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Abstract 

In this study, free vibration analysis of an edge cracked functionally graded cantilever beam resting on Winkler-

Pasternak foundation. Material properties of the beam change in the thickness direction according to exponential 

distributions. The differential equations of motion are obtained by using Hamilton’s principle. The considered problem is 
investigated within the Euler-Bernoulli beam theory by using finite element method. The cracked beam is modeled as an 

assembly of two sub-beams connected through a massless elastic rotational spring. In the study, the effects of the location 

of crack, the depth of the crack, foundation stiffness and various material distributions on the natural frequencies and the 

mode shapes of the cracked functionally graded beams are investigated in detail. 
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1. Introduction 

 

Structural elements are subjected to destructive effects in the form of initial defects within the 

material or caused by fatigue or stress concentration. As a result of destructive effects, cracks occur 

in the structural elements. It is known that a crack in structure elements introduces a local flexibility, 

becomes more flexible and its dynamic and static behaviors will be changed. Cracks cause local 

flexibility and changes in structural stiffness. Therefore, understanding the mechanical behavior and 

the safe performance of edge-cracked structures is importance in designs. 
 

Functionally graded materials (FGMs) are a new generation of composites where the volume fraction 

of the FGM constituents vary gradually, giving a non-uniform microstructure with continuously 

graded macro properties such as elasticity modulus, density, heat conductivity, etc.. Typically, in a 

FGM, one face of a structural component is ceramic that can resist severe thermal loading and the 

other face is metal which has excellent structural strength. FGMs consisting of heat-resisting ceramic 

and fracture-resisting metal can improve the properties of thermal barrier systems because cracking 

and delamination, which are often observed in conventional layered composites, are reduced by 

proper smooth transition of material properties. Since the concept of FGMs has been introduced in 

1980s, these new kinds of materials have been employed in many engineering application fields, 

such as aircrafts, space vehicles, defense industries, electronics and biomedical sectors, to eliminate 

stress concentrations, to relax residual stresses, and to enhance bonding strength. Because of the wide 

material variations and applications of FGMs, it is important to study the responses of FGM 
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structures to mechanical and other loadings. With the increased use of FGMs, understanding the 

mechanical behavior and safe performance of cracked FGM structures is very important. 

 

In the literature, the free vibration and dynamic behavior of homogeneous cracked beams have been 

extensively studied [1-17]. In recent years, the dynamic behavior of cracked FGM beams has been a 

topic of active research. Sridhar et al. [18] developed an effective pseudo-spectral finite element 

method for wave propagation analysis in anisotropic and inhomogeneous structures with or without 

vertical and horizontal cracks. Briman and Byrd [19] studied the effect of damage on free and forced 

vibrations of a functionally graded cantilever beam. Yang et al. [20] investigated an analytical study 

on the free and forced vibration of inhomogeneous Euler–Bernoulli beams containing open edge 

cracks that the beam is subjected to an axial compressive force and a concentrated transverse load 

moving along the longitudinal direction. Yang and Chen [21] investigated free vibration and 

buckling analysis of FGM beams with edge cracks by using Bernoulli–Euler beam theory and the 

rotational spring model. Free vibration and elastic buckling of beams made of FGM containing open 

edge cracks are studied within Timoshenko beam theory by Ke et al. [22]. Yu and Chu [23] studied 

the transverse vibration characteristics of a cracked FGM beam by using the p-version of finite 

element method. Ke et al. [24] investigated the post-buckling analysis of FGM beams with an open 

edge crack based on Timoshenko beam theory and von Kármán nonlinear kinematics by using Ritz 

method. Ferezqi et al. [25] studied an analytical investigation of the free vibrations of a cracked 

Timoshenko beam made up of FGM. Yan et al. [26] studied dynamic response of FGM beams with 

an open edge crack resting on an elastic foundation subjected to a transverse load moving at a 

constant speed. Akbaş [27] investigated static analysis of an edge cracked FGM beam resting on 

Winkler foundation by using finite element method. Yan et al. [28] investigated the nonlinear 

flexural dynamic behavior of a clamped Timoshenko beam made of FGM with an open edge crack 

under an axial parametric excitation which is a combination of a static compressive force and a 

harmonic excitation force based on Timoshenko beam theory and von Kármán nonlinear kinematics. 

Wei et al. [29] studied the free vibration of cracked FGM beams with axial loading, rotary inertia and 

shear deformation by using an analytical method. Akbaş [30,31] studied geometrically nonlinear and 

post-buckling analysis of edge cracked FG Timoshenko beams. Akbaş [32,33] investigated free 

vibration and wave propagation of  edge cracked FG beams. 

 

In this study is the effect of the parameter of Winkler-Pasternak foundation on natural frequencies 

and cracks in detail. To obtain more realistic answers and understand to edge cracked FGM beam, 

more the parameter of FGM property distribution must be used in numerical results. Hence, a lot of 

the parameters of FGM property distribution are used in this study. 
 

The differential equations of motion are obtained by using Hamilton’s principle. The considered 

problem is investigated within the Euler-Bernoulli beam theory by using finite element method. The 

cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic 

rotational spring. Material properties of the beam change in the thickness direction according to 

exponential distributions. In the study, the effects of the location of crack, the depth of the crack, 

foundation stiffness and various material distributions on the natural frequencies and the mode 

shapes of the functionally graded beams are investigated in detail.  
 

2. Theory and Formulations 

 

Consider a cantilever FGM beam of length L, width b, thickness h, containing an edge crack 

of depth a located at a distance 1L  from the left end, resting on Winkler-Pasternak foundation 

with spring constants wk  and pk , as shown in Figure 1. It is assumed that the crack is 
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perpendicular to beam surface and always remains open. When the Pasternak foundation 

spring constant pk 0 , the foundation model reduces to Winkler type. 

 

 
 

Figure 1: A cantilever FGM beam with an open edge crack resting on Winkler-Pasternak foundation 

and cross-section. 
 

In this study, Young’s modulus ( )YE  and mass density ( )Y  vary continuously in the 

thickness direction (Y axis) according to exponential distributions as follows; 
 

                                   
0

( )
YE Y E e , 

0
( )

YY e                                 (1) 

 

where 0E  and 0   are the Young’s modulus and mass density at the midplane (Y=0) of the 

beam.  is a constant characterizing the gradual variation of the material properties along 

thickness direction. When 0 , the material of the beam is homogeneous. According to Eq. 

(1) that when / 2Y h , BE E  and B  ( BE  and B  are the Young’s modulus and 

mass density of the bottom). When / 2Y h , TE E  and T  ( TE  and T  are the 

Young’s modulus and mass density of the top).  

 

According to the coordinate system (X,Y,Z)  shown in figure 1, based on Euler-Bernoulli 

beam theory, the axial and the transverse displacement  field are expressed as 
 

                                  
0

0

( , )
-( , , ) ( , )

v X t
u u Y

X
X Y t X t                                   (2)  

 

                                               0
( , , ) ( , )v vX Y t X t                                (3) 

 

Where 0u  and 0v  are the axial and the transverse displacements in the mid-plane, t  indicates 

time. Using Eq. (2) and (3), the linear strain- displacement relation can be obtained: 

 

                                    

2

0 0

2

( , ) ( , )
xx

u X t v X tu
Y

X X X
                              (4) 

 

According to Hooke’s law, constitutive equations of the FGM beam are as follows: 
 

                  

2
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Where xx and xx are normal stresses and normal strains in the X direction, respectively. 

Based on Euler-Bernoulli beam theory, the elastic strain energy (V) and kinetic energy (T) of 

the FGM beam resting on Winkler-Pasternak foundation are expressed as 
 

    

2

2

0 0 0

1 1 1 ( , )
( ( , )) dX dX

2 2 2

L L L

xx xx w p

A

v X t
V dAdX k v X t k

x
              (6) 

                                    

2 2

0 A

1

2

L
u v

T Y dAdX
t t

                                        (7) 

 

With applying Hamilton’s principle, the differential equations of motion are obtained as 

follows: 
 

                          

2 2 2 2

0 0 0 0
1 22 2 2 2XX XX

u v u v
A B I I

X X X t t X
                              (8) 

 

2 2 22 2 2
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0 3 12 2 2 2 2 2XX XX w p

u v v v v
B D k v k I I

X X X X X t X t
           (9) 

 

The stiffness components are defined as 
  

                                   
2( , , ) (1, , )( )

A

XX XX XXB Y YE Y dAA D                                      (10) 

                                           
2

1 2 3( , , ) (1, , )

A

I Y YY dAI I                      (11) 

 

The displacement field of the finite element shown is expressed in terms of nodal 

displacements as follows: 
 

                                  
1

( )
0

( ) ( )
1 2 2( , ) ( ) ( ) ( ) ( )e U U

X t X t X tu u u                                    (12) 

          ( ) ( ) ( ) ( ) ( )
0 1 1 2 1 3 2 4 2( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
e V V V V

X t X t X t X t X tv v v          (13) 
 

where iu , iv  and i  are axial displacements, transverse displacements and slopes at the two 

end nodes of the beam element, respectively. ( )U
i  and ( )V

i  are interpolation functions for 

axial and transverse degrees of freedom, respectively, which are given in Appendix. Two-

node beam element shown in Figure 2. 

 

 
Figure 2: A two-node beam element 

 

With using the standard procedure of the Galerkin finite element method, the stiffness matrix 

and the mass matrix are obtained according to Eqs. (8) and (9). The equation of motion as 

follows: 
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                                                     { } { } 0q qK M                                (14) 

where K  is the stiffness matrix and [M] is the mass matrix. { }q  is nodal displacement vector 

which as follows 

           { } { , , }Tq u v                                                              (15) 

 

The stiffness matrix K  can be expressed as a sum of three submatrices as shown below: 

                                                
w pb

K K K K                                                  (16) 

Where 
( )b

K , 
( )w

K and 
( )pK  are beam stiffness matrix, Winkler foundation stiffness 

matrix and Pasternak foundation stiffness matrix, respectively. Explicit forms of [K] are given 

in Appendix. The mass matrix M  can be expressed as a sum of four sub-matrices as shown 

below: 

                                            U V UM M M M M                                       (17) 

 

Where UM , VM  and M  are the contribution of u, v and   degree of freedom to the 

mass matrix, 
UM  is coupling mass matrix due to coupling between u and . Explicit forms 

of M  are given in Appendix.   

 

The cracked beam is modeled as an assembly of two sub-beams connected through a massless 

elastic rotational spring shown in figure 3. 

 

 
Figure 3. Rotational spring model. 

 

The bending stiffness of the cracked section Tk  is related to the flexibility G by 

                                                            

1
T

k
G

                                             (18) 

Cracked section’s flexibility G can be derived from Broek’s approximation [34]: 

 

                                                   

2 2 2
1 dG

2 da

( )

( )

I
K M

E a
                                                   (19) 

where M  is the bending moment at the cracked section, IK  is the stress intensity factor (SIF) 

under mode I bending load and is a function of the geometry, the loading, and the material 

properties as well.  indicates Poisson’s ratio which  is taken to be constant since its 

influence on the stress intensity factors is quite limited [35]. For an FGM strip with an open 

edge crack under bending, the analytical solution and the expression of SIF is given Yu And 

Chu [23] that obtained from the data given by Erdogan and Wu [35] through Lagrange 

interpolation technique: 
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                                          2

6
( , / )

I R

M
K a F

bh
E a h                                                   (20) 

 

Where a  is depth of crack, RE  is the ratio of Young’s modulus of bottom and top surfaces of 

the beam ( /B TE E ) and F  is an unknown function of two independent variables. The 

function F  is can be expressed as follows [23]; 
 

          

2 3 2

2 2 3

1 2 3 4 5 6

7 8 9 10 11

ln [ln ] [ln ] / /

1 ln [ln ] / / /

( ) ( ) ( ) ( ) ( )
( , / )

( ) ( ) ( ) ( ) ( )

R R R

R R

R

p p E p E p E p a h p a h
F

p E p E p a h p a h p a h
E a h          (21)  

                   

Where the coefficients 1p , 2p , …, 10p , 11p =1.1732, -0.3539, 0.0289, -0.0061, 0.6625, 3.072,  

-0.0014, -0.0017, 1.9917, -0.3496, -3.0982 are given in Yu And Chu [23] that are determined 

by fitting Eq. (20) based on the least square method to the numerical values of the SIF for 

specific material gradients and normalized crack size given by Erdogan and Wu [35]. 

 

The spring connects the adjacent left and right elements and couples the slopes of the two 

FGM beam elements at the crack location. In the massless spring model, the compatibility 

conditions enforce the continuities of the axial displacement, transverse deflection, axial force 

and bending moment across the crack at the cracked section ( 1X L ), that is, 

 

                                     1 2
u u , 1 2

v v , 1 2
N N , 1 2

M M                         (22) 
 

The discontinuity in the slope is as follows:  
 

                                     
1 2

1 2 1( )
T T

k k
dv dv

M
dX dX

                                    (23) 

Based on the massless spring model, the stiffness matrix of the cracked section as follows: 

                             
1/ 1/

[ ]
1/ 1/

T T

T T

Cr

k k

k k

G G
K

G G
                                  (24) 

 

The stiffness matrix of the cracked section is written according to the displacement vector: 

                                     1 2( )
{ } { , }T

Crq                                                                  (25) 

Where 1  and 2  are the angles of the cracked section. With adding crack model, the 

equations of motion for the finite element and by use of usual assemblage procedure the 

following system of equations of motion for the whole system can be obtained as follows: 

 

                                               
( )

( ){ } { } 0
Cr

q qK K M                                            (26) 

If the global nodal displacement vector { }q  is assumed to be harmonic in time with circular 

frequency , i.e { } { } i tq q e  becomes, after imposing the appropriate end conditions, an 

eigenvalue problem of the form: 
 

                                          
2

( )
( ){ } 0

Cr
qK K M                                                   (27) 
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Where { }q  is a vector of displacement amplitudes of the vibration. The dimensionless 

quantities can be expressed as 

     
2

0

10

L

D
I

, 
4

0

w
w

L

D

kk , 
2

0

p
p

L

D

k
k , X

X

L
, 

Y

h
Y , B

R

T

E
E

E , B
R

T

    (28) 

Where  is the dimensionless frequency, wk  is the dimensionless Winkler parameter, pk  is 

the dimensionless Pasternak parameter, RE  is the ratio of Young’s modulus of bottom and top 

surfaces of the beam, R  is the ratio of mass density of bottom and top surfaces of the beam. 

0
D  and 

10
I  indicate the value of XXD  and 1I  of an isotropic homogeneous beam. 

 

3. Numerical Results 

In the numerical examples, the natural frequencies and the mode shapes of the beams are 

calculated and presented in figures for various the effects of the location of crack, the depth of 

the crack, foundation stiffness and material distributions. The beam considered in numerical 

examples is made of Aluminum ( 70 ,E GPa 0.33, 32780 /kg m ) which the material 

constants change exponentially as in Eq. (1). The top surface of the FGM beam is Aluminum. 

In the numerical integrations, five-point Gauss integration rule is used. Unless otherwise 

stated, it is assumed that the width of the beam is 0.1b m , height of the beam is 0.1h m  

and length of the beam is 30L h  in the numerical results. In the numerical calculations, the 

number of finite elements is taken as n = 100. 
 

In figure 4, the effect of the dimensionless Winkler parameter wk  on the dimensionless 

fundamental frequency 1  of edge cracked FGM beams ( 2RE , / 0.6a h , 0pk ) are 

shown for various the crack location 1 /L L .  
 

 

Figure 4: The effect the dimensionless Winkler parameter wk  on the dimensionless fundamental 

frequency 1  for various the crack location 1 /L L . 

 

It is seen from figure 4 that the increasing the value of the dimensionless Winkler parameter 

wk  play important role on the fundamental frequency. With increase in the dimensionless 

Winkler parameter wk , the fundamental frequency increases. Because, with increasing the 

Winkler parameter wk , the beam gets more stiffer. Also, it is observed figure 4 that the 
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differences between of the crack location 1 /L L  decrease with increase the Winkler parameter 

wk . 

 

Figure 5 shows that the effect of the dimensionless Winkler parameter wk  on the 

dimensionless fundamental frequency 
1
 of edge cracked FGM beams ( 2RE , 

1 / 0.05L L , 0pk ) are shown for various the crack depth ratio /a h .  

 

 
Figure 5: The effect the dimensionless Winkler parameter 

wk  on the dimensionless fundamental 

frequency 1  for various the crack depth ratio /a h . 

 

It is seen from figure 5 that with the increasing the value of the dimensionless Winkler 

parameter wk , the differences between of the crack depth ratio /a h  decrease. Increases with 

the stiffness parameter of the foundation, the effects of the crack reduce.  

 

In Figure 6, the effect of the the dimensionless Winkler parameter 
wk  on the dimensionless 

fundamental frequency 1  of edge cracked FGM beams ( / 0.6a h , 1 / 0.05L L , 0pk ) 

are shown for 2RE  and 0.5RE . 
 

 

Figure 6: The effect the dimensionless Winkler parameter wk  on the dimensionless fundamental 

frequency 1  for 2RE  and 0.5RE . 
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It is seen from figure 6 that with increase in the value of the dimensionless Winkler parameter 

wk , the difference between the dimensionless fundamental frequency of 2RE  and 

0.5RE  decreases. It is shown results that the stiffness parameter of the foundation is very 

effective for reducing disadvantage of cracks. 
 

Figure 7 displays the effect of the dimensionless Winkler parameter wk  on the first and 

second normalized vibration mode shapes for 2RE , 1 / 0.05L L , / 0.6a h , 0pk .  

 

     

Figure 7: The effect the dimensionless Winkler parameter wk  on the a) first and b) second 

normalized vibration mode shapes. 

 

It is seen from figure 7 that with increase in the value of dimensionless Winkler parameter 

wk , vibration mode shapes change significantly. It is observed from the results, the stiffness 

parameter of the foundation is very effective for the mechanical behavior of the beam. It is 

observed from figure 7 that the dimensionless Winkler parameter wk   is more effective in 

first vibration mode than second vibration mode. 

 

In figure 8, the effect of the dimensionless Pasternak parameter pk  on the dimensionless 

fundamental frequency 1  of edge cracked FGM beams ( 2RE , / 0.6a h , 10wk ) are 

shown for various the crack location 1 /L L .  
 

 
Figure 8: The effect the dimensionless Pasternak parameter 

pk  on the dimensionless fundamental 

frequency 1  for various the crack location 1 /L L . 



Akbaş 

 10 

 

It is seen from figure 8 that with increase in the dimensionless Pasternak parameter pk , the 

fundamental frequency increases. Because, with increasing the Pasternak parameter pk , the 

beam gets more stiffer. The effect of Pasternak parameter pk  on the dimensionless 

fundamental frequency is less than Winkler parameter wk  for various the crack location 

1 /L L . 

 

Figure 9 shows that the effect of the dimensionless Pasternak parameter pk  on the 

dimensionless fundamental frequency 
1
 of edge cracked FGM beams ( 2RE , 

1 / 0.05L L , 10wk ) are shown for various the crack depth ratio /a h . In figure 10, the 

effect of the the dimensionless Pasternak parameter pk  on the dimensionless fundamental 

frequency 
1
 of edge cracked FGM beams ( / 0.6a h , 1 / 0.05L L , 10wk ) are shown 

for 2RE  and 0.5RE . 

 

 
Figure 9: The effect the dimensionless Pasternak parameter 

pk  on the dimensionless fundamental 

frequency 1  for various the crack depth ratio /a h . 

 

 
Figure 10: The effect the dimensionless Pasternak parameter 

pk   on the dimensionless fundamental 

frequency 1  for 2RE  and 0.5RE . 

 

It is seen from figure 9 and figure 10 that the stiffness parameter of the Pasternak foundation 

is not effective for reducing disadvantage of cracks, significantly. 
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Figure 11 displays the effect of the dimensionless Pasternak parameter 
pk  on the first and 

second normalized vibration mode shapes for 2RE , 1 / 0.05L L , / 0.6a h , 10wk .  
 

     
Figure 11: The effect the dimensionless Pasternak parameter 

pk  on the a) first and b) second 

normalized vibration mode shapes. 

 

It is seen from figure 11 that with increase in the value of dimensionless Pasternak parameter 

pk , vibration mode shapes change significantly. It is observed from figure 11 that the 

dimensionless Pasternak parameter 
pk  is more effective in second vibration mode than first 

vibration mode. 

 

4. Conclusions  

 

Free vibration analysis of an edge cracked FGM cantilever beam resting on Winkler-

Pasternak foundation are investigated within the Euler-Bernoulli beam theory by using finite 

element method. Material properties of the beam change in the thickness direction according 

to an exponential function. The differential equations of motion are obtained by using 

Hamilton’s principle. The cracked beam is modeled as an assembly of two sub-beams 

connected through a massless elastic rotational spring. The influences of the location of crack, 

the depth of the crack, foundation stiffness and various material distributions on the natural 

frequencies and the mode shapes of the FGM beams are examined in detail.  

The following conclusions are reached from the obtained results: 

 

(1) The crack locations and the crack depth have a great influence on the vibration 

characteristics of the FGM beam. 

 

(2) The stiffness parameter of Winkler foundation is very effective for reducing disadvantage 

of cracks. 

 

(3) The stiffness parameter of the Pasternak foundation is not effective for reducing 

disadvantage of cracks. 

 

(4) The stiffness parameters of the foundation have a great influence on vibration mode 

shapes. 

 

Appendix 
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The interpolation functions for axial degrees of freedom are 

( ) ( ) ( )

1 2( ) ( ) ( )
T

U U UX X X ,          (A1) 

 

where 

 

( )

1 ( ) 1U

e

X
X

L
,                      (A2) 

( )

2 ( )U

e

X
X

L
,                                 (A3) 

The interpolation functions for transverse degrees of freedom are 

( ) ( ) ( ) ( ) ( )

1 2 3 4( ) ( ) ( ) ( ) ( )
T

V V V V VX X X X X ,                             (A4) 

 

where 

( )

1

2 3

2 3
( )

3 2
1V

ee

X
X X

L L
,                    (A5) 

( )

2

2 3

3
( )

2V

e e

X
X X

L L
X ,                                          (A6) 

( )

3

2 3

32
( )

3 2V

e e

X
X X

LL
,                                                       (A7) 

( )

4

2 3

3
( )V

e e

X
X X

L L
,                                   (A8)

      

where eL  indicates the length of the finite beam element. The components of the stiffness 

matrix K : the beam stiffness matrix 
b

K , Winkler foundation stiffness matrix wK  and 

Pasternak foundation stiffness matrix pK  are as follows 

 

( ) ( )

( ) ( )

b T

A B
b b

B D
b b

K K

K K
K

,                      (A9) 

where 

( ) ( )

( )

0

e U U

b

TL

XX
A A

d d
K dX

dX dX
,                                          (A10) 

( ) ( )

( )

0

2

2

e V U

b

TL

XX
B B

d d
K dX

dXdX
                  (A11) 

( ) ( )

( )

0

2 2

2 2

e V V

b

TL

XX
D D

d d
K dX

dX dX
,                  (A12) 
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( ) ( )

0

e

V V

L
T

w wk dXK ,                   (A13) 

( ) ( )

0

e V V
TL

p pk
d d

dX
dX dX

K ,                  (A14) 

The components of the mass matrix M : UM , VM , M  and 
UM  are as follows 

( ) ( )
1

0

eL
T

U U
U I dXM                    (A15) 

( ) ( )
1

0

eL
T

V V

V I dXM                    (A16) 

( ) ( )

3

0

e
TL V Vd d

I
dX dX

dXM                   (A17) 

2

0

( ) ( )
( ) ( )

e
TL V VT

U U
U I

d d
dX

dX dX
M                (A18) 
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