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Abstract 

Aortas are the largest artery in the body and they carry the blood away which is pumped from the heart. Aorta 
artery is also the artery which is affected by the highest blood pressure. Its stability has a vital importance to 
humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. This situation 
causes to blackouts and serious permanent health problems. In this article, the buckling analysis of aorta artery 
is investigated by using Euler-Bernoulli beam theory for different boundary conditions.  The aorta artery is 
modeled as a cylindrical tube with different average diameters. Results are presented in figures and table. 

Keywords: Aorta artery, buckling, Euler-Bernoulli. 

1. Introduction 

Aorta artery is first mechanically modeled and its stability under blood pressure was studied 
to determine the critical buckling loads by Han in 2007 [1].  His researches showed that 
arteries may buckle and become tortuous due to reduced axial strain, hypertensive pressure, 
and a weakened wall. [2-9]. Han also has investigated the critical buckling by using nonlinear 
elastic thick-walled cylindrical model with residual stress which was developed by Han [3]. 
On the other hand, collapse of the vessel lumen and, the bent buckling of tubular arteries was 
recently reported [10-13]. The buckling of aorta artery causes additional wall stress and it 
leads to affect blood flow and cause extra loads to itself. In this study the simple classical 
Euler-Bernoulli buckling theory will be used in order to calculate the buckling loads of aorta 
artery for four different boundary conditions. In literature many researches about the buckling 
theory for small-scaled and micro-scaled structures [14-46] and rod, beam, plate, shell models 
are being used in order to determine the vibration of continuous systems. [47-52]  

 

2. Buckling analysis of aorta artery 

The demonstration of aorta artery and its continuum model are shown in Fig.(1) and 
Fig.(2). In order to calculate the critical buckling load of the model, Euler-Bernoulli beam 
theory is used. For modeling, L is the length of microtubules, Ri and Ro is inner and outer 
radius, Davg  average diameter, t thickness, E Young’s modulus. 
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Fig. 1. Demonstration of aorta artery  

 

Arteries are composed of three layers. These layers are intima, media and adventitia 
respectively from inside to outside of vessels (Fig.1). Intima is the intermost layer of the 
artery wich is covering the lumen side of vessels and it is composed of endothelial cells and 
lines the entire circulatory system, from the heart and the large arteries all the way down to 
the very tiny capillary beds. The intima layer also contain extracellular matrix and a 
supporting layer of collagenous tissue. Endothelial cells sorted in a single layer along the 
lumen side. Media is the muscular middle layer of the arteries and veins. It is composed of 
smooth muscle layers. Adventitia is outermost layer of vessels surrounding the media layer. It 
is mainly composed of collagen and, in arteries, is supported by external elastic lamina. 
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(a)                                                                               (b) 

 

 

(c)                                                                              (d) 

Fig. 2. Continuum model of aorta artery with variable boundary conditions  

 
 

The aorta artery has a curved cylindrical shaped structure in vivo. In this study the 
structure is modeled as homogenous, straight cylindrical shaped tube. Critical buckling loads 
are investigated for simply supported (Fig. 2(a)), clamped (Fig. 2(b)), popped (Fig. 2(c)) and 
cantilever (Fig. 2(d)) boundary conditions. 

 

3. Euler-Bernoulli formulation 

The buckling equation of a beam is: 
 

02

2

4

4


dx

ydP
dx

ydEI      (1) 

 

If setting 
EI
P

2  , Eq.(1) can be simplified as: 

 
02  ıııv yy       (2) 

If setting rxey  , Eq.(2) can be simplified as: 

 
0224  rxrx eBreBr      (3) 
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By reducing Eq.(3), we can obtain: 
 

0224  rr        (4) 
 

Solving Eq.(4), the result is: 
 

22 r      (5) 
02,1 r   and  ir 4,3   

  
2,1r  and 4,3r  are two pairs of single complex root of Eq.(4). 

     
By substitution roots into Eq.(5) and solving it, we obtain: 
 

4321 cossin CxCxCxCy         (6) 
 

1C , 2C , 3C , 4C are constants which can be obtained from boundary conditions. The first 
order derivative of Eq.(6) is: 

 
321 sincos' CxCxCy             (7) 

 
The second order derivative of Eq.(6) is: 
 

xCxCy  cossin'' 2
2

2
1      (8) 

 
The third order derivative of Eq.(6) is: 
 

xCxCy  sincos''' 3
2

3
1      (9) 

 
For a beam which is Clamped-Free supported, the boundary conditions would be as 

followed: 
 

0)0(')0(  yy ,  0)(')(''')('' 2  lylyly     (10) 
 

By substituting boundary conditions into Eq.(6), Eq.(7), Eq.(8) and Eq.(9) we obtain: 
 
 

0)0( 42  CCy      (11) 
0)0(' 31  CCy       (12) 

0cossin)('' 2
2

2
1  lClCly      (13) 

0)(')(''' 2
3

2   Clyly     (14) 
 

As it is mentioned above 1C , 2C , 3C , 4C are constants and we can obtain those constant 
by using Eq.(11), Eq.(12), Eq.(13) and Eq.(14). The solution is obtained as follow: 

 
0)cos(5 l      (15) 
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There are 2 possibilities which make the Eq.(15) equal to zero. 
 

 05        (16) 
0)cos( l       (17) 

 

By substituting 
EI
P

2 into Eq.(17) we can obtain: 

 

0)cos( l
EI
P , so 

2
nl

EI
P

     (18) 

 
 
So the buckling load can be obtained via this formula: 
 

2

22

4l
EInP 

       (19) 

 
For a beam which is simply  supported at both ends, the boundary conditions would be 

as followed: 
 

0)0('')0(  yy ,  0)('')(  lyly    (20) 
 

By substituting boundary conditions into Eq.(6) and Eq.(8) we obtain: 
 

0)0( 42  CCy      (21) 
0)0('' 2

2  Cy      (22) 
0cossin)( 4321  ClClClCly      (23) 
0)cos()sin()('' 2

2
2

1  lClCly      (24) 
 

As it is mentioned above 1C , 2C , 3C , 4C are constants and we can obtain those constant 
by using Eq.(21), Eq.(22), Eq.(23) and Eq.(24). The solution is obtained as follow: 

 
0)sin(4  l      (25) 

 
There are 2 possibilities which make the Eq.(15) equal to zero. 
 

04        (26) 
0)sin( l       (27) 

 

By substituting 
EI
P

2 into Eq.(27) we can obtain: 

 

0)sin( l
EI
P , so nl

EI
P

     (28) 

 



K. Mercan and Ö. Civalek 

 39

So the buckling load can be obtained via this formula: 
 

2

22

l
EInP 

       (29) 

 
For a beam which is Clamped-Simple supported at ends, the boundary conditions 

would be as followed: 
 

0)0(')0(  yy ,  0)('')(  lyly    (30) 
 

By substituting boundary conditions into Eq.(6) and Eq.(8) we obtain: 
 

0)0( 42  CCy       (31) 
0)0(' 31  CCy        (32) 

0cossin)( 4321  ClClClCly      (33) 
0)cos()sin()('' 2

2
2

1  lClCly      (34) 
 

As it is mentioned above 1C , 2C , 3C , 4C are constants and we can obtain those constant 
by using Eq.(31), Eq.(32), Eq.(33) and Eq.(34). The solution is obtained as follow: 

 
  0)cos()sin(  lll       (35) 

 
By arranging the transcendent Eq.(35) we obtain: 
 

ll  )tan(       (36) 
 

The result of the Eq.(36) is 49.4l , by substituting 
EI
P

2 into Eq.(36) we can 

obtain: 
 

EIP 2       (37) 
 

 
So the buckling load can be obtained via this formula: 
 

2

22

05.2
l

EInP 
       (38) 

 
For a beam which is fixed at both ends, the boundary conditions would be as followed: 
 

0)0(')0(  yy ,  0)(')(  lyly    (39) 
 

By substituting boundary conditions into Eq.(6) and Eq.(8) we obtain: 
 

0)0( 42  CCy       (40) 
0)0(' 31  CCy        (41) 
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0cossin)( 4321  ClClClCly      (42) 

321 sincos)(' ClClCly        (43) 
 

As it is mentioned above 1C , 2C , 3C , 4C are constants and we can obtain those constant by 
using Eq.(31), Eq.(32), Eq.(33) and Eq.(34). The solution is obtained as follow: 
 

0)
2
1sin( l       (44) 

 
By arranging the transcendent Eq.(44) we obtain: 
 

 l
2
1

      (45) 

 
So the buckling load can be obtained via this formula: 
 

2

22

4
l

EInP 
       (46) 

 

 

4. Numerical Examples 
 

In this study, the buckling of aorta artery with various boundary conditions is investigated 
via classical Euler-Bernoulli beam theory. Some of the results which are showing the 
buckling loads for simply supported aorta arteries are in Figure (3). These results show the 
decreasing of buckling load as the length of the artery increases. Three different average 
diameter is taken into account (Davg=4.38mm, Davg=5.5mm and Davg=6mm).The elasticity 
modulus is E=200kPa [1], the thickness is t=1mm, the moment of inertia is I=πtRavg

3.( 
Ravg=Davg/2) 
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Fig.3. Variation of buckling load of Aorta Artery for different average diameters for first 3 
modes respectively. 

 

 
Boundary 
conditions 

 
15 

 
25 

L/r 
45 

 
65 

 
85 

C-F 0.0151 0.0054 0.0017 0.0008 0.0005 

S-S 0.0604 0.0217 0.0067 0.0032 0.0019 

C-S 0.1237 0.0445 0.0137 0.0066 0.0039 

C-C 0.2414 0.0869 0.0268 0.0129 0.075 

Table 1. The buckling load of aorta artery (N) for different boundary conditions and L/r ratio 
 
 

The influences of the length on the buckling load for simply supported aorta artery for first 
three modes are illustrated in Figs. 3(a, b, c), respectively. In Fig. 3(a) the buckling loads are 
critical buckling load since it is for the first mode. As it can be seen in Figs. 2 (a,b,c,d), the 
buckling load is investigated for simply supported, clamped, propped and cantilever boundary 
conditions respectively. Fig.3(a, b, c) shows that the buckling load is decreasing dramatically 
with the increasing of length for all three modes. In Table 1. It can be seen that the highest 
buckling load is for Clamped boundary condition and lowest L/r ratio. As the L/r ratio 
increase, the artery is buckling under lower loads. 
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5. Concluding remarks 

Buckling analysis of aorta artery is investigated for variable boundary conditions. Present 
equations from literature [14] are used in order to calculate the critical buckling loads. Results 
are presented in figures and table. The maximum buckling load is found for clamped case and 
lowest L/r ratio. On the other hand the minimum buckling load is for Clamped-Free case and 
highest L/r ratio. 
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