
Hasan Kurtaran, PhD 

52 
 

 
 

 
 

 

 

 

  
 

 

 

SHAPE EFFECT ON FREE VIBRATION OF FUNCTIONALLY GRADED PLATES  

Hasan Kurtaran 

Department of Mechanical Engineering, Gebze Technical University, Gebze-Kocaeli, Turkey 
E-mail address:  hasan@gyte.edu.tr 

 
Received date: April 2014 

 Accepted date: December 2014 

Abstract 

In this article, shape effect on free vibration behavior of functionally graded plates is investigated. Square, 
rectangular, skew, circular, elliptical, annular and equilateral triangular plates with the same surface area and 
thickness are considered. Frequency values of these plates are compared for simply supported and clamped 
boundary conditions. Finite element method (FEM) is used in calculating frequency values and mode shapes. 
Since commercial codes do not allow inputting functionally graded material properties directly, MATLAB code 
was developed for FEM solution. Findings of this study can be useful for designers that have freedom to choose 
the plate shape in engineering applications. 

Keywords: Free Vibration, Plate, Functionally Graded Material, Finite Element Analyses. 

1. Introduction 

Functionally graded materials (FGMs) were developed to overcome problems such as high 
thermal residual stresses and stress concentrations at the interface of conventional composite 
materials.  FGMs are obtained by combining different sets of materials commonly metal with 
ceramic.  In FGMs desirable mechanical properties are achieved by changing volume fraction 
gradually through the thickness.  Mechanical properties in FGMs are expressed with various 
mathematical functions such as power law form of distribution. 

Due to importance, bending, vibration, buckling etc. behavior of FGM plates received great 
attention in the last decade.  Many studies were conducted to investigate the free vibration 
behavior of various plate shapes such as rectangular, skew, circular, elliptical and annular 
plates. Yang et al. [1] investigated the dynamic response of initially stressed functionally 
graded rectangular thin plates subjected to partially distributed impulsive lateral loads.  
Hosseini et al. [2, 3] obtained closed form solution of moderately thick and thick rectangular 
FGM plates for free vibration. Sheikholeslami et al. [4] investigated free vibration of 
functionally graded thick rectangular plates with an analytical approach. Huang et al. [5] 
investigated three-dimensional (3-D) vibrations of rectangular parallelepipeds of functionally 
graded material with Ritz method. Latifi et al. [6] investigated buckling of thin rectangular 
functionally graded plates. Kim, Y. W. [7] investigated vibration characteristics of initially 
stressed functionally graded rectangular plates in thermal environment with the Rayleigh–Ritz 
procedure. Sundararajana et al. [8] investigated free vibration characteristics of functionally 
graded material rectangular and skew plates subjected to thermal environment analytically 
and numerically. Upadhyay et al. [9] investigated nonlinear static and dynamic behavior of 
functionally graded skew plates. Singha et al. [10] investigated the large amplitude free 
flexural vibration behavior of symmetrically laminated composite skew plates using the finite 
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element method. Ganapathia et al. [11] investigated thermal buckling of functionally graded 
skew plate with the finite element approach. Nie et al. [12] investigated the three-dimensional 
free and forced vibration analysis of functionally graded circular plate for various boundary 
conditions with semi-analytical approach. Allahverdizadeh et al. [13, 14] employed a semi-
analytical approach for nonlinear free and forced axisymmetric vibration of a thin circular 
functionally graded plate. Zhu et al. [15] investigated free vibration analysis of functionally 
graded circular plates in thermal environments with a local Kriging meshless method. Talabi 
et al. [16] investigated free vibration of thick circular FGM plates analytically. Matsunaga H. 
[17] investigated vibration and buckling of FGM circular cylindrical shells. Hosseini-Hashemi 
et al. [18] investigated closed-form solution of frequency equation for free vibration analysis 
of circular/annular moderately thick FGM plates. Patel et al. [19] investigated the free 
vibration characteristics of functionally graded elliptical cylindrical shells using finite 
element. Hsieh et al. [20] investigated static behavior of FGM elliptical plate using 
approximation method. Zhang D-G. [21] investigated non-linear bending analysis for super 
elliptical thin plates with Ritz method. Ceribasi et al. [22] investigated static behavior of 
clamped superelliptical plates with Galerkin's method. Nie et al. [23] investigated free and 
forced vibration of functionally graded annular sectorial plates using a semi-analytical 
approach. Nie et al. [24] investigated dynamic analysis of multi-directional functionally 
graded annular plates using a semi-analytical numerical method. Hosseini-Hashemi et al. [25] 
investigated an analytical solution for free vibration analysis of stepped circular and annular 
FG plates. Jodaeia et al. [26] investigated three-dimensional vibration analysis of functionally 
graded annular plates using state-space based differential quadrature method. Ebrahimi et al. 
[27] investigated free vibration analysis of moderately thick annular functionally graded plate 
with piezoelectric layers. Tajeddini et al. [28] investigated free vibration analysis of thick 
circular and annular functionally graded plates with variable thickness using elasticity theory. 
Belalia et al. [29] investigated nonlinear free vibration analysis of functionally graded sector 
plates with p-version of the finite element.  

Regarding vibration of triangular FGM plates, to the author’s knowledge no study is 
available. In this study free vibration behavior of various FGM plates is analyzed. Frequencies 
of square, rectangular, skew, circular, elliptical, annular plates as well as equilateral triangular 
plate are calculated and compared with each other for simply support and clamped boundary 
conditions. In the analytical studies of FGM plates, often Poisson’s ratio is assumed to be 
constant in contrast to elastic modulus and density to make solution easier. In this study, this 
limitation is also overcome by using FEM and numerical integration procedures. 

2. FINITE ELEMENT EQUATION FOR FREE VIBRATION 

2.1 Displacements and Strains 

In this study, free vibration analyses of square, rectangular, skew, circular, elliptical, annular 
and equilateral triangular plates are carried out with FEM. Free vibration analyses are 
conducted using 4-node quadrilateral shell element shown in Fig. (1). For a 4-node 
quadrilateral shell element stiffness and mass matrices that are needed in modal analyses are 
derived as following. 
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Figure 1:  4-node quadrilateral shell element. 

Displacements at a general point (x, y, z) in a shell element as shown in Fig. (1) can be stated 
as 
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where u0, v0, w0 are displacements of mid-plane of the shell in x, y, z directions respectively 
and θx, θy are rotations of mid-plane in x-z and y-z plane respectively.  

For thick plates using First Order Shear Deformation Theory (FSDT), strain-displacement 
relationships can be written as 
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2.2 Equation of Motion 

Free vibration equation can be obtained from the dynamic version of virtual work as 

                                                      0=+ TU δδ                                  (3) 
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Where δU and δT indicate virtual work of internal and inertial forces respectively. Virtual 
work of internal forces in terms of stresses and strains in element domain A is given as [30]. 

    

( ) ( ) ( )
dxdydz

zzz
U

A

h

h zxzxyzyz

xyxyxyyyyyyyxxxxxx

∫ ∫
























+

++++++
=

−

2/

2/
)0()0(

)1()0()1()0()1()0(

δγσδγσ

δγδγσδεδεσδεδεσ
δ

     (4) 

Eq. (4) can also be written in terms of stress resultants as 
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Stress resultants (Nxx, Nyy, Nxy, Mxx, Myy, Mxy, Qx, Qy) in Eq. (5) are defined as  
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In Eq. (6-7) C is material matrix for plane stress case and in Eq. (8) Cs is material matrix for 
transverse shear for functionally graded material. In Eq. (8) ks is the shear correction factor 
and it is equal to (5/6) for rectangular sections. 

Virtual work of inertial forces is expressed as 

    
( ) ( ) dxdydzwwzvzvzuzuzT

A

h

h

yyxx∫ ∫















 ++






 +++






 +=
−

2/

2/

..

0

..

0

..

0

..

0

..

)( δδθδθδθδθρδ
     (9) 

where ρ indicates the density of functionally graded material. Material properties vary in 
thickness direction in functionally graded materials. In finite element method displacement 
and rotations within the element are obtained through the following interpolation functions; 
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where Ni indicate shape functions and ui, vi, wi, θxi, θyi  are nodal displacement and rotations. 
If nodal displacement and rotations of the element are denoted as the vector of
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written in terms of nodal displacement vector as 
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where B0 , B1 and Bs matrices are given in terms of shape function derivatives as 
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Using the aforementioned equations and virtual work definition, stiffness K and mass M 
matrices for quadrilateral shell element are written as 
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X0 matrix in Eq. (18) is given as 
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and X1 matrix in Eq. (18) is given as 
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Using the derived stiffness and mass matrices, free vibration equation is given as 

                                                                              0
..

=+ KUUM                               (21) 

where 
..

U  and U indicate nodal accelerations and displacements respectively. Since mass and 
stiffness matrices are higher order function of x, y and z, they are often calculated 
numerically, e.g.  using Gauss Quadrature rule. In numerical integration full integration is 
applied to mass matrix as well as to the in-plane terms of stiffness matrices while reduced 
integration is applied to the transverse shear terms of the stiffness matrix. 

In free vibration, frequencies are solved from the following eigenvalue problem 

                                                       [ ] 02 =+− UKMω                                                     (22) 

where ω indicates the frequency value.  In this study eigenvalue problem is solved by Matrix 
Iteration Method [21]. 

Since commercial FEM codes do not allow directly inputting FGM properties, a FEM 
computer code was developed to implement finite element method and solve frequency 
equation.  Developed program was validated with the analytical results for free vibration of 
circular and annular FGM plates in Hashemi et al. article [22]. 

3.  FREE VIBRATION ANALYSIS 
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In this section, modal analyses of square, rectangular, skew, circular, elliptical, annular and 
equilateral triangular FGM plates shown in Fig. (2) are conducted for simply support and 
clamped boundary conditions. For a fair comparison the same surface area of 100 m2 and 
thickness value of 0.1 m were used for all FGM plates in this study. Characteristic dimensions 
of plates are shown in Fig. (2) and their specific values are given as following.   

                                                                                                                              

                        

Figure 2:  Plate shapes: a) Square,  b) Rectangle,  c) Skew,  d) Circular,  e) Elliptic,  f) Annular,  g) 
Triangular 

In Fig. (2) a and b indicate side lengths in square, rectangle, skew and triangular plates. R 
indicates radius of circular plate. Ri and Ro indicate inner and outer radius of annular plate.  
In square plate a=10 m, in rectangular plate a=14.142 m and b=a/2, in skew plate a=10.745 m 
and skewness angle α=30°, in circular plate R=5.641 m, in elliptic plate a=7.9788 m and 
b=a/2, in annular plate Ro=6.514 m and Ri = Ro/2, in equilateral triangular plate a=15.196 m.   

In FGMs, material property such as elastic modulus, Poisson’s ratio and density change in 
thickness direction. Material property at a distance z within the thickness can be given by a 
power law distribution function as below 
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where Pc and Pm are material properties for ceramic and metal materials respectively, n is the 
volume fraction exponent of the FGM and h is the thickness of the plate. FGM material 
properties given in Table 1 along with the parameter value of n=2 are used in this study. 

Table 1: FGM material properties. 

 Ceramic Aluminum 

Elastic modulus (GPa) 390 70 
Poisson’s ratio 0.26 0.34 
Density (kg/m3) 3900 2700 
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In free vibration analyses, for simply support boundary condition, only nodal displacements at 
boundaries are constrained as below 

                                                              0=== iii wvu                                                       (24) 

For clamped boundary condition, both nodal displacements and rotations at boundaries are 
constrained as below 

                                                  0===== yixiiii wvu θθ                                        (25)                                                     

Frequency values of FGM plates for six mode shapes are given in Tables 2-3 and 
corresponding mode shapes are shown in Fig. (3-16). To save space only three mode shapes 
are shown in figures. In Fig. (3-16) SSSS, SSSS, SSSS, S, S, SS, SSS indicate clamped 
boundary condition for square, rectangular, skew, circular, elliptic, annular and triangular 
respectively. CCCC, CCCC, CCCC, C, C, CC, CCC indicate simply supported boundary 
condition for square, rectangular, skew, circular, elliptic, annular and triangular respectively. 

Normalized frequency values for six mode shapes are given in Tables 4-5. For simply 
supported boundary condition, it is seen from Table 2 that annular plate has the highest 
frequency value followed by rectangular-triangular-skew-elliptic-square-circular plates for 
Mode 1 shape. For Mode 2, annular plate has the highest frequency value followed by 
triangular-square-skew- circular-rectangular-elliptic plates. For Mode 3, annular plate has the 
highest frequency value followed by rectangular-skew-elliptic-triangular-square-circular 
plates. For Mode 4, annular plate has the highest frequency value followed by triangular-
rectangular-circular-square-elliptic-skew plates. For Mode 5, annular plate has the highest 
frequency value followed by skew-square-rectangular-triangular-circular-elliptic plates. For 
Mode 6, annular plate has the highest frequency value followed by circular-triangular-square-
elliptic-rectangular-skew plates.  

For clamped boundary condition, it is seen from Table 3 that annular plate has the highest 
frequency value followed by rectangular-elliptic-triangular-skew-square-circular plates for 
Mode 1 shape. For Mode 2, annular plate has the highest frequency value followed by 
triangular-square-skew-circular-rectangular-elliptic plates. For Mode 3, annular plate has the 
highest frequency value followed by skew-rectangular-elliptic-triangular-square-circular 
plates. For Mode 4, annular plate has the highest frequency value followed by triangular-
rectangular-circular-elliptic-square-skew plates. For Mode 5, annular plate has the highest 
frequency value followed by skew-triangular-square-rectangular-circular-elliptic plates. For 
Mode 6, annular plate has the highest frequency value followed by triangular-circular-
rectangular-square-elliptic-skew plates.  

Also from Table 6 it is clear that when boundary condition is changed from simply supported 
to clamped, frequencies increase. Increase is the highest for Mode 1 and is getting lower 
towards Mode 6. 
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Table 2: Frequency values of plates for simply supported boundary condition. 

Frequency Values (Hz) 
(Simply Supported Boundary Condition) 

Mode 
Numbers 

Square Rectangular Skew Circular Elliptic Annular Triangular 

Mode 1 7.22 9.06 7.88 5.75 7.68 35.28 8.34 

Mode 2 16.97 13.94 15.87 14.82 13.02 36.43 18.43 

Mode 3 16.97 22.25 21.25 14.82 20.89 36.51 18.44 

Mode 4 27.25 28.43 25.25 27.45 24.47 40.12 31.70 

Mode 5 34.04 33.99 36.93 32.03 31.07 46.62 33.92 

Mode 6 44.04 42.42 41.81 51.75 43.95 127.90 49.64 

 

Table 3: Frequency values of plates for clamped boundary condition. 

Frequency Values (Hz) 
(Clamped Boundary Condition) 

Mode 
Numbers 

Square Rectangular Skew Circular Elliptic Annular Triangular 

Mode 1 12.11 16.54 13.44 10.81 14.48 71.13 14.42 

Mode 2 24.76 21.45 23.87 22.52 20.93 71.90 27.57 

Mode 3 24.76 30.26 30.74 22.60 29.81 71.98 27.57 

Mode 4 36.51 43.12 34.94 37.06 37.00 74.62 43.13 

Mode 5 44.78 43.15 48.50 42.36 41.09 78.69 46.05 

Mode 6 55.82 59.73 54.58 64.99 55.19 198.24 69.82 

 

Table 4: Frequency values for various plates for simply supported boundary conditions. 

Normalized Frequency Values 
 (Simply Supported Boundary Condition) 

Mode 
Numbers 

Square Rectangular Skew Circular Elliptic Annular Triangular 

Mode 1 1.25 1.58 1.37 1.00 1.34 6.14 1.45 

Mode 2 1.30 1.07 1.22 1.14 1.00 2.80 1.42 

Mode 3 1.15 1.49 1.43 1.00 1.41 2.46 1.24 

Mode 4 1.11 1.16 1.03 1.12 1.00 1.64 1.30 

Mode 5 1.10 1.10 1.19 1.03 1.00 1.50 1.09 

Mode 6 1.05 1.01 1.00 1.24 1.05 3.05 1.19 
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Table 5: Frequency values for various plates for clamped boundary conditions.  

Normalized Frequency Values 
 (Clamped Boundary Condition) 

Mode 
Numbers 

Square Rectangular Skew Circular Elliptic Annular Triangular 

Mode 1 1.12 1.53 1.24 1.00 1.34 6.58 1.33 

Mode 2 1.18 1.02 1.14 1.08 1.00 3.44 1.32 

Mode 3 1.10 1.34 1.36 1.00 1.32 3.18 1.22 

Mode 4 1.04 1.23 1.00 1.06 1.06 2.14 1.23 

Mode 5 1.09 1.05 1.18 1.03 1.00 1.92 1.12 

Mode 6 1.02 1.09 1.00 1.19 1.01 3.63 1.28 

 

Table 6: Increase in frequency values when boundary condition is changed from simply 
supported to clamped. 

Increase in Frequency Values (%) 

Mode 
Numbers 

Square Rectangular Skew Circular Elliptic Annular Triangular 

Mode 1 67.73 82.56 70.56 88.00 88.54 101.62 72.90 

Mode 2 45.90 53.87 50.41 51.96 60.75 97.36 49.59 

Mode 3 45.90 36.00 44.66 52.50 42.70 97.15 49.51 

Mode 4 33.98 51.67 38.38 35.01 51.21 85.99 36.06 

Mode 5 31.55 26.95 31.33 32.25 32.25 68.79 35.76 

Mode 6 26.75 40.81 30.54 25.58 25.57 55.00 40.65 

 

 

 

-a-       -b-        -c- 

Figure 3: Mode shapes for simple support square plate a) Mode1,  b) Mode 2,  c) Mode 3 
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-a-       -b-        -c- 

Figure 4: Mode shapes for clamped square plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

 

-a-       -b-        -c- 

Figure 5: Mode shapes for simple support rectangular plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

 

 

-a-       -b-        -c- 

Figure 6: Mode shapes for clamped rectangular plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

 

-a-       -b-        -c- 

Figure 7: Mode shapes for simple support skew plate a) Mode1,  b) Mode 2,  c) Mode 3 
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-a-       -b-        -c- 

Figure 8: Mode shapes for clamped skew plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

-a-       -b-        -c- 

Figure 9: Mode shapes for simple support circular plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

 

-a-       -b-        -c- 

Figure 10: Mode shapes for clamped circular plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

 

-a-       -b-        -c- 

Figure 11: Mode shapes for simple support elliptic plate a) Mode1,  b) Mode 2,  c) Mode 3 
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-a-       -b-        -c- 

Figure 12: Mode shapes for clamped elliptic plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

 

-a-       -b-        -c- 

Figure 13: Mode shapes for simple support annular plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

 

-a-       -b-        -c- 

Figure 14: Mode shapes for clamped annular plate a) Mode1,  b) Mode 2,  c) Mode 3 

 

 

-a-       -b-        -c- 

Figure 15: Mode shapes for simple support triangular plate a) Mode1,  b) Mode 2,  c) Mode 3 
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-a-       -b-        -c- 

Figure 16: Mode shapes for clamped triangular plate: a) Mode1,  b) Mode 2,  c) Mode 3 

 

4. CONCLUSION 

In this study, shape effect on free vibration behavior of functionally graded plates is 
investigated.  Square, rectangular, skew, circular, elliptical, annular and equilateral triangular 
plates with the same surface area and thickness are considered. Frequency values for simply 
supported and clamped boundary conditions are compared for lowest six vibration modes. 

For simply supported and clamped boundary conditions annular plate has the highest 
frequency values. Frequency values of annular plate are about 5-7 times higher than those of 
other FGM plates. Although circular plate has the lowest frequency values, there is no 
significant difference in frequency values of square, rectangular, skew, circular, elliptical and 
equilateral triangular FGM plates. 

Also it is observed that when boundary condition is changed from simply supported to 
clamped, frequency values increase. Increase in frequency values is the highest for Mode 1 
and is getting lower towards Mode 6. That is the type of boundary condition has most effect 
on frequency values of lowest modes. Values of higher modes are less affected. Outcome of 
this study can be useful for designers that have freedom to choose the plate shape in 
engineering applications. 
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