular plate has the highesfuéncy value followed by triangular-
rectangular-circular-elliptic-square-skew platesr Mode 5, annular plate has the highest
frequency value followed by skew-triangular-squagetangular-circular-elliptic plates. For
Mode 6, annular plate has the highest frequencyevdbllowed by triangular-circular-
rectangular-square-elliptic-skew plates.

Also from Table 6 it is clear that when boundarpdition is changed from simply supported
to clamped, frequencies increase. Increase is ifjiee$t for Mode 1 and is getting lower
towards Mode 6.
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Table 2: Frequency values of plates for simply supportaghidary condition.

Frequency Values (Hz)
(Simply Supported Boundary Condition)

Nll\J/lrﬁngs Square Rectangular Skew  Circular Elliptic  Annular  Triangular
Mode 1 7.22 9.06 7.88 5.75 7.68 35.28 8.34

Mode 2  16.97 13.94 15.87 14.82 13.02 36.43 18.43
Mode 3  16.97 22.25 21.25 14.82 20.89 36.51 18.44
Mode 4 27.25 28.43 25.25 27.45 24.47 40.12 31.70
Mode5 34.04 33.99 36.93 32.03 31.07 46.62 33.92
Mode 6  44.04 42.42 41.81 51.75 43.95 127.90 49.64

Table 3: Frequency values of plates for clamped boundangition.
Frequency Values (Hz)
(Clamped Boundary Condition)

NIL\J/Ir(T)]ngS Square Rectangular Skew  Circular Elliptic  Annular  Triangular
Mode 1  12.11 16.54 13.44 10.81 14.48 71.13 14.42
Mode 2  24.76 21.45 23.87 22.52 20.93 71.90 27.57
Mode 3  24.76 30.26 30.74 22.60 29.81 71.98 27.57
Mode 4  36.51 43.12 34.94 37.06 37.00 74.62 43.13
Mode 5  44.78 43.15 48.50 42.36 41.09 78.69 46.05
Mode 6  55.82 59.73 54.58 64.99 55.19 198.24 69.82

Table 4. Frequency values for various plates for simplysuted boundary conditions.

Normalized Frequency Values

(Simply Supported Boundary Condition)

NIL\J/Ir(T)]ngS Square Rectangular Skew  Circular Elliptic  Annular  Triangular
Mode 1 1.25 1.58 1.37 1.00 1.34 6.14 1.45
Mode 2 1.30 1.07 1.22 1.14 1.00 2.80 1.42
Mode 3 1.15 1.49 1.43 1.00 1.41 2.46 1.24
Mode 4 1.11 1.16 1.03 1.12 1.00 1.64 1.30
Mode 5 1.10 1.10 1.19 1.03 1.00 1.50 1.09
Mode 6 1.05 1.01 1.00 1.24 1.05 3.05 1.19
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Table5: Frequency values for various plates for clampaghdary conditions.

Normalized Frequency Values
(Clamped Boundary Condition)

Nll\J/lrﬁngs Square Rectangular Skew  Circular Elliptic  Annular Triangular
Mode 1 1.12 1.53 1.24 1.00 1.34 6.58 1.33
Mode 2 1.18 1.02 1.14 1.08 1.00 3.44 1.32
Mode 3 1.10 1.34 1.36 1.00 1.32 3.18 1.22
Mode 4 1.04 1.23 1.00 1.06 1.06 2.14 1.23
Mode 5 1.09 1.05 1.18 1.03 1.00 1.92 1.12
Mode 6 1.02 1.09 1.00 1.19 1.01 3.63 1.28

Table6: Increase in frequency values when boundary candis changed from simply

supported to clamped.

Increase in Frequency Values (%)

Nhﬂrzggrs Square Rectangular Skew  Circular Elliptic  Annular  Triangular
Mode 1 67.73 82.56 70.56 88.00 88.54 101.62 72.90
Mode 2  45.90 53.87 50.41 51.96 60.75 97.36 49.59
Mode 3  45.90 36.00 44.66 52.50 42.70 97.15 49.51
Mode 4  33.98 51.67 38.38 35.01 51.21 85.99 36.06
Mode5  31.55 26.95 31.33 32.25 32.25 68.79 35.76
Mode 6  26.75 40.81 30.54 25.58 25.57 55.00 40.65
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Mode 1 for CCCC Square Plate
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Mode 1 for CCC Triangular Plate Mode 2 for CCC Triangular Plate

Mode 3 for CCC Triangular Plate

Figure 16: Mode shapes for clamped triangular plate: a) Mpd®IMode 2, c) Mode 3

4. CONCLUSION

In this study, shape effect on free vibration bédtwawf functionally graded plates is
investigated. Square, rectangular, skew, circaiiptical, annular and equilateral triangular
plates with the same surface area and thicknessoaedered. Frequency values for simply
supported and clamped boundary conditions are caadgar lowest six vibration modes.

For simply supported and clamped boundary conditiamnular plate has the highest
frequency values. Frequency values of annular @ledeabout 5-7 times higher than those of
other FGM plates. Although circular plate has tbevdst frequency values, there is no
significant difference in frequency values of seaectangular, skew, circular, elliptical and
equilateral triangular FGM plates.

Also it is observed that when boundary conditioncieanged from simply supported to

clamped, frequency values increase. Increase quémcy values is the highest for Mode 1
and is getting lower towards Mode 6. That is thgetpf boundary condition has most effect
on frequency values of lowest modes. Values of érighodes are less affected. Outcome of
this study can be useful for designers that haeediom to choose the plate shape in
engineering applications.
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